Milk kefir: composition, microbial cultures, biological activities, and related products
밀크 케 피어 : 구성성분, 미생물 배양, 생물학적 활성 및 관련 제품
This article has been
cited by other articles in PMC.
Abstract
In recent years, there has been a strong focus on beneficial foods with probiotic microorganisms and functional organic substances. In this context, there is an increasing interest in the commercial use of kefir, since it can be marketed as a natural beverage that has health promoting bacteria. There are numerous commercially available kefir based-products. Kefir may act as a matrix in the effective delivery of probiotic microorganisms in different types of products. Also, the presence of kefir’s exopolysaccharides, known as kefiran, which has biological activity, certainly adds value to products. Kefiran can also be used separately in other food products and as a coating film for various food and pharmaceutical products. This article aims to update the information about kefir and its microbiological composition, biological activity of the kefir’s microflora and the importance of kefiran as a beneficial health substance.
Keywords: kefir, biological activity, polysaccharides, kefiran, microbial composition
Introduction 머릿말
Kefir is an acidic-alcoholic fermented milk product with little acidic taste and creamy consistency that was originated in the Balkans, in Eastern Europe, and in the Caucasus (Fontán et al., 2006; Serafini et al., 2014). Kefir can be produced by fermenting milk with commercial freeze-dried kefir starter cultures, traditional kefir grains, and the product that remains after the removal of kefir grains (Bensmira et al., 2010). Kefir grains are a kind of yogurt starter, which are white to yellow – white, gelatinous, and variable in size (varying from 0.3–3.5 cm in diameter) and are composed by a microbial symbiotic mixture of lactic acid bacteria (108 CFU/g), yeast (106–107CFU/g), and acetic acid bacteria (105CFU/g) that stick to a polysaccharide matrix (Garrote et al., 2010; Chen et al., 2015). After successive fermentations, kefir grains can break up to new generation grains, which have the same characteristics as the old ones (Gao et al., 2012).
Commercial kefir is produced by two methods: The “Russian method” and the pure cultures. In the “Russian method” kefir is produced on a larger scale, using a series fermentation process, beginning with the fermentation of the grains and using the percolate. The other method employs pure cultures isolated from kefir grains or commercial cultures (Leite et al., 2013). Also, the industrial or commercial process uses direct-to-vat inoculation (DVI) or direct-to-vat set (DVS) kefir starter cultures. In addition, Bifidobacterium sp., Lactobacillus sp. and probiotic yeast (Saccharomyces boulardii) may be used as adjunct cultures when blended with kefir grains or kefir DVI cultures (Wszolek et al., 2006). On the other hand, whey may be a practical base for kefir culture production, and fermented whey has shown to be a suitable cryoprotective medium during freeze-drying. The freeze-dried culture retains a high survival rate and shows good metabolic activity and fermentation efficiency, indicating a good potential for its use as a value-added starter culture in dairy technology. All of these studies have shown promising perspectives for the application of kefir grains in whey valorization strategies (Bensmira et al., 2010; Cheirsilp and Radchabut, 2011).
Traditionally, kefir is manufactured using cow, ewe, goat, or buffalo milk. However, in some countries, animal milk is scarce, expensive, or minimally consumed due to dietary constraints, preferences, or religious customs. Therefore, there have been many attempts to produce kefir from a variety of food sources such as soy milk (Botelho et al., 2014). Historically, kefir has been linked with health, for example, in Soviet countries, kefir has been recommended for consumption by healthy people to restrain the risk of some diseases (Saloff-Coste, 1996; St-Onge et al., 2002; Farnworth and Mainville, 2003). The consumption of this fermented milk has been related to a variety of health benefits (Vujičič et al., 1992; McCue and Shetty, 2005; Rodrigues et al., 2005a) not only linked to its microflora, but also due to the presence of some metabolic products as organic acids (Garrote et al., 2001; Ismaiel et al., 2011). In addition, kefir cultures have the ability to assimilate cholesterol in milk (Yanping et al., 2009). On the other hand, there is a growing commercial interest in using kefir as a suitable food matrix for supplementation with health-promoting bacteria. Kefir may not only be a natural probiotic beverage, but also acts as an effective matrix for the delivery of probiotic microorganisms (Vinderola et al., 2006; Medrano et al., 2008; Oliveira et al., 2013).
In kefir grains the main polysaccharide is kefiran, which is a heteropolysaccharide composed by equal proportions of glucose and galactose and is mainly produced by Lactobacillus kefiranofaciens (Zajšek et al., 2011). It has been demonstrated that kefiran improves the viscosity and viscoelastic properties of acid milk gels (Rimada and Abraham, 2006), and is able to form gels that have interesting viscoelastic properties at low temperatures, because of that, kefiran can also be used as an additive in fermented products. Besides, kefiran can enhance the rheological properties of chemically acidified skim milk gels increasing their apparent viscosity (Zajšek et al., 2013).
케피어그레인에 있어서 주요한 다당류는 케퍼란입니다. 케퍼란은 포도당(글루코스)과 유당(갈락토스)이 동등한 비율로 구성되어져 있는데 이것은 주로 락토바실루스 케퍼라노파시엔스에 의해서 만들어집니다. 케퍼란은 산성우유겔의 점도와 점탄성을 향상시켜준다는 사실이 연구에 의해 증명되었습니다. 또한 흥미로운 점은 낮은 온도에서 점탄성의 물질을 가진 젤형태를 만들어 줍니다. 아울러 케퍼란은 점도와 점탄성때문에 발효제품의 첨가물로 사용되어질 수 있습니다.
게다가 케퍼란은 확연하게 점도를 향상시키는 화학적으로 산성화된 탈지유젤의 유변학적 물질의 농도를 높여줄 수 있습니다.
Compared with other polysaccharides, kefiran has outstanding advantages such as antitumor, antifungal, antibacterial properties (Cevikbas et al., 1994; Wang et al., 2008) immunomodulation or epithelium protection (Serafini et al., 2014), anti-inflammatory (Rodrigues et al., 2005b), healing (Rodrigues et al., 2005a), and antioxidant activity (Chen et al., 2015).
케퍼란은 다른 다당류와 비교해서 항종양,항균성의 물질과 면역조절,상피보호,항염증,치유 및 항산화제활성과 같은 뛰어난 효능을 가지고 있습니다.
This review presents the most recent advances about kefir and kefiran, their production and microbial cultures involved, biological activities and potential applications in health and food industries.
Microbial Composition of Kefir Grains and Kefir
케피어그레인과 배양유의 미생물의 구성성분
Kefir grains have a complex composition of microbial species such as the predominance of lactic acid bacteria, acetic bacteria, yeasts, and fungi (Jianzhong et al., 2009; Pogačić et al., 2013). This microbial species are classified into four groups: homofermentative and heterofermentative lactic acid bacteria and lactose and non-lactose assimilating yeast (Cheirsilp and Radchabut, 2011). In that way, Lactobacillus paracasei ssp. paracasei, Lactobacillus acidophilus, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus plantarum, and L. kefiranofaciens are predominant species. However, these species represent only 20% of the Lactobacillus in the final fermented beverage, with the remainder consisting of Lactobacillus kefiri (80%; Yüksekdag et al., 2004; Zanirati et al., 2015). Acetobacter aceti and A. rasens have also been isolated, such as the fungus Geotrichum candidum. More than 23 different yeast species have been isolated from kefir grains and from fermented beverages of different origins. However, the predominant species are Saccharomyces cerevisiae, S. unisporus, Candida kefyr, and Kluyveromyces marxianus ssp. marxianus (Witthuhn et al., 2004; Diosma et al., 2014; Zanirati et al., 2015; Table ).
