|
결합조직의 조성을 잘 이해하고,
connective tissue plasticity
piezoelectricity
tensegrity
thixotrophy(hypersol, sol, gel)
등을 이해하면 생체역학의 기초가 완성된다.
panic bird...
추가자료) 연부조직의 생체역학
Background on the structure of soft tissues – collagen and elastin
What do we mean by soft tissues? A primary group of tissue which binds, supports and protects our human body and structures such as organs is soft connective tissue. In contrary to other tissues, it is a wide-ranging biological material in which the cells are separated by extracellular material.
- 연부조직은 무엇을 의미하는가?
- 기관과 같은 조직에서 연부조직은 인체를 결합하고, 지지하고, 보호하는 구조임.
- 반면 다른 조직에서 다양한 범위의 생물학적 물질로 세포는 세포외 물질에 의해서 나누어짐.
Connective tissues may be distinguished from hard (mineralized) tissues such as bones for their high flexibility and their soft mechanical properties. In this article we are mainly concerned to say something about it from the points of view of material science, biomechanics and structural engineering (for more details see, for example, [6], Chapter 7).
- 결합조직은 뼈와같은 단단한 조직과는 구분될 수 있고, 높은 유연성과 연부조직의 기계적 특성을 가짐.
- 이 논문에서 우리는 물질과학, 생체역학, 구조 등의 관점을 탐구함.
Examples for soft tissues are tendons, ligaments, blood vessels, skins or articular cartilages among many others. Tendons are muscle-to-bone linkages to stabilize the bony skeleton (or to produce motion), while ligaments are bone-to-bone linkages to restrict relative motion. Blood vessels are prominent organs composed of soft tissues which have to distend in response to pulse waves. The skin is the largest single organ (16% of the human adult weight). It supports internal organs and protects our body. Articular cartilages form the surface of body joints (which is a layer of connective tissue with a thickness of 1-5 mm) and distribute loads across joints and minimize contact stresses and friction.
- 힘줄, 인대, 혈관, 피부, 관절연골이 대표적인 연부조직
- 힘줄은 근육-뼈 연결체로 힘을 만들거나, 근골격계를 안정화시킴
- 인대는 뼈-뼈 연결체로 상대적인 움직임을 제한함.
- 혈관은 연부조직으로 구성된 기관으로 맥박에 반응하여 신장됨.
- 피부는 성인 무게의 16%를 차지할 정도로 큰 단일기관. 피부는 내장기관을 지지하고, 인체를 보호하는 역할
- 관절연골은 인체의 관절면을 만들고, 그 두께는 1~5mm로 된 결합조직층임. 관절에 가해지는 부하를 분산하고, 마찰을 최소화함.
Soft connective tissues of our body are complex fiber-reinforced composite structures. Their mechanical behavior is strongly influenced by the concentration and structural arrangement of constituents such as collagen and elastin, the hydrated matrix of proteoglycans, and the topographical site and respective function in the organism.
- 우리 인체의 연부결합조직은 복잡한 섬유-저항 조직구조임.
- 생체역학적 기능은 콜라겐과 엘라스틴과 같은 구조배열 조직에 의해서 영향을 받음. 프로테오글리칸의 수화물질과 ...
1. Collagen.
Collagen is a protein which is a major constituent of the extracellular matrix of connective tissue. It is the main load carrying element in a wide variety of soft tissues and is very important to human physiology (for example, the collagen content of (human) achilles tendon is about 20 times that of elastin).
- 콜라겐은 결합조직의 세포외기질의 주요 단백질.
- 연부조직의 다양성에서 주로 부하를 견디는 물질을 구성함. 그리고 인체 생리역할에 매우 중요함.
콜라겐은 글라이신, 프롤린, 하이드록시프롤린 세가지 아미노산으로 구성. 콜라겐 분자의 대부분은 3 아미노산으로 구성됨. 글라이신 33%, 프롤린 15%, 하이드록시프롤린 15%
엘라스틴은 이중 글라이신이 가장 많음. 프롤린과 하이드록시 플로린은 상대적으로 적음.
Collagen is a macromolecule with length of about 280 nm. Collagen molecules are linked to each other by covalent bonds building collagen fibrils. Depending on the primary function and the requirement of strength of the tissue the diameter of collagen fibrils varies (the order of magnitude is 1.5 nm [17]).
- 콜라겐은 280nm의 길이를 가진 대분자.
- 콜라겐 분자는 공유결합에 의해서 서로 연결되어 콜라겐 피브릴을 만듬.
- 주요기능과 조직의 강도요구에 의존하여 콜라겐의 직경은 결정됨.
In the structure of tendons and ligaments, for example, collagen appears as parallel oriented fibers [1], while many other tissues have an intricate disordered network of collagen fibers embedded in a gelatinous matrix of proteoglycans.
- 힘줄, 인대구조에서 콜라겐은 섬유와 평행으로 배열되어 있음. 반면 다른 많은 조직은 콜라겐 섬유의 무질서한 네트워크로 연결되고 프로테오글리칸의 젤과 같은 물질속에 들어 있음.
More than 12 types of collagen have been identified [17]. The most common collagen is type I, which can be isolated from any tissue. It is the major constituent in blood vessels. The rod-like shape of the collagen molecule comes from three polypeptide chains which are composed in a right-handed triple-helical conformation. Most of the collagen molecule consists of three amino acids; glycine (33%), which enhances the stability of the molecule, proline (15%) and hydroxyproline (15%) [23].
- 콜라겐의 12 형태가 확인됨
- 가장 흔한 콜라겐은 type 1이고, 이것은 다른 조직으로부터 분리될 수 있음.
- 막대같은 형태의 콜라겐분자는 3 폴리펩타이드 체인으로부터 만들어지고, 그것은 우측으로 꼬인 3중 나선형태임.
- 콜라겐 분자의 대부분은 3 아미노산으로 구성됨. 글라이신 33%, 프롤린 15%, 하이드록시프롤린 15%
The intramolecular crosslinks of collagen gives the connective tissues the strength which varies with age, pathology, etc. (for a correlation between the collagen content in the tissue, % dry weight, and its ultimate tensile strength see Table 1). The function and integrity of organs are maintained by the tension in collagen fibers. They shrink upon heating due to breakdown of the crystalline
structure (at 65C, for example, mammalian collagen shrinks to about one-third of its initial length, [6], p. 263)
- 콜라겐의 내부 분자교차연결은 결합조직의 강도를 제공하고 이는 나이, 손상병리에 따라 다름.
