|
와우 구글에서 찾은 스포츠 biomechanics
재미있네 ㅎㅎㅎ 점프를 잘할 수 있겠군 ㅎㅎ
Sports biomechanics. 315페이지 책.pdf
서문
Why have I changed the cover name for this book from that of the first edition? Because after teaching, researching and consulting in sports biomechanics for over 30 years, my definition of sports biomechanics has become simply, ‘the study and analysis of human movement patterns in sport’. This is a marked change from the first edition, the introduction to which began with the sentence: ‘Sports biomechanics uses the scientific methods of mechanics to study the effects of various forces on the sports performer’.
The change in focus – and structure and contents – of this book reflects an important change in sports biomechanics over the last decade. Most sports biomechanics textbooks, including the first edition of this one, have strongly reflected the mathematical, engineering or physics backgrounds of their authors and their predominant research culture. Hence, the mechanical focus that is evident, particularly in earlier texts, as well as a strong emphasis on quantitative analysis in sports biomechanics. In this early part of the third millennium, more students who graduate with a degree focused on sports biomechanics will go on to work as a movement analyst or performance analyst with sports organisations and client groups in exercise and health than will enrol for a research degree. The requirements on them will be to undertake mostly qualitative, rather than quantitative, analysis of movement. Indeed, I will often use the term ‘movement analyst’ instead of ‘sports biomechanist’ to reflect this shift from quantitative to qualitative analysis, and to broaden the term somewhat, as will be apparent later.
So, qualitative analysis is the main focus of the first three chapters of this new edition; however everything in these chapters is also relevant for quantitative movement analysts – you cannot be a good quantitative movement analyst without first being a good qualitative analyst. The last three chapters focus on quantitative analysis. Even here, there are notable changes from the first edition.
First, I have removed sections that dealt with sports objects rather than the sports performer. This reflects the
growth of sports engineering as the discipline that deals with the design and function of sports equipment and sports objects.
Secondly, rather than the structure of the first edition – four chapters on fundamentals and four on measurement techniques – the measurement sections are now incorporated within Chapters 4 to 6 (and touched on in Chapter 2) and are covered only in the detail needed for undergraduate students. More advanced students wishing to probe deeper into measurement techniques and data processing will find the new text edited by Carl Payton and myself a source of more detailed information (Biomechanical Evaluation of Movement in Sport and Exercise, Routledge, 2007).
So what do sports biomechanists – or movement analysts – do? We study and analyse human movement patterns in sport to help people perform their chosen sporting activity better and to reduce the risk of injury. We also do it because it is so fascinating. Yes, it is fascinating, otherwise so many of my generation would not still be doing it. And it is intellectually challenging and personally gratifying – if you can contribute to reducing an athlete’s injury risk or to improving his or her performance, it gives you a warm glow. Sounds exciting, doesn’t it? Indeed it is – a wealth of fascination. So, let us
begin our journey.
This edition is intended to be more reader-friendly than the first. Each chapter starts with an outline of learning outcomes, and knowledge assumed, which is crossreferenced mostly to other parts of the book. At the end of each chapter, a summary is provided of what was covered and eight study tasks are listed. Hints are given about how to go about each task, including referring to video clips, data tables and other material available on the book’s website, which is, in itself, another important pedagogical resource. The website also includes PowerPoint slides for lecturers to use as a basis for
their lectures, and multiple choice questions for students to self-test their learning progress. Further reading material is also recommended at the end of each chapter.
The production of any textbook relies on the cooperation of many people other than the author. I should like to acknowledge the invaluable, carefully considered comments of Dr Melanie Bussey on all the chapters of the book and, particularly, her glossaries of important terms in each chapter. All those who acted as models for the photographic
illustrations are gratefully acknowledged: former colleagues of mine at Manchester Metropolitan University in the UK – Drs Vicky Goosey, Mike Lauder and Keith Tolfrey – and colleagues and students at the University of Otago in New Zealand – Dr Melanie Bussey, Neil Davis, Nick Flyger, Peter Lamb, Jo Trezise and Nigel Barrett – and Nigel’s son Bradley; I thank Chris Sullivan for his help with some of the illustrations. I am also grateful to Raylene Bates for the photo sequence of javelin throwing, to Harold Connolly for the hammer throwing sequence, to Warren Frost for the one of bowling in
cricket, and to Clara Soper for those of lawn bowling. I should not need to add that any errors in the book are entirely my responsibility.
소개
The first three chapters of this book focus mainly on qualitative analysis of sports movements.
Chapter 1 starts by outlining a novel approach to sports biomechanics and establishing that our focus in this chapter is the qualitative analysis of human movement patterns in sport. I will define movements in the sagittal plane and touch on those in the frontal and horizontal planes. We will then consider the constraints-led approach to studying human movements, and go on to look at examples of walking, running, jumping and throwing, including the subdivision of these fundamental movements into phases. In these movements, we will compare movement patterns between ages, sexes, footwear, inclines and tasks. The chapter concludes with a comparison of qualitative and quantitative analysis, looking at their background, uses, and strengths and weaknesses.