Microbial compositions found in kefir and kefir grains of different origins.
The microbial composition may vary according to kefir origin, the substrate used in the fermentation process and the culture maintenance methods. Tibetan kefir, which is used in China, is composed of Lactobacillus, Lactococcus, and yeast. Additionally, acetic acid bacteria have been identified in Tibetan kefir, depending on the region in China from where it was obtained (Gao et al., 2012), additionally, Tibetan kefir composition differs from that of Russian kefir, Irish kefir, Taiwan kefir, Turkey fermented beverage with kefir; however, it is known that this microbial diversity is responsible for the physicochemical features and biological activities of each kefir (Jianzhong et al., 2009; Kabak and Dobson, 2011; Gao et al., 2012; Altay et al., 2013).
Wang et al. (2012) examined a section of a whole kefir grain and found in the outer layer of the grain, lactococci, and yeasts, and, in the inner layer of the grain, the quantity of lactobacilli were much higher and more yeasts cells were found. There are little information about the mechanism of grain formation, so the same authors, proposed a hypothesis to explain that. “Initially, Lactobacillus kefiranofaciens and Saccharomyces turicensis start to auto-aggregate and co-aggregated to small granules.” The aggregation is enhanced when the pH drops. The biofilm producers, Lactobacillus kefiri, Kluyveromyces marxianus HY1, and Pichia fermentans HY3 then adhere to the surface of these small granules due to their cell surface properties and their strong aggregation ability, which gives rise to thin biofilms. After biofilm formation, the kefir yeasts and Lactobacillus continue to co-aggregated with the granule strains and associate with the granule biofilm to become a three dimensional microcolony. As the cell density due to the growth of kefir yeasts and Lactobacillus increases, cells and milk components that are present in the liquid phase accumulate on the granule surface and the kefir grains are formed. There is a symbiotic relation between the microorganisms present in kefir grains, wherein the bacteria and yeast survive and share their bioproducts as power sources and microbial growth factors. This microorganism association is responsible for lactic and alcoholic fermentation (Witthuhn et al., 2005; Wang et al., 2012; Hamet et al., 2013).
After receiving its actual/present denomination, some of the microorganisms isolated and identified in kefir cultures were classified using the product name, as in Lactobacillus kefiri, L. kefiranofaciens, L. kefirgranum, Lactobacillus parakefir, and Candida kefyr (Wyder et al., 1999; Kwon et al., 2003; Yang et al., 2007; Kok-Tas et al., 2012). Table demonstrates the microbial composition, which has been isolated from kefir and kefir grains of different origins.
Biological Activity of Kefir 케피어의 생물학적 활성
Due to its composition, kefir is mainly considered a probiotic resource (Nalbantoglu et al., 2014). “Probiotics are microbial cell preparations or components of microbial cells with a beneficial effect on the health of the host” (Lopitz et al., 2006). Some studies suggest that probiotic bacteria in kefir consumers’ gut are abundant and are correlated with health improvement (Ahmed et al., 2013; Zheng et al., 2013); in that way, it had been demonstrated that the cell-free fraction of kefir enhances the ability to digest lactose relieving symptoms (Farnworth, 2005; Rizk et al., 2009).
Another reason for the increased interest in probiotic strains from kefir is its capacity to lower cholesterol levels. There are different ways in which bacteria can alter serum cholesterol: (i) through the binding to and absorption into the cell before it can be absorbed into the body; (ii) producing free and deconjugating bile acids; (iii) inhibiting the enzyme HMG-CoA reductase (Yanping et al., 2009).
The microorganisms in the kefir grains produce lactic acid, antibiotics and bactericides, which inhibit the development of degrading and pathogenic microorganisms in kefir milk (Liu et al., 2002). Kefir acts against the pathogenic bacteria Salmonella, Helicobacter, Shigella, Staphylococcus, Escherichia coli, Enterobacter aerogenes, Proteus vulgaris, Bacillus subtilis, Micrococcus luteus, Listeria monocytogenes, Streptococcus pyrogenes, (Lopitz et al., 2006), Streptococcus faecalis KR6, Fusarium graminearum CZ1 (Ismaiel et al., 2011), and the fungus Candida albicans. On the other hand, it has been demonstrated that a mixture of kefir isolated bacteria and yeast is able to prevent diarrhea and enterocolitis triggered by Clostridium difficile(Bolla et al., 2013). Besides, kefir showed good efficacy in inhibiting spore formation and aflatoxin B1 produced by the fungus Aspergillus flavus, which is a toxic compound formed either in the field or during food storage. Therefore, kefir appears as a promising safe alternative natural food preservative offering protection against intoxication with aflatoxin B1 (Ismaiel et al., 2011).
It had been proved that many species of lactobacilli present in kefir have S-layer proteins. Surface layers (S-layers) can be aligned in unit cells on the outermost surface of many prokaryotic microorganisms (Mobili et al., 2009). It has been demonstrated that these S-layer proteins can apply a protective action inhibiting the grown of Salmonella enterica serovar Enteritidis in Caco-2 cells, and also have the ability to antagonize the effects of toxins from Clostridium difficile on eukaryotic/eukaryotic cells in vitro (Carasi et al., 2012).
However, there are other important bioactivities that have been tested with kefir grains, the cell-free fraction of kefir or acid lactic bacteria isolated from kefir, such as antitumoral (Gao et al., 2013b), anti-inflammatory (Diniz et al., 2003), antimicrobial (Anselmo et al., 2010) immunoregulatory (Hong et al., 2009), antiallergenic (Wei-Sheng et al., 2010), wound healing (Huseini et al., 2012), antidiabetic (Young-In et al., 2006) antimutagenic (Guzel-Seydim et al., 2006), and antigenotoxic (Grishina et al., 2011). In that way, it had been demonstrated that kefir cell-free fraction has antiproliferative effects on human gastric cancer SGC7901 cells (Gao et al., 2013b), colon adenocarcinoma cells (Khoury et al., 2014), HuT–102 malignant T lymphocytes, sarcoma 180 in mice, Lewis lung carcinoma and human mammary cancer (Rizk et al., 2009), and reduce oxidative stress (Punaro et al., 2014). Another study has shown that suspensions after 24 h fermentation and mechanically disintegrated kefir grains cause a significant inhibition of granuloma tissue formation and a 43% inhibition of the inflammatory process (Diniz et al., 2003).
Nevertheless, there are other important studies performed with some microorganisms isolated from different types of kefir. Some microorganisms with their biological activities and origin are shown in Table .
Kefir microorganisms and their biological activities.
Kefiran, A Potential Exopolysaccharide
The increased search for natural polysaccharides has been very significant due to their use in the food, pharmaceutical, and cosmetic industries as additives, bio-absorbents, metal removal agents, bioflocculants, and medicine delivery agents, among other functions (De Vuyst et al., 2001; Welman and Maddox, 2003; Badel et al., 2011). Many microorganisms, such as bacteria, fungi, and weeds, have the capacity/ability to synthesize and excrete extracellular polysaccharides, and these polysaccharides can be either soluble or insoluble (Wang et al., 2010; Badel et al., 2011).
The polysaccharides that are commonly used as food additives are xanthan, dextran, gellan, and alginates, while the exopolysaccharides (EPSs) produced by lactic acid bacteria show good physicochemical characteristics for their use as food additives. In addition to these characteristics, EPSs are obtained from microorganisms classified as GRAS (generally recognized as safe), such as lactic acid bacteria (Wang et al., 2008; Saija et al., 2010; Badel et al., 2011).