- 기관의 기능과 완전성은 콜라겐 섬유의 장력에 의해서 유지됨.
- 콜라겐 섬유는 열에 의해서 쪼그라들고 크리스탈린 구조가 부서짐. 예를들어 65도는 포유동물 콜라겐 길이를 1/3으로 줄어들게 함.
- tendon에 콜라겐 % dry weight는 75~85이고, 엘라스틴은 3이하
- 인대에는 콜라겐 % dry weight는 70~80이고, 엘라스틴은 10~15
2. Elastin.
Elastin, like collagen, is a protein which is a major constituent of the extracellular matrix of connective tissue. It is present as thin strands in soft tissues such as skin, lung, ligamenta flava of the spine and ligamentum nuchae (the elastin content of the latter is about 5 times that of collagen).
- 엘라스틴은 콜라겐과 같이 결합조직의 세포외기질을 구성하는 주요 단백질
- 피부, 폐, 황색인대, 항인대와 같은 연부조직에 존재하는 thin strand연부조직임.
The long flexible elastin molecules build up a three-dimensional (rubber-like) network, which may be stretched to about 2.5 of the initial length of the unloaded configuration. In contrast to collagen fibers, this network does not exhibit a pronounced hierarchical organization. As for collagen, 33% of the total amino acids of elastin consists of glycine. However, the proline and hydroxyproline contents are much lower than in collagen molecules.
- 길게 늘어나는 엘라스틴 분자는 고무와 같은 구조를 만듬. 원래길이의 2.5배까지 늘어날 수 있음.
- 콜라겐과는 다르게, 엘라스틴 분자의 네트워크는 ...
- 콜라겐과 같이 총 아미노산의 33%는 글라이신임. 프롤린, 하이드록시프롤린은 콜라겐분자보다 적음.
The mechanical behavior of elastin may be explained within the concept of entropic elasticity. As for rubber, the random molecular conformations, and hence the entropy, change with deformation. Elasticity arises through entropic straightening of the chains, i.e. a decrease of entropy, or an increase of internal energy (see, for example, [9], [10], Chapter 7.1). Elastin is essentially a linearly elastic material (tested for the ligamentum nuchae of cattle). It displays very small relaxation effects (they are larger for collagen).
- 엘라스틴의 생체역학적 기능은 엔트로피 탄성도개념내에서 설명될 수 있음.
- 고무와 같이 분자의 자유자재 배열이 있고, 엔트로피는 변형과 함께 변함.
- 탄성도는 원래 직선적 탄성물질임. ....
General mechanical characteristic of soft tissues
Before describing a model for soft tissues it is beneficial and instructive to give some insight in their general mechanical characteristic. Soft tissues behave anisotropically because of their fibers which tend to have preferred directions. In a microscopic sense they are non-homogeneous materials because of their composition.
- 연부조직은 선택된 방향 배열에 따라서 기능함.
The tensile response of soft tissue is nonlinear stiffening and tensile strength depends on the strain rate. In contrast to hard tissues, soft tissues may undergo large deformations. Some soft tissues show viscoelastic behavior (relaxation and/or creep), which has been associated with the shear interaction of collagen with the matrix of proteoglycans [16] (the matrix provides a viscous lubrication between collagen fibrils).
- 연부조직의 늘어남 반응은 비선형 stiffening이고, 장력은 응력비율에 의존함.
- 단단한 조직에 반하여 연부조직은 많은 변형을 가짐. 연부조직은 점탄성 특성을 가지고 있어서 프로테오글리칸 기질내 콜라겐의 전단상호작용과 연관되는 역할을 함.
In a simplified way we explain here the tensile stress-strain behavior for skin, an organ consisting mainly of connective tissues, which is representative of the mechanical behavior of many (collagenous) soft connective tissues. For the connective tissue parts of the skin the three-dimensional network of fibers appears to have preferred directions parallel to the surface. However, in order to prevent out-of-plane shearing, some fiber orientations also have components out-of-plane.
- 피부의 장력-응력 커브로 설명할 수 있음.
- 이는 연부조직의 기계적 특성을 대표함.
Figure 1 shows a schematic diagram of a typical J-shaped (tensile) stress-strain curve for skin.
- 피부의 장력-응력커브는 J 형태의 장력-응력커브를 가짐.
This form, representative for many soft tissues, differs significantly from stress-strain curves of hard tissues or from other types of (engineering) materials. In addition, Figure 1 shows how the collagen fibers straighten with increasing stress. The deformation behavior for skin may be studied in three phases I, II and III:
- 피부가 장력에 반응하여 어떻게 늘어나는 지를 보여주는 그래프. 3단계로 나누어 설명가능함.
Phase I. In the absence of load the collagen fibers, which are woven into rhombic-shaped pattern, are in relaxed conditions and appear wavy and crimped. Unstretched skin behaves approximately isotropically. Initially low stress is required to achieve large deformations of the individual collagen fibers without requiring stretch of the fibers. In phase I the tissue behaves like a very soft (isotropic) rubber sheet, and the elastin fibers (which keep the skin smooth) are mainly responsible for the stretching mechanism. The stress-strain relation is approximately linear, the elastic modulus of skin in phase I is low (0.1-2 MPa).
- 1단계는 콜라겐 늘어남이 없고, 엘라스틴 섬유가 주로 늘어남 기전에 관여함.
- 위 그림과 같이 늘어나는 정도가 직선그래프를 보임.
Phase II. In phase II, as the load is increased, the collagen fibers tend to line up with the load direction and bear loads. The crimped collagen fibers gradually elongate and they interact with the hydrated matrix. With deformation the crimp angle in collagen fibrils leads to a sequential uncrimping of fibrils. Note, that the skin is normally under tension in vivo.
- 2단계에는 부하가 증가하여 콜라겐이 늘어나는 단계
- 곱슬머리같은 콜라겐이 점차로 늘어나는 단계
Phase III. In phase III, at high tensile stresses, the crimp patterns disappear and the collagen fibers become straighter. They are primarily aligned with one another in the direction in which the load is applied. The straightened collagen fibers resist the load strongly and the tissue becomes stiff at higher stresses. The stress-strain relation becomes linear again. Beyond the third phase the ultimate tensile strength is reached and fibers begin to break.