Chapter 2 considers how qualitative biomechanical analysis of movement is part of a multidisciplinary approach to movement analysis. We will look at several structured approaches to qualitative analysis of movement, all of which have, at their core, the identification of critical features of the movement studied. We will identify four stages in a structured approach to movement analysis, consider the main aspects of each stage and note that the value of each stage depends on how well the previous stages have been implemented. We will see that the most crucial step in the whole approach is how to identify the critical features of a movement, and we will look at several ways of doing this, none of which is foolproof. We will work through a detailed example of the best approach, using deterministic models, and consider the ‘movement principles’ approach and the role of phase analysis of movement.
Chapter 3 covers the principles of kinematics – the geometry of movement – which are important for the study of movement in sport and exercise. Our focus will be very strongly on movement patterns and their qualitative interpretation. Several other forms of movement pattern will be introduced, explained and explored – including stick figures, time-series graphs, angle–angle diagrams and phase planes. We will consider the types of motion and the model appropriate to each. The importance of being able to interpret graphical patterns of linear or angular displacement and to infer from these the
geometry of the velocity and acceleration patterns will be stressed. We will look at two ways of assessing joint coordination using angle–angle diagrams and, through phase planes, relative phase, and we will briefly touch on the strengths and weaknesses of these two approaches. Finally, I present a cautionary tale of unreliable data as a warning to the analysis of data containing unacceptable measurement errors, providing a backdrop for the last three chapters. Chapters 4 to 6 focus mainly on quantitative analysis of sports movements.
Chapter 4 covers the use of videography in the study of sports movements, including the equipment and methods used. The necessary features of video equipment for recording movements in sport will be considered, along with the advantages and limitations of two- and three-dimensional recording of sports movements. I will outline the possible
sources of error in recorded movement data and describe experimental procedures that would minimise recorded errors in two- and three-dimensional movements. The need for smoothing or filtering of kinematic data will be covered, and the ways of performing this will be touched on. I will also outline the requirement for accurate body segment inertia parameter data and how these can be obtained, and some aspects of error analysis. Projectile motion will be considered and equations presented to calculate the maximum vertical displacement, flight time, range and optimum projection angle of a
simple projectile for specified values of the three projection parameters. Deviations of the optimal angle for the sports performer from the optimal projection angle will be explained. We will also look at the calculation of linear velocities and accelerations caused by rotation and conclude with a brief consideration of three-dimensional rotation.
Chapter 5 deals with linear ‘kinetics’, which are important for an understanding of human movement in sport and exercise. This includes the definition of force, the identification of the various external forces acting in sport and how they combine, and the laws of linear kinetics and related concepts, such as linear momentum. We will address how friction and traction influence movements in sport and exercise, including reducing and increasing friction and traction. Fluid dynamic forces will also be considered and I will outline the importance of lift and drag forces on both the performer
and on objects for which the fluid dynamics can impact on a player’s movements. We will emphasise both qualitative and quantitative aspects of force–time graphs. The segmentation method for calculating the position of the whole body centre of mass of the sports performer will be explained. The vitally important topic of rotational kinetics will be covered, including the laws of rotational kinetics and related concepts such as angular momentum and the ways in which rotation is generated and controlled in sports motions. The use of force plates in sports biomechanics will be covered, including
the equipment and methods used, and the processing of force plate data. We will also consider the important measurement characteristics required for a force plate in sports biomechanics. The procedures for calibrating a force plate will be outlined, along with those used to record forces in practice. The different ways in which force plate data
can be processed to obtain other movement variables will be covered. The value of contact pressure measurements in the study of sports movements will also be considered. Some examples will be provided of the ways in which pressure data can be presented to aid analysis of sports movements.
Chapter 6 focuses on the anatomical principles that relate to movement in sport and exercise. This includes consideration of the planes and axes of movement and the principal movements in those planes. The functions of the skeleton, the types of bone, bone fracture and typical surface features of bone will be covered. We will then look
briefly at the tissue structures involved in the joints of the body, joint stability and mobility, and the identification of the features and classes of synovial joints. The features and structure of skeletal muscles will be considered along with the ways in which muscles are structurally and functionally classified, the types and mechanics of muscular contraction, how tension is produced in muscle and how the total force exerted by a muscle can be resolved into components depending on the angle of pull.
The use of electromyography (EMG) in the study of muscle activity in sports biomechanics will be considered, including the equipment and methods used, and the processing of EMG data. Consideration will be given to why the electromyogram is important in sports biomechanics and why the recorded EMG differs from the physiological
EMG. We will cover the relevant recommendations of SENIAM and the equipment used in recording the EMG, along with the main characteristics of an EMG amplifier. The processing of the raw EMG signal will be considered in terms of its time domain descriptors and the EMG power spectrum and the measures used to define it. We will conclude by examining how isokinetic dynamometry can be used to record the net muscle torque at a joint.
점프하는 법.
첫댓글 원장님 이책 원서뿐인가요?
아마도 그럴거에요 ㅎㅎ