Many reports have demonstrated that the quantity and properties of EPSs depend on the microorganisms used in the fermentation process and on the fermentation conditions and the composition of the culture media (Kim et al., 2008). EPSs have physicochemical and rheological properties that make them suitable as additives, which can be used as stabilizers, emulsifiers, gelling agents, and viscosity improvers. Additionally, EPSs possess biological properties suggesting their use as antioxidants, antitumor agents, antimicrobial agents, and immunomodulators, among other roles (Suresh Kumar et al., 2008; Bensmira et al., 2010; Piermaria et al., 2010).
The EPS kefiran is produced by Lactobacillus kefiranofaciens (Kooiman, 1968; Wang et al., 2010) from kefir grains, which are composed of proteins, polysaccharides, and a complex symbiotic microbial mixture (Witthuhn et al., 2005; Jianzhong et al., 2009). These microorganisms grow in kefiran, which is a polysaccharide matrix consisting of glucose and galactose. Despite good kefiran production by L. kefiranofaciens alone, it has been observed that the addition of Saccharomyces sp. to the culture improves the net quantity of kefiran, illustrating the importance of the symbiosis between the bacteria and yeast that are present in kefir (Cheirsilp et al., 2003).
Lactic acid bacteria can synthesize homopolysaccharides or heteropolysaccharides. The synthesized homopolysaccharides are glucans or fructans, which are composed of only one type of monosaccharide (glucose or fructose, respectively; Van Hijum et al., 2006; Badel et al., 2011), whereas the heteropolysaccharides contain different types of monosaccharides in different proportions (mainly glucose, galactose, and rhamnose), (De Vuyst and Degeest, 1999; Ruas-Madiedo et al., 2002).
Similarly to lactic acid bacteria, Lactobacillus sp. also produces glucan and fructan. The homopolysaccharides show a much higher performance compared with heteropolysaccharide production (Welman and Maddox, 2003; Badel et al., 2011).
The heteropolysaccharides excreted by Lactobacillus delbrueckii, Lactobacillus bulgaricus, Lactobacillus rhamnosus, and Lactobacillus helveticus contain galactose, glucose, and rhamnose as the main monosaccharides, with other monosaccharides being present in smaller concentrations. They are also highly branched with different types of linkages, and their denominations are complex and generally dependent on the main monosaccharide (De Vuyst and Degeest, 1999; Badel et al., 2011).
Lactobacillus plantarum isolated from Tibetan kefir excretes EPS classified as heteropolysaccharides composed of galactose, glucose, and mannose. This EPS has the capacity/ability to reduce blood cholesterol and form a biofilm shape (Zhang et al., 2009; Wang et al., 2010).
Kefiran is an EPS classified as a heteropolysaccharide comprising glucose and galactose in high concentrations, and it is classified as a water-soluble glucogalactan, which makes it suitable to be used as an additive (Wang et al., 2008, 2010). Kefiran has excellent rheological properties and can significantly improve the viscosity of lacteous products by favoring and maintaining gel properties and avoiding the loss of water during storage (Rimada and Abraham, 2006). With respect to the biological activity of kefiran, several studies have demonstrated that this EPS can be used as a nutraceutical, as described in Table .
Biological activity of kefiran.
The first study about kefiran structure was published by Kooiman (1968), who proposed a structure composed of two units: kefiran (polysaccharide) and kefirose (pentasaccharide). Then, some authors analyzed the polysaccharide structure with current techniques such chromatography and infrared spectroscopy (Wang et al., 2008; Chen et al., 2015) and nuclear magnetic resonance (NMR; Ghasemlou et al., 2012). The kefiran structure, according to them, is shown in Figure .
Kefir-Based Products
Nowadays, the interest in developing functional foods is increasing because people want to improve their health and prevent diseases. Keeping in mind that kefir is a beverage with high probiotic activity, among other bioactivities, new companies are emerging around the world. One of the biggest kefir companies known is Lifeway, which started in 1986; their products can be obtained in the United States, Canada, and Great Britain, all of them based in kefir beverages, frozen, and cheese.
Other companies are Evolve Kefir with its principal product, a smoothie; Wallaby Yogurt Company with Low Fat Kefir; and CocoKefir LLC, which provides drinks/beverages based mainly on coconut water cultured with a comprehensive blend of probiotics. Table summarizes the products provided these companies with some general information about each one.
Marketed kefir-based products and their information.
Conclusion
Kefir, the traditional beverage, is now recognized as a potential source of probiotics and molecules with highly interesting healthy properties. The careful and detailed characterization of kefir composition has helped the scientific community to find new possibilities for its application. Kefiran, the EPS of kefir, has very important physicochemical and rheological properties. Besides, its biological properties suggest its use as antioxidant, antitumor agent, antimicrobial agent, and immunomodulator, among other roles. Research is constantly being conducted to consolidate kefir and kefiran properties for the development of new important products to preserve consumer’s health.
Acknowledgment
Authors want to thank CNPq and CAPES for the financial support.
Conflict of Interest Statement
The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
References
- Ahmed Z., Wang Y., Ahmad A., Khan S. T., Nisa M., Ahmad H., et al. (2013). Kefir and health: a contemporary perspective. Crit. Rev. Food Sci. Nutr. 53 422–434. 10.1080/10408398.2010.540360 [PubMed] [Cross Ref]
- Altay F., Karbancıoglu-Güler F., Daskaya-Dikmen C., Heperkan D. (2013). A review on traditional Turkish fermented non-alcoholic beverages: microbiota, fermentation process and quality characteristics. Int. J. Food Microbiol. 167 44–56. 10.1016/j.ijfoodmicro.2013.06.016 [PubMed] [Cross Ref]
- Anselmo R. J., Viora S. S., Ojeda P. A., Lausada L. I. (2010). Efecto antagónico del kefir sobre endosporas y células vegetativas de Bacillus cereus y Clostridium perfringens. (Spanish) Antagonistic effect of the kefir on endospores and vegetative cells of Bacillus cereus and Clostridium perfringens. Inf. Tecnol. 21 131–138.
- Badel S., Bernardi T., Michaud P. (2011). New perspective for Lactobacilli exopolysaccharides. Biotecnol. Adv. 29 54–66. 10.1016/j.biotechadv.2010.08.011[PubMed] [Cross Ref]
- Bensmira M., Nsabimana C., Jiang B. (2010). Effects of fermentation conditions and homogenization pressure on the rheological properties of Kefir. Food Sci. Technol. 431180–1184.