- 3단계는 높은 장력에 곱슬머리 패턴이 사라지고 콜라겐이 반듯한 배열로 늘어남.
- 늘어난 콜라겐 섬유는 부하에 강하게 저항하고 점점 단단해짐.
- 늘어나는 정도가 다시 직선 그래프를 보임.
The mechanical properties of soft tissues depend strongly on the topography, risk factors, age, species, physical and chemical environmental factors such as temperature, osmotic pressure, pH, and on the strain rate. The material properties are strongly related to the quality and completeness of experimental data, which come from in vivo or in vitro tests having the aim of mimicking real loading conditions. Therefore, to present specific values for the ultimate tensile strength and strain of a specific tissue is a difficult task. Nevertheless, Table 1 attempts to present ranges of values of mechanical properties and collagen/elastin contents (% dry weight) in some representative organs mainly consisting of soft connective tissues.
- 연부조직의 기계적 특성은 형태, 위험인자, 나이, 종, 물리 화학적 환경요소(온도, 삼투압, PH, 응력비율 등)에 의존함.
섬유막의 세가지 조성
1. 섬유막의 cellular anatomy
1) fibroblasts
2) mast cells
3) adipose cells
4) macrophages
5) plasma cell
6) leukocyte
2. 섬유막 섬유(fascial fiber)
1) collagen fiber
2) reticular fiber
3) elastic fiber
3. 세포외기질(extracellar matrix)
1) ground substance
2) proteoglycans and glycoprotein
3) hyaluronic acid
4) extracellular fluid
긴장통합체(tensegrity)
- 장력의 완전성
Tensegrity, tensional integrity or floating compression, is a structural principle based on the use of isolated components in compression inside a net of continuous tension, in such a way that the compressed members (usually bars or struts) do not touch each other and the prestressed tensioned members (usually cables or tendons) delineate the system spatially.
틱소트로피 (thixotropy)
Cellular Anatomy of Fascia
As mentioned, a number of cells are found within the fascial system. All other cells-including plasma cells, monocytes, lymphocytes, multinuclear eosinophils, and basophils-can migrate within the fascia tissue.
- 대부분의 세포들은 섬유막 시스템내에서 발견됨. 백혈구 등의 세포는 섬유막내로 이동할 수 있음
참고) Plasma cells, also called plasma B cells, plasmocytes, and effector B cells, are white blood cells that secrete large volumes of antibodies. They are transported by the blood plasma and the lymphatic system. Like all blood cells, plasma cells originate in the bone marrow; however, these cells leave the bone marrow as B cells, before terminal differentiation into plasma cells, normally in lymph nodes.
- 형질세포는 형질 b세포라고 부르기도 하는데, 백혈구로 많은 항체를 분비됨. 혈질세포는 혈장과 임파 시스템에 의해서 이동함.
- 모든 혈구세포와 마찬가지로 형질세포는 bone marrow에서 기원함. 하지만 형질세포는 bone marrow를 떠나 림프절에서 정상 형질세포로 분화됨.
Fibroblasts
The fibroblast is found specifically within fabrics of fascia and is the principal cell of connective tissue. It possesses unique morphological features such as a fusiform or a discoid shape with long cellular extensions. Fibroblasts are capable of a relatively high rate of synthesis of complex carbohydrates, collagen, elastic, and reticular fibers and other macromolecules of the ground substance.
- 섬유아세포는 섬유막의 섬유내에세 특히 발견되는데, 결합조직의 주요세포임. 형태는 방추상으로 길게 연결된 모양.
- 섬유아세포는 탄수화물, 콜라겐, 탄력섬유, reticular 섬유 그리고 기질의 대분자를 합성하는 역할
Stretching and applying pressure or tension to fascia stimulates fibroblasts, as noted by Gehlsen, Ganion , and Helfst R 1999). Fibroblast proliferation in response to changes in applied pressure may provide the initial stimulus for the healing cascade (Gehlsen et aI., 1 999).
- 스트레칭과 섬유막에 적용된 압력 또는 장력은 섬유아세포를 자극함.
- 적용된 압력변화에 반응하여 섬유아세포 증식은 치유반응 초기자극을 제공함.
This is due to the cell's cytoskeleton functioning like a micro-tensegrity structure to transmit forces upon the cell into the interior of the cell (Ingber, 1 99 3 ) . Such studies have shown increased production of fibroblasts and ground matrix macromolecules, as well as orientation of newly formed fibroblasts along lines of force.
- 힘이 주어지는 방향선을 따라 새로 형성된 섬유아세포의 방향뿐 아니라 기질대분자, 섬유아세포의 생성증가를 보져주는 연구가 있음.
Hence, mechanical force can influence fibroblasts to modify their physical and chemical properties as a result of light perturbations to the human body. This will result in changes in the fascia composition at any one time, depending on the stresses placed upon it throughout an individual's life time.
- 기계적 힘은 섬유아세포에 영향을 주어 인체에 생리적, 화학적 물질을 변화시킴.
- 그 결과 언제든 섬유막 조성의 변화를 야기함.
Helen Langevin et al. (2004) performed a study examining the dynamic response of a fibroblast's cytoskeletal response to subcutaneous tissue stretch under both ex vivo and in vivo conditions (Langevin, Cornbrooks, Et Taatjes, 2004). lntra-cytoskeletal and extra-cytoskeletal applied tension forces affected the shape and consequently the function of fibroblasts.
- 세포내와 세포외에 주어진 장력힘은 섬유아세포의 기능에 연속적이고 형태적 변화에 영향을 줌.
Langevin , Corn brooks, et al. (2004) showed that shortened tissue (both in vivo and ex vivo) possessed small, globular fibroblasts with long, branching "dendritic" processes; in contrast, the fibroblasts in stretched tissue appeared wider, flatter, and possessed larger cross-sectional areas (Figure I-I).
- 짧아진 조직은 작고, 둥근 수지상 가지를 포함한 섬유아세포를 가짐.
- 스트레치된 조직의 섬유아세포는 넓고, 편평하면서 넓은 단면적은 포함함.
