냉동사이클(Cycle)
사이클은 과정중에 어떤 변화화를 거쳐 최초의 상태로 되돌아 오는 주기적 과정을 말한다. 냉동사이클은 최초의 상태로 돌아오는 과정중에 냉동작용을 하는 사이클을 말한다. 아래 그림과 같이 냉동장치에 있어서 냉매는 팽창밸브를 통하면서 저압으로 된 후 증발기에 들어가고, 증발기에서는 액체냉매가 증발잠열을 취하여 증발하게 된다. 그리고 증발된 냉매증기는 외부로부터의 일, 즉, 압축기에서 외부로부터 일을 받아 냉매증기를 압축하여 고온, 고압으로 된다. 압축된 고압의 증기가 응축기로 보내어 지며 여기서 응축열을 방출하고 응축하게된다. 응축액은 다시 팽창밸브로 들어가는 사이클을 형성하게 된다. 냉매는 냉동장치에서 연속적으로 액으로 되기도 하고 증기로 되기도 하면서 끊임없이 순환한다.
1) 카르노 사이클(Carnot cycle)
우주상의 모든 자연현상은 시간이 흐름에 따라 무질서의 정도가 증가하는 방향으로 움직인다. 가만히 있는 돌도 시간이 지나면 풍화되고 바닷물에 부었던 한컵의 설탕물을 다시 받아낼 수없다. 시간의 흐름과 함께 자연은 무질서, 혼동(chaos)의 증가로 움직인다. 이러한 무질서의 증가는 빅뱅이후 계속되고 있다. 이것은 엔트로피의 증가를 의미하며 한번 발생한 무질서의 증가는 되돌이킬 수 없음을 의미한다. 이런 현상을 비가역현상이라 부르며 반대 현상을 가역현상이라고 한다. 프랑스 물리학자인 카르노는 이러한 가역현상이 가능한 가역사이클을 제안한다. 이 사이클은 아래 그림과 같이 고온열원(Ⅰ), 단열체, 저온열원(Ⅱ)을 순서대로 실린더에 접촉시킴에 따라서 이론적으로는 실현가능한 사이클인데 오른쪽 그림의 압력-체적(P-V)선도에 나타낸 것과 같이 2개의 등온선과 2개의 단열선으로 구성되는 가역사이클이다.
1-2 : 온도 T1에서 등온팽창한다.(열량 Q1을 외부로부터 받는 과정)
2-3 : 단열팽창하여 온도 T2로 된다.(열의 출입이 없는 과정)
3-4 : 온도 T2에서 등온압축한다.
4-1 : 단열압축하여 온도 T1으로 된다.(열의 출입이 없는 과정)
2) 이상적인 냉동사이클
카르노사이클은 어느 방향으로도 진행할 수 있는 가역사이클이다. 따라서 아래 오른쪽 그림의 순서와 방향으로 작동하는 사이클을 역카르노사이클이라고 하는데 이것은 냉동사이클의 이론사이클이다.
즉, 1-4-3-2-1의 방향으로 진행하며, 4-3으로 상태변화 할 때에 열량 Q2를 받아들여 등온팽창하고, 2-1의 상태변화 동안에 열량 Q1을 외부로 방출하게 된다.
4-3 : 온도 T2에서 등온팽창한다.(열량 Q2를 외부로부터 받는 과정)
3-2 : 단열압축하여 온도 T1이 된다.(열의 출입이 없는 과정)
2-1 : 온도 T1에서 등온압축한다.(열량 Q1을 외부로 배출하는 과정)
1-4 : 단열팽창하여 T2로 된다.(열의 출입이 없는 과정)
즉, 외부로부터 일 W를 받아 저온구역 T2의 물체로부터 열량 Q2를 취하여, 고온구역 T1으로 열량 Q1을 배출하게 되는 것이다. 결국 (Q1-Q2)에 상당하는 열량을 소비하게 되므로, 이론적 냉동사이클의 성적계수(cop)는
여기서 일량 W의 에너지는 열량 Q2를 제거하는데 필요한 것이지 W의 에너지 일부가 열량 Q2로 변환되는 것은 아니다. 따라서, 이와 같은 의미로부터 효율이라는 말을 사용하지 않고 일반적으로 성적계수 COP(coefficient of performance)라는 말을 사용하고 있다.
냉동기와 비교하면 고온 물체의 절대온도 T1은 응축기에서 응축된 냉매의 온도에 상당하게 되고, 저온물체의 절대온도 T2는 증발기에서 증발하는 냉매의 온도이다. 따라서 응축온도는 가능한 낮을수록, 증발온도는 가능하면 높게 할수록 성적계수는 좋게 된다.
절대온도 T1인 냉동기의 고온부에서 배출하는 열량 Q1을 이용하여 가열 혹은 난방을 행하는 방식을 heat pump라 하는데, 이 때의 성적계수는 다음과 같다.
|