- Bolla P. A., Carasi P., Bolla Mde L., De Antoni G. L., Serradell Mde L. (2013). Protective effect of a mixture of kefir-isolated lactic acid bacteria and yeasts in a hamster model of Clostridium difficile infection. Anaerobe 21 28–33. 10.1016/j.anaerobe.2013.03.010[PubMed] [Cross Ref]
- Botelho P. S., Maciel M. I., Bueno L. A., Marques Mde F., Marques D. N., Sarmento Silva T. M. (2014). Characterization of a new exopolysaccharide obtained from of fermented kefir grains in soymilk. Carbohydr. Polym. 107 1–6. 10.1016/j.carbpol.2014.02.036[PubMed] [Cross Ref]
- Carasi P., Trejo F. M., Pérez P. F., De Antoni G. L., Serradell Mde L. (2012). Surface proteins from Lactobacillus kefir antagonize in vitro cytotoxic effect of Clostridium difficile toxins. Anaerobe 18 135–142. 10.1016/j.anaerobe.2011.11.002 [PubMed][Cross Ref]
- Cevikbas A., Yemni E., Ezzedenn F. W., Yardimici T., Cevikbas U., Stohs S. J. (1994). Antitumoural, antibacterial and antifungal activities of kefir and kefir grain. Phytother. Res.8 78–82. 10.1002/ptr.2650080205 [Cross Ref]
- Cheirsilp B., Radchabut S. (2011). Use of whey lactose from dairy industry for economical kefiran production by Lactobacillus kefiranofaciens in mixed cultures with yeasts. N. Biotechnol. 28 574–580. 10.1016/j.nbt.2011.01.009 [PubMed] [Cross Ref]
- Cheirsilp B., Shimizu H., Shioya S. (2003). Enhanced kefiran production by mixed culture of Lactobacillus kefiranofaciens and Saccharomyces cerevisiae. J. Biotechnol. 100 43–53. 10.1016/S0168-1656(02)00228-6 [PubMed] [Cross Ref]
- Chen H. C., Wang S. Y., Chen M. J. (2008). Microbiological study of lactic acid bacteria in kefir grains by culture-dependent and culture-independent methods. Food Microbiol. 25492–501. 10.1016/j.fm.2008.01.003 [PubMed] [Cross Ref]
- Chen Y. P., Hsiao P. J., Hong W. S., Dai T. Y., Chen M. J. (2012). Lactobacillus kefiranofaciens M1 isolated from milk kefir grains ameliorates experimental colitis in vitro and in vivo. J. Dairy Sci. 95 63–74. 10.3168/jds.2011-4696 [PubMed] [Cross Ref]
- Chen Z., Shi J., Yang X., Nan B., Liu Y., Wang Z. (2015). Chemical and physical characteristics and antioxidant activities of the exopolysaccharide produced by Tibetan kefir grains during milk fermentation. Int. Dairy J. 43 15–21. 10.1016/j.idairyj.2014.10.004 [Cross Ref]
- De Vuyst L., Degeest B. (1999). Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol. Rev. 23 153–177. 10.1111/j.1574-6976.1999.tb00395.x [PubMed] [Cross Ref]
- De Vuyst L., De Vin F., Kamerling J. P. (2001). Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria. Int. Dairy J. 11 687–707. 10.1016/S0958-6946(01)00114-5 [Cross Ref]
- Diniz R., Garla L., Schneedorf J., Carvalho J. C. (2003). Study of anti-inflammatory activity of Tibetan mushroom, a symbiotic culture of bacteria and fungi encapsulated into a polysaccharide matrix. Pharmacol. Res. 47 49–52. 10.1016/S1043-6618(02)00240-2[PubMed] [Cross Ref]
- Diosma G., Romanin D. E., Rey-Burusco M. F., Londero A., Garrote G. L. (2014). Yeasts from kefir grains: isolation, identification, and probiotic characterization. World J. Microbiol. Biotechnol. 30 43–53. 10.1007/s11274-013-1419-9 [PubMed] [Cross Ref]
- Dobson A., O’Sullivan O., Cotter P. D., Ross P., Hill C. (2011). High-throughput sequence-based analysis of the bacterial composition of kefir and an associated kefir grain. FEMS Microbiol. Lett. 320 56–62. 10.1111/j.1574-6968.2011.02290.x [PubMed] [Cross Ref]
- Duarte J., Vinderola G., Ritz B., Perdigon G., Matar C. (2006). Immunomodulating capacity of commercial fish protein hydrolysate for diet supplementation. Immunobiology211 341–350. 10.1016/j.imbio.2005.12.002 [PubMed] [Cross Ref]
- Farnworth E. R. (2005). Kefir – a complex probiotic. Food Sci. Technol. Bull. Funct. Foods 2 1–17. 10.1616/1476-2137.13938 [Cross Ref]
- Farnworth E. R., Mainville I. (2003). “Kefir: a fermented milk product,” in Handbook of Fermented Functional Foods, ed. Farnworth E. R., editor. (Boca Raton, FL: CRC Press; ), 77–112.
- Fontán M. C. G., Martínez S., Franco I., Carballo J. (2006). Microbiological and chemical changes during the manufacture of Kefir made from cows’ milk, using a commercial starter culture. Int. Dairy J. 16 762–767. 10.1016/j.idairyj.2005.07.004 [Cross Ref]
- Gao J., Gu F., Abdella N. H., Ruan H., He G. (2012). Investigation on culturable microflora in Tibetan kefir grains from different areas of China. J. Food Sci. 77 425–433. 10.1111/j.1750-3841.2012.02805.x [PubMed] [Cross Ref]
- Gao J., Gu F., He J., Xiao J., Chen Q., Ruan H., et al. (2013a). Metagenome analysis of bacterial diversity in Tibetan kefir grains. Eur. Food Res. Technol. 236 549–556. 10.1007/s00217-013-1912-2 [Cross Ref]
- Gao J., Gu F., Ruan H., Chen Q., He J., He G. (2013b). Induction of apoptosis of gastric cancer cells SGC7901 in vitro by a cell-free fraction of Tibetan kefir. Int. Dairy J. 30 14–18. 10.1016/j.idairyj.2012.11.011 [Cross Ref]
- Garofalo C., Osimani A., Milanovič V., Aquilanti L., De Filippis F., Stellato G., et al. (2015). Bacteria and yeast microbiota in milk kefir grains from different Italian regions.Food Microbiol. 49 123–133. 10.1016/j.fm.2015.01.017 [PubMed] [Cross Ref]
- Garrote G. L., Abraham A. G., De Antoni G. L. (2001). Chemical and microbiological characterisation of kefir grains. J. Dairy Res. 68 639–652. 10.1017/S0022029901005210[PubMed] [Cross Ref]
- Garrote G. L., Abraham A. G., De Antoni G. L. (2010). “Microbial Interactions in Kefir: a Natural Probiotic Drink,” in Biotechnology of Lactic Acid Bacteria, eds Mozzi F., Raya R. R., Vignolo G. M., editors. (Ames, IO: Wiley-Blackwell; ), 327–340.