Changes to intracellular microtubules and micro filaments are responsible for changes in fibroblast shape (Langevin, Bouffard, Badger, iatridis, Et Howe, 2004). Cytoskeleton-dependent changes in fibroblast shape due to tissue stretch may play an important role in intracellular signaling, cell-to-cell signaling within connective tissue, and many other cellular functions (Langevin, Bouffard, et aI., 2004). The implications of the Langevin, Bouffard, et al. (2004) study broaden our understanding of how connective tissue responds to changes in posture, normal movement, and exercises.
- 세포내 미세구조와 미세 필라멘트의 변화는 섬유아세포의 형태변화에 영향을 줌.
- 조직 늘어남 때문에 발생하는 섬유아세포의 형태에서의 세포골격 의존성 변화는 결합조직과 다른 세포기능내에서 세포내 신호, 세포-세포 신호에 중요한 역할
Additionally, the study helps in comprehending therapeutic mechanisms of a wide variety of treatments including myofascial release, physical therapy, massage, and chiropractic.
- 연구에 의하면 근막이완, 물리치료, 마사지, 카이로프랙틱을 포함한 다양한 치료메카니즘의 기초를 제공함.
Mast Cells
Mast cells are large and ovoid. They have a spherical nucleus and a cytoplasm filled with numerous granules. These cells are involved in immune system activity and contribute to a variety of inflammatory conditions in the brain, joints, skin, and other bodily organs (Theoharides Et Cochrane, 2004). There are two types of mast cells, each containing variable amounts of proteolytic enzymes and cytokines.
- Mast cell은 크고 둥근 계란형.
- 비만세포는 면역계 활성화에 관여하여 뇌, 관절, 피부, 다른 장기에 발생하는 염증에 기여함.
- 2가지 형태의 비만세포가 있음. T 비만세포와 TC 비만세포
Mucosal mast cells contain tryptase enzyme (T mast cells), and connective tissue mast cells contain tryptase and chymase (TC mast cells). These mast cell types differ in the kind of stimulus required for degranulation and in the amount and type of granules they produce. Another distinguishing property is that T mast cells contain a greater proportion of chondroitin sulfate, whereas TC mast cells contain more heparin (Iheoharides Et Conti, 2004).
- mucosal mast cell( T 비만세포)는 아나필락틱 쇼크와 같은 반응에 관여하는 tryptase 효소를 함유하고, connective tissue mast cell(TC비만세포)는 천식 염증 반응에 관여하는 chymase 효소를 함유함.
Mast cells are involved in synthesizing and secreting chemical mediators such as histamine, heparin (an anticoagulant)' slow-reacting substance of anaphylaxis (SRS-A), platelet-activating factor (PAF ) , tumor necrosis factor-alpha (TNF-alpha), a n d various leukotrienes (Henz, Maurer, Lippert, Worm, Et Babina, 2001).
- 비만세포는 히스타민, 헤파린, 아나필락시스, 혈소판활성인자, TNF알파, 류코트리엔과 같은 화학적 매개인자를 합성, 분비하는 역할
Mast cells contain receptors that bind immunoglobulin E (IgE), and when an allergen binds to IgE, this causes a disruption in the cell wall and release of chemical mediators from mast cells. IgE h as a defensive role in responding to parustic infections and immediate hypersensitivity reactions ( Luger, Crameri, Lamers, Achatz-Straussberg, Et Achatz, 2006).
- 비만세포는 면역글로불린 E에 부착하는 수용기를 함유하고 있어 알러겐이 IgE에 부착할때, 세포벽에서 분열이 일어나고, 화학적 매개체를 분비함.
Adipose Cells
Adipose cells differentiate from fibroblasts and from undifferentiated mesenchymal cells. There are two types of adipose tissue: white adipose tissue (WAT) and brown adipose tissue (BAT). WAT cells accumulate and store large quantities of lipids (triglycerides, free fatty acids) in their central vacuoles, and BAT cells use the stored lipid to generate heat in a process known as thermogenesis (A. Avram, M. Avram, Et James, 2005).
- 지방세포는 섬유아세포, 미분화된 간엽세포에서 분화됨.
- 지방세포는 백색, 갈색 지방세포 두가지로 나뉨. 백색 지방세포는 많은 지방량을 저장하고, 갈색지방세포는 저장된 지방을 사용하여 열을 발생하는 역할을 수행함.
Physiologically, adipose tissue plays key roles in thermogenesis, lipid storage, and breakdown into free fatty acid. It also protects underlying deep fascia against physical trauma and provides thermal insulation.
- 생리학적으로 지방세포는 열발생, 지방저장, 지방산으로 Breakdown등의 역할을 수행함.
Macrophages
- fixed 대식세포와 free 대식세포가 있음.
Two types of macrophages are derived from monocytes: normal and inflammatory.
1) Normal macrophage is associated with skin, connective tissue (histiocytes), lymph nodes, spleen, liver, lung, and bone marrow.
2) Inflammatory macrophage is found in various exudates associated with wound healing, or autoimmune inflammation (Duffield, 2003).
- 대색세포는 단핵세포로부터 분화되어 두가지 형태가 있음. 정상과 염증 대식세포
- 정상 대식세포는 피부, 결합조직, 림프절, 비장, 간, 폐, 골수 등에 있음.
- 염증 대식세포는 상처치유 도는 자가면역 염증과 연관하여 분비됨.
Macrophages possess different shapes according to whether they are motile or fixed to fibers of the matrix ( L ivingstone, 199 5 ) . Some organs, such as the lymph nodes and spleen, consist of both free and fixed macrophages; connective tissue is comprised of fixed macrophages, found isolated in sheets of fascia accumulating w i thin collagen and elastin fibers.
- 대식세포는 기질의 섬유에 고정 또는 움직임에 의해서 다양한 형태를 가짐.
- 림프절, 비장과 같은 기관은 free and fixed 대식세포가 있음.
- 결합조직은 fixed 대식세포가 있고, 콜라겐섬유와 탄력섬유내에 축적되어 있는 섬유막의 sheet에 고립되어 존재함.
These fixed macrophages are able to phagocytize and scavenge cellular debris. Free, or motile, macrophages also possess phagocytic action; but they migrate to areas of inflammation and infection where they present an antigenic peptide to activate lymphocytes which in turn secrete interferon molecules that hinder viral multipl i cation (L1oberas Et Celada, 2002).
- 고정된 대식세포는 세포찌꺼기를 제거하는 역할을 수행함.
- 움직이는 대식세포는 세포찌거기를 제거하는 역할을 수행하지만 염증부위, 감염부위로 이동하여 다양한 역할을 수행함.
Mechanical disruption placed on a fascial sheet due to either chronic or acute trauma leads to an activation of the macrophages, leading to secretion of enzymes (collagenase and elastase) that degrade collagen and elastic fibers to contribute to the remodeling process as well as to initiate an inflammatory reaction (Nenan, Boichot, Lagente, EtBertrand, 2005; Werb Et Gordon, 2005).
- 만성 또는 급성 손상에 의해서 섬유막 sheet의 기계적 파열은 대식세포를 활성화하고, 콜라겐 분해효소, 탄력섬유 분해효소를 분비하여 콜라겐과 탄력섬유를 분해하고 새로운 콜라겐, 탄력섬유를 재구성함.
- 참고) 대식세포에서 분비하는 아교질 가수분해효소(collagenase)와 엘라스틴 분해효소( elastase)가 콜라겐과 탄력섬유 degradation을 일으켜 재형성에 관여함.
참고) monocyte
Monocytes are a type of white blood cells (leukocytes). They are the largest of all leukocytes. They are part of the innate immune system of vertebrates including all mammals (humansincluded), birds, reptiles, and fish. They are amoeboid in shape, having clear cytoplasm. Monocytes have bean-shaped nuclei that are unilobar, which makes them one of the types of mononuclear leukocytes (agranulocytes).
Monocytes constitute 2% to 10% of all leukocytes in the human body. They play multiple roles in immune function.
Such roles include: (1) replenishing resident macrophages under normal states, and (2) in response to inflammation signals, monocytes can move quickly (approx. 8–12 hours) to sites of infection in the tissues and divide/differentiate into macrophages and dendritic cells to elicit an immune response.
Half of them are stored in the spleen[1] (except in people who have undergone splenectomy). Monocytes are usually identified in stained smears by their large kidney shaped or notched nucleus. These change into macrophages after entering into the tissue spaces.
Fascial Fibers
Three types of fibers are normally found in fascia collagen fibers, reticular fibers, and elastic fibers.
1) Collagen Fibers 콜라겐 섬유
Collagen fibers are a product of the superfamily of closely related genes that produce highly characteristic fibrous proteins found in all multicellular animals. Currently, 25 distinct collagen alpha chains have been found, each encoded by a separate gene.
From these 25 collagen chains, 15 types of collagen molecules have been identified (I-XV). The main types of collagen found in connective tissue are I, II, III, V, and X I (with type I collagen being the most abundant; Vuokko, 2002). Tendons are made up of predominantly type I collagen, while all types of collagen are found in the skin (see Table \-\).
- 15개의 콜라겐 타입이 존재함.
- 결합조직에 I, II, III, V, and X I type이 존재하고, 콜라겐 type 1이 가장 많음.
- 힘줄과 인대에는 콜라겐 type 1 형태로 주로 이루어짐.
- 피부에는 모든 형태의 콜라겐이 존재함.
- 참고) 디스크나 연골에는 콜라겐 type2가 많음.
The epimysium of muscle contains mostly type I fibers; the perimysium is composed mainly of type 1 and 3
collagen; and the endomysium incorporates collagen fibers I, III, IV, and V (Light Et Champion, \984).
- 근육의 근외막에는 대부분 콜라겐 type 1 섬유, 근주막에는 콜라겐 1, 3 섬유, 근내막에는 1,3,4,5 섬유가 많음.
The basic unit of collagen is made up of three closely intertwined polypeptide chains forming a triple-helical structure 300 nm long and 1. 5 nm in diameter. This triple-helical structure, also known as procollagen,
is produced in the endoplasmic reticulum of the fibroblast cell by hydroxylation of lysine and proline residues (Vuokko, 2002). Ascorbic acid (vitamin C) is essential for hydroxylation to form the final collagen molecule (May Et Qu, 2005).
- 콜라겐의 기본단위는 3가닥이 꼬여진 폴리펩티드 사슬로 만들어져 3중 나선형 구조로 길이는 300nm, 직경은 1.5nm임.
- 프로콜라겐으로 알려진 이 3중 나선형 구조는 섬유아세포의 소포체에서 라이신과 프롤린 잔여물의 하이드록실화에 의해서 생성됨.
- 비타민 c는 콜라겐 분자의 마지막 형태를 하이드록실화하는데 필수임.
Next, the Golgi organ packages procollagen into secretory vesicles and transports them to the cell surface, where the contents are then released into the extracellular environment.
- 골지기관은 프로콜라겐을 포장하여 세포면으로 이동시킴. 그리고 세포외 환경으로 분비
Cleavage of the terminal ends of the procollagen molecule forms tropocollagen, which is then polymerized into a collagen fibril. Fibroblasts are stimulated to increase collagen precursor production as the tissue grows or is stressed. Fibrils combine and associate to form collagen fibers, which are sometimes found intertwined with elastin fibers (collagen- elastic complex; Vuokko, 2002).
- 프로콜라겐 분자의 끝 갈라짐은 트로포콜라겐을 만듬. 이 과정 이후 polymerized되어 콜라겐 fibril이 만들어짐.
- 섬유아세포는 조직이 성장하거나 자극을 받음으로써 콜라겐 전구물질 생성을 촉진함.
- 원섬유는 콜라겐 섬유를 조합하는데, 때로는 탄력섬유와 꼬여서 발견됨.
Collagen fibers orient themselves in two distinct planes : unidirectional (or uni-tendinous) or multidirectional ( or
multi-tendinous). In unidirectional orientation, the fibers lie in a single direction corresponding to the
direction of force applied to the tissue (Vuokko, 2002). An example is the dense regular connective tissue found primarily in ligaments whose primary role is mechanical.
- 콜라겐 섬유는 두가지 형태로 짜여짐.
- 한방향 또는 다방향 구조
- 한방향 배열구조의 콜라겐은 대개 인대에서 발견되고 기계적 힘을 견딤.
Multidirectional orientation is seen where collagen fibers are arranged in several different superficial planes. Examples of body locations include aponeurosis, capsules of the kidney and liver, tendon sheaths, peritoneum, pleura and pericardium, and stroma of the cornea.
- 다방향 배열구조(Multidirectional orientation) 콜라겐은 건막, 콩팥과 간의 캡슐, 건초 등에서 관찰됨.