- Ghasemlou M., Khodaiyan F., Jahanbin K., Mohammad S., Gharibzahedi T., Taheri S. (2012). Structural investigation and response surface optimisation for improvement of kefiran production yield from a low-cost culture medium. Food Chem. 133 383–389. 10.1016/j.foodchem.2012.01.046 [PubMed] [Cross Ref]
- Grishina A., Kulikova I., Alieva L., Dodson A., Rowland I., Jing J. (2011). Antigenotoxic effect of kefir and ayran supernatants on fecal water-induced DNA damage in human colon cells. Nutr. Cancer 63 73–79. 10.1080/01635581.2010.516873 [PubMed] [Cross Ref]
- Guzel-Seydim Z. B., Seydim A. C., Greene A. K., Ta T. (2006). Determination of antimutagenic properties of acetone extracted fermented milks and changes in their total fatty acid profiles including conjugated linoleic acids. Int. J. Dairy Technol. 59 209–215. 10.1111/j.1471-0307.2006.00265.x [Cross Ref]
- Guzel-Seydim Z., Wyffels J. T., Seydim A. C., Greene A. K. (2005). Turkish kefir and kefir grains: microbial enumeration and electron microscopic observation. Int. J. Dairy Technol. 58 25–29. 10.1111/j.1471-0307.2005.00177.x [Cross Ref]
- Hamet M. F., Londero A., Medrano M., Vercammen E., Van Hoorde K., Garrote G. L., et al. (2013). Application of culture-dependent and culture-independent methods for the identification of Lactobacillus kefiranofaciens in microbial consortia present in kefir grains. Food Microbiol. 36 327–334. 10.1016/j.fm.2013.06.022 [PubMed] [Cross Ref]
- Hong W. S., Chen H. C., Chen Y. P., Chen M. J. (2009). Effects of kefir supernatant and lactic acid bacteria isolated from kefir grain on cytokine production by macrophage. Int. Dairy J. 19 244–251. 10.1016/j.idairyj.2008.10.010 [Cross Ref]
- Huseini H. F., Rahimzadeh G., Fazeli M. R., Mehrazma M., Salehi M. (2012). Evaluation of wound healing activities of kefir products. Burns 38 719–723. 10.1016/j.burns.2011.12.005 [PubMed] [Cross Ref]
- Ismaiel A. A., Ghaly M. F., El-Naggar A. K. (2011). Milk kefir: ultrastructure, antimicrobial activity and efficacy on aflatoxin b1 production by Aspergillus flavus. Curr. Microbiol. 62 1602–1609. 10.1007/s00284-011-9901-9 [PubMed] [Cross Ref]
- Jianzhong Z., Xiaoli L., Hanhu J., Mingsheng D. (2009). Analysis of the microflora in Tibetan kefir grains using denaturing gradient gel electrophoresis. Food Microbiol. 26 770–775. 10.1016/j.fm.2009.04.009 [PubMed] [Cross Ref]
- Kabak B., Dobson A. D. (2011). An introduction to the traditional fermented foods and beverages of Turkey. Crit. Rev. Food Sci. Nutr. 51 248–260. 10.1080/10408390903569640[PubMed] [Cross Ref]
- Kesmen Z., Kacmaz N. (2011). Determination of lactic microflora of kefir grains and kefir beverage by using culture-dependent and culture-independent methods. J. Food Sci. 76276–283. 10.1111/j.1750-3841.2011.02191.x [PubMed] [Cross Ref]
- Khoury N., El-Hayek S., Tarras O., El-Sabban M., El-Sibai M., Rizk S. (2014). Kefir exhibits anti-proliferative and pro-apoptotic effects on colon adenocarcinoma cells with no significant effects on cell migration and invasion. Int. J. Oncol. 45 2117–2127. 10.3892/ijo.2014.2635 [PubMed] [Cross Ref]
- Kim Y., Kim J. U., Oh S., Kim Y. J., Kim M., Kim S. H. (2008). Technical optimization of culture conditions for the production of exopolysaccharide (EPS) by Lactobacillus rhamnosus ATCC 9595. Food Sci. Biotechnol. 17 587–593.
- Kok-Tas T., Ekinci F. Y., Guzel eSeydim Z. B. (2012). Identification of microbial flora in kefir grains produced in Turkey using PCR. Int. J. Dairy Technol. 65 126–131. 10.1111/j.1471-0307.2011.00733.x [Cross Ref]
- Kooiman P. (1968). The chemical structure of kefiran, the water-soluble polysaccharide of the kefir grain. Carbohydr. Res. 7 220–221. 10.1016/S0008-6215(00)81138-6 [Cross Ref]
- Korsak N., Taminiau B., Leclercq M., Nezer C., Crevecoeur S., Ferauche C., et al. (2015). Short communication: evaluation of the microbiota of kefir samples using metagenetic analysis targeting the 16S and 26S ribosomal DNA fragments. J. Dairy Sci. 98 3684–3689. 10.3168/jds.2014-9065 [PubMed] [Cross Ref]
- Kwon C. S., Park M. Y., Cho J. S., Choi S. T., Chang D. S. (2003). Identification of effective microorganisms from kefir fermented milk. Food Sci. Biotechnol. 12 476–479.
- Leite A. M. O., Mayoa B., Rachid C. T., Peixoto R. S., Silva J. T., Paschoalin V. M., et al. (2012). Assessment of the microbial diversity of Brazilian kefir grains by PCR-DGGE and pyrosequencing analysis. Food Microbiol. 31 215–221. 10.1016/j.fm.2012.03.011[PubMed] [Cross Ref]
- Leite A. M. O., Miguel M. A., Peixoto R. S., Rosado A. S., Silva J. T., Paschoalin V. M. (2013). Microbiological, technological and therapeutic properties of kefir: a natural probiotic beverage. Braz. J. Microbiol. 44 341–349. 10.1590/S1517-83822013000200001 [PMC free article] [PubMed] [Cross Ref]
- Liu J. R., Wang S. Y., Lin Y. Y., Lin C. W. (2002). Antitumor activity of milk, kefir and soya milk kefir in tumor bearing mice. Nutr. Cancer 44 183–187. 10.1207/S15327914NC4402_10 [PubMed] [Cross Ref]
- Londero A., Hamet M. F., De Antoni G. L., Garrote G. L., Abraham A. G. (2012). Kefir grains as a starter for whey fermentation at different temperatures: chemical and microbiological characterisation. J. Dairy Res. 79 262–271. 10.1017/S0022029912000179[PubMed] [Cross Ref]
- Lopitz F. O., Rementeria A., Elguezabal N., Garaizar J. (2006). Kefir: una comunidad simbiótica de bacterias y levaduras con propiedades saludables. Rev. Iberoam. Micol. 2367–74. 10.1016/S1130-1406(06)70016-X [PubMed] [Cross Ref]
- Maeda H., Zhu X., Suzuki S., Suzuki K., Kitamura S. (2004). Structural characterization and biological activities of an exopolysaccharide kefiran produced by Lactobacillus kefiranofaciens WT-2B(T). J. Agric. Food Chem. 52 5533–5538. 10.1021/jf049617g[PubMed] [Cross Ref]
- Magalhães K. T., Pereira G. V. M., Campos C. R., Dragone G., Schwan R. F. (2011). Brazilian kefir: structure, microbial communities and chemical composition. Braz. J. Microbiol. 42 693–702. 10.1590/S1517-838220110002000034 [PMC free article][PubMed] [Cross Ref]
- McCue P. P., Shetty K. (2005). Phenolic antioxidant mobilization during yogurt production from soymilk using Kefir cultures. Process Biochem. 40 1791–1797. 10.1016/j.procbio.2004.06.067 [Cross Ref]
- Medrano M., Pérez P. F., Abraham A. G. (2008). Kefiran antagonizes cytopathic effects of Bacillus cereus extracellular factors. Int. J. Food Microbiol. 122 1–7. 10.1016/j.ijfoodmicro.2007.11.046 [PubMed] [Cross Ref]
- Miguel M. G. C. P., Cardoso P. G., Lago L. A., Schwan R. F. (2010). Diversity of bacteria present in milk kefir grains using culture-dependent and culture-independent methods.Food Res. Int. 43 1523–1528. 10.1016/j.foodres.2010.04.031 [Cross Ref]
- Mobili P., Serradell Mde L. A., Trejo S. A., Avilés Puigvert F. X., Abraham A. G., et al. (2009). Heterogeneity of S-layer proteins from aggregating and non-aggregating Lactobacillus kefir strains. Antonie Van Leeuwenhoek 95 363–372. 10.1007/s10482-009-9322-y [PubMed] [Cross Ref]
- Nalbantoglu U., Cakar A., Dogan H., Abaci N., Ustek D., Sayood K., et al. (2014). Metagenomic analysis of the microbial community in kefir grains. Food Microbiol. 41 42–51. 10.1016/j.fm.2014.01.014 [PubMed] [Cross Ref]
- Oliveira A. M. L., Miguel M. A. L., Peixoto R. S., Rosado A. S., Silva J. T., Paschoalin V. M. F. (2013). Microbiological, technological and therapeutic properties of kefir: a natural probiotic beverage. Braz. J. Microbiol. 44 341–349. 10.1590/S1517-83822013000200001 [PMC free article] [PubMed] [Cross Ref]
- Piermaria J., Bosch A., Pinotti A., Yantorno O., Garcia M. A., Abraham A. G. (2010). Kefiran films plasticized with sugars and polyols: water vapor barrier and mechanical properties in relation to their microstructure analyzed by ATR/FT-IR spectroscopy. Food Hydrocoll. 25 1261–1269. 10.1016/j.foodhyd.2010.11.024 [Cross Ref]
- Pogačić T., Sinko S., Zamberlin S., Samarzija D. (2013). Microbiota of kefir grains.Mljekarstvo 63 3–14.