Collagen fibers are flexible and provide an extracellular framework of considerable tensile strength, thus preventing weak points that might give way under tension . In fascia, collagen contributes strength to fascial tissue and guards against overextension.
- 콜라겐 섬유는 유연하여 늘어나고, 세포외 구조를 제공하여 상당한 장력을 견디게 함. 그래서 장력하에서 약한 부분을 막아줌.
- 섬유막에서 콜라겐은 강력한 섬유조직이고 과도한 신전을 막아줌.
This strength is achieved through covalent bonding between the collagen molecules of adjacent rows rather than head-to-tail attachment of the molecules (Vu o kko, 2002). These bonding cross-bridges provide structural support to normal connective tissue. Injury and repair may cause excessive bonding, leading to the formation of scars and adhesions that limit the movement o f these usually resilient tissues.
- 콜라겐의 강력한 힘은 콜라겐 분자의 공유결합을 통해서 만들어짐.
- 이러한 교차결합은 정상 결합조직에 구조적 지지를 줌.
- 손상과 회복은 과도한 결합을 야기하여 반흔조직과 유착을 만들어 정상움직임을 제한함.
However, regenerating myofibers form new myotendinous junctions by attaching to the scars. The myofibers are then able to transmit force across the scars (Arimaa et aI., 2004). The loss of the tissue's lengthening potential is not so much due to the volume of collagen, but to the random pattern in which it is laid down and the abnormal cross-bridges that prevent normal movement.
- 하지만 재생하는 근섬유는 반흔조직의 부착에 의해서 새로운 근건접합을 만듬. 근섬유는 반흔조직을 가로질러 힘을 전달함.
- 조직의 늘어남 감소는 콜라겐 양때문이 아니라 콜라겐의 비정상 cross-bridge와 같은 자유로운 패턴때문에 정상움직임을 방해함.
Movement encourages collagen fibers to align themselves along the lines of structural stress-an especially important characteristic when connective tissue healing follows trauma. Without movement, the patterns of deposition may be more random and lead to adhesions. In addition, studies have shown that stretching prevents the downregulation of fibrillar collagen I and I1I gene expression. Alternatively, immobilization of muscle showed a decrease in activity of PH4 (Vuokko, 2002).
- 움직임은 콜라겐 배열을 올바르게 자극함.
- 움직이지 않으면 콜라겐 배열패턴은 좀더 자유롭게 되고 유착이 야기됨.
- 스트레칭은 콜라겐 1,3 유전자 표현의 downregulation을 막을 수 있음.
- 반대로 근육 고정은 PH4활성 감소를 보여줌.
PH4 is the rate-limiting enzyme involved in collagen synthesis. Therefore, following tissue injury, activity that is introduced early in the recovery period may help to prevent maturation of the scar tissue and development of adhesive cross-links.
- PH4는 콜라겐 합성에 관여하는 rate-limiting 효소임.
- 그래서 조직손상 후에 움직임은 회복기간을 단축하고 반흔조직 생성을 막고, 유착성 교차링크를 억제함.
With advancing age of an individual, the tissue forms glycosylation cross-links. These types of cross links are non enzymatic in nature a n d lead to increased tensile strength, decreased solubility of the fibers, and an increased resistance to digestion by certain enzymes such as proteases and collagenase.
- 나이가 들어감에 따라 조직은 당화 교차링크를 형성함.
- 이러한 형태의 교차링크는 효소에 의한 것이 아니고 증가된 장력을 야기하고 감소된 섬유의 용해성을 야기하고, .....
A stabilizing factor renders an increasing proportion of the collagen less susceptible to rapid digestion and solubilization. Preliminary studies suggest that the stabilizing factor may be lost during collagenase digestion. This can be detrimental to tissues, resulting in an individual being more prone to injury and scar tissue buildup (Hamlin Et Kohn, 1971).
- 안정화 요인은 콜라겐 비율을 증가시키게 하고, 빠른 소화와 용해화를 덜하게 함. ....
Elastic fibers are also found in association with collagen, providing the necessary tension and rearrangement of these fibers after stretching (Barros et aI., 2002). Loss of elasticity due to aging can contribute to deformation and injury. This is due to degenerative changes in the quantity and quality of the ECM of elastic and collagen fibers.
- 탄력섬유는 콜라겐과 연관되어 발견되고, 충분한 장력과 스트레칭 후에 이러한 섬유의 재배열 효과를 제공함.
- 나이에 따라 탄력성 감소는 손상과 변형을 용이케 함. 이는 콜라겐과 탄력섬유의 세포외기질의 질과 양에서 퇴행화때문임.
Collagen fibers have other properties in addition to providing tensile strength. They are resistive to traction and mechanical forces and can stretch to 5% of their original length. Furthermore, collagen fibers are insoluble in cold water but soluble in hot water, which gives them a gelatinous properly. Collagen can also affect cells in the surrounding environment.
- 콜라겐 섬유는 장력을 제공하는 기능. 콜라겐 섬유는 당김과 기계적 압박힘에 저항함. 그리고 고유길이에서 5%가 늘어날 수 있음.
- 게다가 콜라겐 섬유는 찬물에서는 녹지 않지만 따뜻한 물에서는 녹음.
참고) 콜라겐 섬유가 따뜻한 물에서 soluble하기때문에 고주파 등으로 심부열치료를 할때 효과적이구나!!
Collagen fibers have been shown to neutralize electric charges along the surface of other cells (Meyers, Armstrong, Et Mow, 1988). In addition, collagen fibers are mechanically connected to the endothelial cells that make up lymphatic capillaries. As a result, collagen fiber movement produces movement in the endothelial cells, which causes opening of the capillaries and thus allows for passage of various molecules (water, proteins).
- 콜라겐 섬유는 다른 세포 표면을 따라 전하를 중성화함. 게다가 콜라겐 섬유는 기계적으로 림프 모세관으로 이루어진 내피세포와 연결되어 있음. 그 결과 콜라겐 섬유의 움직임은 내피세포에서 움직임을 만들어 림프모세관을 열어 물, 단백질과 같은 다양한 분자의 통로가 됨.
A significant trait of collagen is its piezoelectrical property (Hastings Et Mahmud, 1988; Silva et aI., 200 1 ). During the organization of tropocollagen molecules into collagen fibrils, the molecules are arranged due to their polarity. Since tropocollagen has an asymmetrical structure, it has different polar ends. Therefore, it is obvious how collagen fibers possess longitudinal piezoelectric activity. However, electrical activity also takes place at right angles to the fibers. This can be explained by the hexagonal packaging of the fibers and by the ultrastructure of the collagen molecule itself.