- Powell J. E., Witthuhn R. C., Todorov S. D., Dicks L. M. T. (2007). Characterization of bacteriocin ST8KF produced by a kefir isolate Lactobacillus plantarum ST8KF. Int. Dairy J. 17 190–198. 10.1016/j.idairyj.2006.02.012 [Cross Ref]
- Punaro G. R., Maciel F. R., Rodrigues A. M., Rogero M. M., Bogsan C. S. B., Oliveira M. N., et al. (2014). Kefir administration reduced progression of renal injury in STZ-diabetic rats by lowering oxidative stress. Nitric Oxide 37 53–60. 10.1016/j.niox.2013.12.012[PubMed] [Cross Ref]
- Raja A., Gajalakshmi P., Raja M. M. M., Imran M. M. (2009). Effect of Lactobacilluslaceis cremoris isolated from Kefir against food spoilage bacteria. Am. J. Food Technol. 4201–209. 10.3923/ajft.2009.201.209 [Cross Ref]
- Rimada P. S., Abraham A. G. (2006). Effects of different fermentation parameters on quality characteristics of kefir. Int. Dairy J. 16 33–39. 10.3168/jds.2012-5753 [Cross Ref]
- Rizk S., Maalouf K., Baydoun E. (2009). The Antiproliferative effect of kefir cell-free fraction on HuT-102 malignant T lymphocytes. Clin. Lymphoma Myeloma 9 198–203. 10.3816/CLM.2009.s.012 [PubMed] [Cross Ref]
- Rodrigues K. L., Caputo L. R. G., Carvalho J. C. T., Evangelista J., Schneedorf J. M. (2005a). Antimicrobial and healing activity of kefir and kefiran extract. Int. J. Antimicrob. Agents 25 404–408. 10.1016/j.ijantimicag.2004.09.020 [PubMed] [Cross Ref]
- Rodrigues K. L., Carvalho J. C. T., Schneedorf J. M. (2005b). Anti-inflammatory properties of kefir and its polysaccharide extract. Inflammopharmacology 13 485–492. 10.1163/156856005774649395 [PubMed] [Cross Ref]
- Ruas-Madiedo P., Hugenholtz J., Zoon P. (2002). An overview of the functionality of exopolysaccharides produced by lacti acid bacteria. Int. Dairy J. 12 163–171. 10.1016/S0958-6946(01)00160-1 [Cross Ref]
- Saija N., Welman A., Bennett R. (2010). Development of a dairy-based exopolysaccharide bioingredient. Int. Dairy J. 20 603–608. 10.1016/j.idairyj.2010.03.011 [Cross Ref]
- Saloff-Coste C. J. (1996). Kefir. Nutritional and health benefits of yoghurt and fermented milks. Dannone World Newsl. 11 1–7.
- Serafini F., Turroni P., Ruas-Madiedo G. A., Lugli C., Milani S., Duranti N., et al. (2014). Kefir fermented milk and kefiran promote growth of Bifidobacterium bifidum PRL2010 and modulate its gene expression. Int. J. Food Microbiol. 178 50–59. 10.1016/j.ijfoodmicro.2014.02.024 [PubMed] [Cross Ref]
- Simova E., Beshkova D., Angelov A., Hristozova T., Frengova G., Spasov Z. (2002). Lactic acid bacteria and yeasts in kefir grains and kefir made from them. J. Ind. Microbiol. Biotechnol. 28 1–6. 10.1038/sj.jim.7000186 [PubMed] [Cross Ref]
- Soccol C. R., Prado M. R. M., Garcia L. M. B., Rodrigues C., Medeiros A. B. P. (2014). Current developments in probiotics. J. Microb. Biochem. Technol. 7 011–020. 10.4172/1948-5948.1000175 [Cross Ref]
- St-Onge M. P., Farnworth E. R., Savard T., Chabot D., Mafu A., Jones P. J. (2002). Kefir consumption does not alter plasma lipid levels or cholesterol fractional synthesis rates relative to milk in hyperlipidemic men: a randomized controlled trial. BMC Complement. Altern. Med. 2:1 10.1186/1472-6882-2-1 [PMC free article] [PubMed] [Cross Ref]
- Suresh Kumar A., Mody K., Jha B. (2008). Bacterial exopolysaccharides – a perception. J. Basic Microbiol. 47 103–117. 10.1002/jobm.200610203 [PubMed] [Cross Ref]
- Van Hijum S. A., Kralj S., Ozimek L. K., Dijkhuizen L., Van Geel-Achutten I. G. (2006). Structural-function relationships of glucansucrases and fructan enzymes from lactic acid bacteria. Microbiol. J. Biol. Macromol. 70 157–176. [PMC free article] [PubMed]
- Vinderola G., Perdigon G., Duarte J., Farnworth E., Matar C. (2006). Effects of the oral administration of the products derived from milk fermentation by kefir microflora on immune stimulation. J. Dairy Res. 73 472–479. 10.1017/S002202990600197X [PubMed][Cross Ref]
- Vujičič I. F., Vulić M., Könyves T. (1992). Assimilation of cholesterol in milk by kefir cultures. Biotechnol. Lett. 14 847–850. 10.1007/BF01029151 [Cross Ref]
- Wang S. Y., Chen K. N., Lo Y. M., Chiang M. L., Chen H. C., Liu J. R., et al. (2012). Investigation of microorganisms involved in biosynthesis of the kefir grain. Food Microbiol. 32 274–285. 10.1016/j.fm.2012.07.001 [PubMed] [Cross Ref]
- Wang Y., Ahmed Z., Feng W., Li C., Song S. (2008). Physicochemical properties of exopolysaccharide produced by Lactobacillus kefiranofaciens ZW3 isolated from Tibet kefir. Int. J. Biol. Macromol. 43 283–288. 10.1016/j.ijbiomac.2008.06.011 [PubMed][Cross Ref]
- Wang Y. P., Li C., Liu P., Zaheer A., Xiao P., Bai X. (2010). Physical characterization of exopolysaccharide produced by Lactobacillus plantarum KF5 isolated from Tibet Kefir.Carbohydr. Polym. 82 895–903. 10.1016/j.carbpol.2010.06.013 [Cross Ref]
- Wei-Sheng H., Yen-Po C., Ming-Ju C. (2010). The Antiallergic effect of kefir Lactobacilli.J. Food Sci. 75 244–253. 10.1111/j.1750-3841.2010.01787.x [PubMed] [Cross Ref]
- Welman A. D., Maddox I. S. (2003). Exopolysaccharides from lactic acid bacteria: perspectives and challenges. Trends Biotechnol. 21 269–274. 10.1016/S0167-7799(03)00107-0 [PubMed] [Cross Ref]
- Witthuhn R. C., Schoeman T., Britz T. J. (2004). Isolation and characterisation of the microbial population of different South African kefir grains. Int. J. Dairy Technol. 57 33–37. 10.1111/j.1471-0307.2004.00126.x [Cross Ref]
- Witthuhn R. C., Schoeman T., Britz T. J. (2005). Characterisation of the microbial population at different stages of kefir production and kefir grain mass cultivation. Int. Dairy J. 15 383–389. 10.1016/j.idairyj.2004.07.016 [Cross Ref]
- Wszolek M., Kupiec-Teahan B., Skov Gulard H., Tamime A. Y. (2006). “Production of kefir, koumiss and other related products,” in Fermented Milks, ed. Tamime A. Y., editor. (Oxford: Blackwell Publishing; ), 174–216.