- 콜라겐의 중요한 특성은 피에조전기적 특성임. 트로포콜라겐이 콜라겐으로 만들어지는 조직화 중에 그들의 극성덕분에 분자는 재배열함.
- 트로포콜라겐은 비대칭적 구조이고 서로다른 극성의 끝을 가짐. 그래서 콜라겐 섬유가 세로방향의 피에조전기적 활동을 함유한다는 것은 명백함. 하지만 전기적 활성은 또한 콜라겐 섬유의 올바른 각을 가져야 함. 이는 섬유의 hexagonal packaging에 의해서 설명됨.
Where these concepts come into play is during repair processes. Structures are able to communicate through this electrical potential pattern and regulate the reconstruction of the supporting structures accordingly.
- 이런 개념은 손상 후 회복과정에서 유용함. 구조는 이러한 전기적 패턴을 통해서 소통하고 지지조직의 재구성을 조절함.
Reticular Fibers
Reticular fibers are closely related to collagenous fibers; both of them consist of collagen fibrils. The individual fibrils that constitute reticular fibers are uniform and thin in diameter, and they typically do not bundle to form thicker fibers (Ushiki, 2002).
- 세망섬유는 콜라겐 섬유와 매우 연관성이 있음.
- 세망섬유는 균일하고 얇은 직경을 가짐. 그리고 다발을 만들지 않아 두꺼운 섬유를 만들지 않음.
Under an electron microscope, reticular fibers appear as either individual collagen fibrils or small fibril bundles. In
loose connective tissue, networks of reticular fibers are found at the boundary of connective tissue with
epithelium.
- 세망섬유는 loose 결합조직을 구성함.
In addition, reticular fibers can be found around adipose cells, nerves, muscle cells (skeletal and smooth), and blood vessels. In most locations (except peripheral nerve endoneurium and lymphatic or hemopoietic tissue) the reticular fiber is produced by fibroblasts but is much thinner than a collagen fiber.
- 게다가 세망섬유는 지방세포, 신경, 근육세포와 혈관벽에서 발견될 수 있음.
- 세망섬유는 콜라겐 섬유보다 많이 가늘고 섬유아포에 의해서 생산됨.
Another structural difference is that type I fibers comprise collagen fibers, whereas type I I I fibers are the main constituents of reticular fibers. The mesh like structure of reticular fibers provides strength, support, and a framework for many viscera. These fibers also function as a selective filter, provide elastic support to known and underlying tissues, and serve as a skeleton for healing and restoration of soft tissue.
- 다른 구조적 차이는 type1 섬유는 콜라겐 섬유를 포함함. 반면에 type3 섬유는 세망섬유의 주요 섬유임.
- 세망섬유의 그물망과 같은 구조는 내장의 힘, 지지, 틀을 제공함.
- 세망섬유는 또한 선택적 필터로 기능하고, 탄력적 지지기능을 제공하고, 연부조직 회복과 치유를 제공함.
Elastic Fibers
Elastic fibers are produced as proelastin subunits by the same cells that produce collagen and reticular fibers-namely, fibroblasts. In contrast to collagen, elastic fibers are comprised of two structural components: elastin and microfibrils.
- 탄력섬유는 콜라겐 섬유와 세망섬유를 생성하는 섬유아세포에 의해서 proelastin subunit로 생성됨.
- 콜라겐 섬유와 다르게 탄력섬유는 엘라스틴과 미세섬유(microfibril) 두가지로 구성됨.
Microfibrils form the scaffolding structure to which elastic fibers are formed during the early stages of development (Kozel, Ciliberto, Et Mecham, 2004). Microfibrils are thin ( 1 0 to 1 5 n m diameter) and relatively straight. They are formed through the process of oligomerization (conversion of monomers into oligomers) of fibrillin molecules with other proteins
(TGF-B binding protein , fibrulin , and microfibril associated glycoprotei ns). Abnormal elastic tissue can result from a defect in the fibrillin gene expression, as in Marfan's syndrome.
- 미세섬유는 scaffolding구조를 형성하여 탄력섬유의 초기단계동안 형성됨.
- 미세섬유는 얇고 상대적으로 직선구조임.
- 비정상적인 탄력섬유는 피브릴린 유전자표현에서 결함을 보여 마판증후군을 일으킴.
Elastin is a protein rich in glycine (33%) and is similar to collagen. But unlike collagen, it has more hydrophobic amino acids such as valine and alanine, is poor in both proline and hydroxyproline, and lacks hydroxylysine. Due to its hydrophobic nature, elastin is not glycosylated and does not form a triple helix. The basic unit of elastin is tropoelastin (similar to tropocollagen), which is secreted by elastin-producing cells.
- 엘라스틴은 글라이신이 풍부한 단백질임. 그리고 콜라겐과 비슷함. 하지만 콜라겐과는 다르게 발린과 알라닌과 같은 소수성 아미노산을 많이 가지고 있음.
- 이렇게 소수성 성질때문에 엘라스틴은 당화되지 않고 3중나선을 만들지 못함.
- 엘라스틴의 기본단위는 트로포엘라스틴(트로포콜라겐과 유사함)이고, 이는 엘라스틴 생성 세포에 의해서 분비됨.
To be functional, tropoelastin must be properly aligned so that cross-linking can occur in a sequential manner ( Kozel, Rongish, et aI., 2006). Like collagen, elastic fibers provide strength; but unlike collagen, whose fibers are uniform in size, the elastic fiber's size and shape varies during its formation and location within organs and different tissues (Ushiki, 2002).
- 트로포엘라스틴은 연속적인 방법으로 적절하게 배열되어야 함.
- 콜라겐과 같이 탄력섬유는 장력을 제공함.
- 콜라겐과 다르게 탄력섬유는 크기가 균일하고, 탄력섬유의 크기와 형태는 다양하여 기관과 조직을 만드는데 기여함.
For example, in the aorta, elastic fibers have a sheetlike appearance, whereas in loose connective tissue they are organized as a loose network of fibers.
- 예를들어, 기관지에서 탄력섬유는 종이같은 형태를 가짐. 느슨한 결합조직으로 느슨한 연결구조로 짜여짐.