- Wyder M. T., Meile L., Teuber M. (1999). Description of Saccharomyces turicensis sp. nov., a new species from kefyr. Syst. Appl. Microbiol. 3 420–425. 10.1016/S0723-2020(99)80051-4 [PubMed] [Cross Ref]
- Yang X. J., Fan M. T., Shi J. L., Dang B. (2007). Isolation and identification of preponderant flora in Tibetan kefir. China Brewing 171 52–55.
- Yanping W., Nv X., Aodeng X., Zaheer A., Bin Z., Xiaojia B. (2009). Effects of Lactobacillus plantarum MA2 isolated from Tibet kefir on lipid metabolism and intestinal microflora of rats fed on high-cholesterol diet. Appl. Microbiol. Biotechnol. 84 341–347. 10.1007/s00253-009-2012-x [PubMed] [Cross Ref]
- Ying H., Fei W., Xiaojun W., Yujie S., Longfei Y., Jinfeng W. (2013). Characterization of Lactobacillus plantarum Lp27 isolated from Tibetan kefir grains: a potential probiotic bacterium with cholesterol-lowering effects. J. Dairy Sci. 96 2816–2825. 10.3168/jds.2012-6371 [PubMed] [Cross Ref]
- Young-In K., Apostolidis E., Shetty K. (2006). Anti-diabetes functionality of kefir culture-mediated fermented soymilk supplemented with Rhodiola extracts. Food Biotechnol. 2013–29. 10.1080/08905430500522055 [Cross Ref]
- Yüksekdag Z. N., Beyatli Y., Aslim B. (2004). Determination of some characteristics coccoid forms of lactic acid bacteria isolated from Turkish kefirs with natural probiotic.Food Sci. Technol. 37 663–667.
- Zajšek K., Goršek A., Kolar M. (2013). Cultivating conditions effects on kefiran production by the mixed culture of lactic acid bacteria imbedded within kefir grains. Food Chem. 139 970–977. 10.1016/j.foodchem.2012.11.142 [PubMed] [Cross Ref]
- Zajšek K., Kolar M., Goršek A. (2011). Characterisation of the exopolysaccharide kefiran produced by lactic acid bacteria entrapped within natural kefir grains. Int. J. Dairy Technol.64 544–548. 10.1111/j.1471-0307.2011.00704.x [Cross Ref]
- Zanirati D. F., Abatemarco M., Cicco Sandesb S. H., Nicolia J. R., Nunes A. C., Neumanna E. (2015). Selection of lactic acid bacteria from Brazilian kefir grains for potential use as starter or probiotic cultures. Anarobe 32 70–76. 10.1016/j.anaerobe.2014.12.007 [PubMed][Cross Ref]
- Zhang B., Xu N., Xi A. D., Wang Y. P. (2009). Screening and identification of cholesterol-reducing KF5 strain. J. Tianjin Univ. Sci. Technol. 24 17–20.
- Zheng Y., Lu Y., Wang J., Yang L., Pan C., Huang Y. (2013). Probiotic properties of Lactobacillus strains isolated from Tibetan Kefir grains. PLoS ONE 8:e6986810.1371/journal.pone.0069868 [PMC free article] [PubMed] [Cross Ref]
첫댓글 전 이 자료를 접하고서는 티벳유를 키울때 나타나는 끈끈한 점액물질이 케퍼란이라는 주장에 80%신뢰를 가지게 되었습니다.
저기 참고문헌으로 열거된 눈문들을 다 구해서 읽어볼 수 있으면 좋은데 주로 유료자료거나 그래서 구해보는 것이 제약이 따릅니다. 해외엔 케피어에 대한 자료가 엄청 많이 넘쳐납니다.아무래도 오랜 시간 가정에서 키우고 그 효용성을 알게되면서 연구자들의 연구도 활발할 듯 싶습니다.
제게서 티벳버섯 효능은 항염증치료제인거 겉아요.
전 염증이 많이 생기는 체질이거든요.
티벳유를 먹으며 그 고민이 사라졌어요.
정말 제겐 신이주신 선물처럼 귀하고 소중하답니다.
근데
LDL콜레스테롤 수치는 제 특성상 조절이 안되고 높이는 식품에 불가하네요.
양날의 검이 되었어요.
3년째 같은 결과에 망연자실 하고 있어요.
콜레스테롤을 낮출려면 두가지를 추천드립니다.
일단 티벳유로 콜레스테롤문제가 해결이 안되셨다고하니 이것을 해보세요.
비타민B3(나이아신)을 식사할때마다 500mg씩 드셔보세요. 이것은 부작용없이 콜레스테롤을 낮출수있는 천연물질입니다.나이아신은 관절염환자에게도 좋습니다. 효과가 탁월한대도 의사들은 타산이 안맞으니 절대 처방을 안합니다. 인터넷에서 나이아신으로 검색하시면 25000원정도면 구매가능합니다. 이것과병행해서 해독쥬스를 하루에 1000ml씩 3달정도만 드셔보세요. 나이아신은 금방효과 나타나지만 근본치료법은 아닙니다. 해독쥬스는 장기간복용해야하지만 근본치료법입니다. 꼭 해보세요
@블랙 착각했어요.
B 군^^
D
로 봐서 댓글을 달았네요.
지웠어요^^
@블랙 감사합니다.
니아신
해독주스
실천해볼께요.
처방 약에 대한 불안이 크거든요.
@정은 천연물질은 부작용이 아주 적든지 없잖아요. 그래서 건강보조식품으로 나이아신도 판매되어지고 있어요...
http://www.enuri.com/detail.jsp?similar=Y&modelno=23245229&IsDeliverySum=N&cate=1501
이제품구입하시면 될듯합니다.용량도 맞네요.
제가 드리는 조언은 기능의학 전문의들이 검증한 자료입니다.
@블랙
티벳버섯에서 점액질이 케퍼란인거죠?
예전에 그린님께 여쭌거 같은데
배양액 성분중에 케퍼란을 추출한 보고가 아니라
티벳버섯의 점액질을 분석해서 나온건가요?
그러면 티벳버섯 유도 좋지만 티벳버섯 자체를 음용하거나 바르는 치유과정이 더 필요하지 않을까요?
요구르트도 좋겠지만요.
티벳버섯이 우유를 먹이로 먹으며 생존을 하고 케퍼란을 양산하는 메카니즘이라면요.
우리가 주로 먹는건 케퍼란이 함유된 티벳버섯이 아니라 티벳유이고
그 배양액을 얻는데 초점이 맞춰지다 보니
발효력에 집중을 했고
그러면서 진득한 점액질 티벳버섯이 만들어지는 원인을 알아내려한거 같아요.
주로
냉동보관된 환원티벳버섯에서 거의 나타나
글의 전체문맥으로 봤을때 점액질이 케퍼란이라고 말하는 것 같습니다.
@블랙 그러면 케퍼란의 효능은 티벳버섯에서 추출한 다당체이지 않을까요?
그게
고형이나 젤형으로 존재를 하는거 아닐런지요?
브로콜리형은 으깨면 두부처럼 뭉개져요.
그 또한 케퍼란의 다른 형태가 아닐까요?
케퍼란의 저장 방법을 티벳버섯 종류마다 다르게 할수도 있잖아요.
끈적한 젤형보다
고형이 더 함량이 높은거 아닐까요?
(조심그러운 가정이에요.
민감한 사안이라서요)
(티벳버섯 우열로 치부될수도 있지싶어서요)
(가설적 생각일뿐입니다)
티벳버섯이 안정화되면 고형상태의 다당체로 보유를 하다가 화초가 꽃을 피우는 이유처럼 어느 불안정한 이유로 젤화되게 변형을 초래하는게 아닐까요?
그 고민끝에
위생이나 관리부분에 원인을
@정은 둔건 아닐까 조심스레 진단을 해봅니다.
그 반대의 경우일수도 있구요.
물질의 상태의 변화에는 그 이유가 분명하니까요.
@정은 윗 본문 글을 잘 읽어보면 케퍼란은 락토바실루스 케퍼라노파시엔스가 만들어낸다고 나와있어요... 즉 티벳유의 한 구성성분 중 락토바실루스 케퍼라노파시엔스가 많을 때 케퍼란이 많다는 것이겠지요... 티벳그레인을 쥐어짜주기한다든지 자극을 줬을때 이 락토바실루스 케퍼라노파시엔스가 많이 만들어지는 것이 아닐까요??
그래서 이 케퍼라노파시엔스유산균이 케퍼란을 많이 만들어서 끈끈해지구요.. 또한 이 케퍼라노파시엔스균이 과다하게 번식하면 다른 유산균들이 힘이 약해지는것은 아닌지 하는 생각이 들어요..그래서 케퍼란이 많은 티벳유가 배양이 늦잖아요.. 이런 추론도 가능할 듯 싶어요..
고
특정한 배양법에 길들여진 티벳버섯에서 나타나므로
그 배양법이 질타의 대상이 되고
냉장보관을 냉해로 규정지으며 점액질에 대해서 혐오를 하게 된거 같아요.
케퍼란을 많이 양성할 티벳버섯에 집중을 하게 된다면 그 반대의 결론이 되는거겠지요.
오히려 발효력을 왕성하게 할 필요가 없으니 지금의 방법과 다른 방법이 나올거 같아요.
정리하면
케퍼란이 많이 분비되는 티벳버섯은 우유를 많이 발효시키지 못하는 경향이 뚜렷해요.
하지만
그 티벳버섯은 함염 항균 함암등의 면역력을 키워주는 다당체가 함유가 되어있어요.
케퍼란에 대해서 제대로된 적립이 필요한 이유가 여기에 있다고 봅니다.
정은님 말씀이 맞는 것 같아요..
쥐어짜기를 해서 케퍼란 유도후에 저도 배양력이 떨어졌어요..
케퍼란을 분비하면 배양력이 저하되나봐요.
정은님도 경험상 그렇게 알고계시니 맞는 듯 합니다.
티벳유에서 최고의 유효성분이 케퍼란이라서 해외에선 여기에 대한 연구가 많고 케퍼란만 추출해서 제품으로 많이 나오고 있잖아요...그만큼 케퍼란이 유익한 듯 합니다.
아마 케퍼란의 분비촉진은 케피어그레인에 자극(쥐어짜기나 냉동보관등)이 주어지면 많이 이루어지나봅니다.
이와 관련된 자료가 해외에 많은데 오픈된 자료가 많지 않아서 찾아보는데 애로점이 많습니다.
주로 자료를 볼려면 유료이거나 그런 것 같아요..
@블랙 해외자료들도 우리가 키우며 부딪히는 발효력과 티벳버섯 종류와의 관계를 제시한건 없는듯 해요.
우리는 카페를 통해 맛이 이상하다는 질문에 버리라 다시사라 하다보니
다양한 배양법들이 나왔고
다양한 종류의 인정까지 온거에 비하면요.
자료들은 티벳버섯 성분에 집중을 한거 같아요.
추출이라는게
티벳버섯에서 한건지
배양액에서 한건지
애매하구요.
우리의 환경상 모든게 변하는 배양에서 어떻게 동종의 균일한 배양이 이루어지는지..
추출이 가능한건지..
예전
어제의 티벳버섯이 오늘의 티벳버섯이 아니고
우유도 기후도 모든 여건들이 똑같은 상황이 아닌데
우리가 어제의 결과와 오늘의 결과가 같다고 생각하는 자체가 오류라고
@블랙 말씀들을 드린기억이 나요.
변화는 자연그러움이라 생각을 했어요.
내성에 대해 제가 꿋꿋할수 있음도 그 이유였구요.
@블랙 그렇군요.
실력이 있으셔도 그런 애로사항이 있으시군요.
에궁
그 귀한 자료를 저는 이리 편히 보고 얻고 터무니없는 우물안 개구리 같은 유추만 디립다 하고 있네요.
ㅎㅎ
@정은 케퍼란을 케피어그레인에서 추출했는지 아니면 케피어 즉 티벳유에서 추출했는지는 중요하지 않다고 봅니다. 다만, 저도 아직 케피어그레인이 어떤 메카니즘으로 우유를 배양하는 물질을 내 뿜는지는 추측만 할뿐 자세히는 모릅니다. 케피어그레인이 우유를 먹고 우유를 배양할 유산균과 효모를 내뿜는 것으로 생각되어 집니다. 그과정에서 케피어그레인의 상태에 따라서 내뿜는 유산균과효모의 종류가 달라진다고 추정합니다. 우리 인간이 같은 음식물을 먹고도 대변을 분석해 보면 거기에 포함된 세균들과 성상이 다른 것처럼 케피어와 케피어그레인도 그러할듯 싶네요. 아마 구체적 메커니즘은 과학자들도 다 밝혀내지는 못했을 듯 싶네요.
@블랙 케퍼란에 대한 저료에서는 저는 늘 그게 궁금했어요.
벌을 먹느냐 꿀을 먹느냐에서
우리가 벌을 먹을수도 있잖아요.
배양액으로만 보자면
잘 길러지고 착유된 우유만으로도 훌륭한 식품인데
그 성분을 소화흡수가 용이하게 분해를 시켜주니 너무 좋은거라 생각을 했어요.
그 두 경우는 구분을 해서 생각을 했어요.
티벳버섯 유에 케퍼란이 많이 함유되어서 그 배양액을 추출했다면 정말 더 금상첨화이지만
티벳버섯에서 추출했다면 저는 케퍼란에 대한 인식이 다르게 해석이 되거든요.
대응도 달라질고구요.
@정은 아마 티벳유에서 추출했을것 같아요 . 그게 합리적인 추론으로 여겨집니다
@블랙 그러면 빙고구요^^
추천 꾸욱 부탁드립니다.
블랙님 보배세요.
자꾸 칭찬하시면 부끄러워 숨고싶어 집니다^^
@블랙 글로 마음이나 기분을 표현을 해야하니 어쩔수 없어요.
쪼까 참으세요
동감이요.블랙님 덕분에 제가 요즘 많이 알아가고 있는 중입니다.
고수님들의 깊이 있는 대화
새내기인 저는 눈팅만~^^