In addition, elastic fibers can be stretched up to 150% (20-30 times that of collagen) of their relaxed length without breaking. Elastic fibers are found predominantly in the skin, blood vessels, and lungs, where they form three-dimensional networks that are not affected by heat, acids, or alkalines and have a poor solubility. Like collagen, elastin has its highest functional capacity (rubbery and flexible) at 37도 but takes on a glasslike consistency at 20°C and becomes brittle.
- 게다가, 탄력섬유는 콜라겐의 20-30배인 150%까지 손상없이 이완되어 늘어남.
- 탄력섬유는 피부, 혈관, 폐 등에서 우세하게 관찰됨. 반면에 그것들은 3차원 네트워크를 형성하여 열, 산 또는 알카리에 의해서 영향을 받지 않고, 물에 용해되지 않음.
- 콜라겐처럼 엘라스틴은 37도에서 높은 기능적 능력(고무와 같은 탄성과 늘어남)을 가짐. 하지만 20도에서는 유리와같은 점조도를 가지고 쉽게 깨짐.
While collagen provides stability and a limit to connective tissue movement, elastin provides an elastic like stretch to the limit of the collagen fiber's length while absorbing tensile force. Continuous over stretching of elastic fibers may cause it to lose its ability to recoil.
- 콜라겐이 안정성을 제공하면서 결합조직의 움직임을 제한하는 반면, 엘라스틴은 탄성과 같은 스트레치 능력을 제공하여 장력힘을 흡수함.
- 탄력섬유의 지속적인 스트레칭은 그들의 되돌아오는 능력이 떨어질 수 있음.
An example of this effect is enormous weight loss or following pregnancy; i n both cases, the stretched skin sags and is difficult to retum to normal.
- 이 효과의 사례는 많은 체중감소 또는 출산후에 볼 수 있음. 이 두 사례는 늘어난 피부가 처지고 정상으로 되돌아오기 어려움.
Heavy pressure or excessive tension applied to the connective tissue may cause it to respond in a brittle manner and result in tearing. However, stress applied more slowly results in tissue that can be stretched to the limit of the collagen fiber length.
- 결합조직에 과도한 압력이나 과도한 장력은 탄력성을 잃어 손상되기 쉬움. 하지만 힘이 서서히 주어지는 것은 조직이 콜라겐 섬유가 늘어나는 한계까지 늘어날 수 있음.
The degree of flexibility will depend upon elastic quality, quantity, and the extent of cross-bridging
that has occurred between the collagen fibers. The quantity of elastic fibers found in tissue varies depending
on the type of fascia considered.
- 늘어나는 정도는 탄력섬유의 질, 양 그리고 교차다리의 정도에 의존함. 탄력섬유의 양은 각 조직에 따라 다름.
Elastic fibers are characterized as being long and rectilinear. They anastomose to one another and sometimes attach to collagen fibers. However, the interlacing elastic fibers of the superficial fascia do not anastomose, but instead are arranged in multiple layers to form a network (Braverman, 1 98 8 ) .
- 탄력섬유는 길어지고 직선의 특성을 가짐. 그들은 서로 문합을 이루어 때로는 콜라겐 섬유에 부착함.
- 천층 섬유막의 interlacing 탄력섬유는 문합을 이루지 않음. 대신에 다층으로 네트워크 형태로 배열됨.
Cross sections of loose connective tissue show that each elastic layer is associated with undulating collagen
bundles and fibroblasts, and the layers are separated from each other by an intercalated empty zone. The superficial fascia, as a unit of loose connective tissue, allows the skin and muscle to move relatively independently of each other.
- 느슨한 결합조직을 단편으로 절단해보면 각각의 탄력섬유층은 콜라겐 다발과 섬유아세포와 물결치듯 관련됨.
- 느슨한 결합조직단위로서 천층 섬유막은 피부와 근육이 서로 독립적으로 움직일수 있게 허용함.
The layers of differently oriented elastic fibers provide for some of the integrity of this fascia in addition to balancing the elastic and tensile stresses generated during the movement of skin and muscle. The relationships between elastin and collagen determine the mechanical capacity of connective tissue. Elastin fibers are laid down in parallel with an excess length of collagen fibers in places where elasticity is required, such as skin or arteries. The collagen and elastic fibers are organized in different but complementary ways in fascia.
- 서로 다르게 배열된 탄력섬유층은 표층 섬유막의 완전성을 제공함. 피부와 근육 움직임 동안 생성되는 탄성과 장력 스트레스의 규형을 만들어 냄
- 엘라스틴과 콜라겐 관계는 결합조직의 기계적 능력을 결정함.
- 탄력섬유는 피부나 혈관처럼 탄성이 필요한 곳에서 콜라겐섬유 길이방향과 평행하게 놓여짐.
- 콜라겐과 탄력섬유는 섬유막에서는 그 배열조직이 다름 하지만 서로 보완적임.
Functions of the Collageno-elastic Complex in Fascia
In tissue, including fascia, elastic fibers are interwoven with collagen fibers. This property-as well as the ratio of elastic to collagen fibers-is crucial in determining not only the mechanical properties of fascia but also the way fascia responds to inner and outer forces.
- 섬유막을 포함한 조직에서 탄력섬유는 콜라겐 섬유와 직물처럼 짜여 있음. 이러한 탄력섬유와 콜라겐 섬유의 비율은 섬유막의 기계적 특성뿐 아니라 내외부 힘에 반응하는 섬유막의 방법에도 중요한 역할.
Usually, the collagen fibers are wrapped around the elastic fibers and have common attachment sites. The connection between the two fibers is transverse, which seemingly allows the collagen to return to its initial length following any type of pressure, or tension, being applied to the fascia (Upledger, 1 995).
- 일반적으로 콜라겐 섬유는 탄력섬유주위에 둘러싸여 흔한 부착부를 가짐. 콜라겐 섬유와 탄력섬유사이의 연결은 서로 가로지름. 이는 콜라겐 섬유가 어떤 압력, 장력이 섬유막에 주어진 후 원래길이로 돌아오게 함.
Studies have shown that this collageno-elastic complex responds to forces differently depending on how extensive the deformation of the tissue is following application of force to that tissue. Consequently, if the fascia is stretched to approximately 30% of its original length, the elastic fibers stretch, followed by the collagen fibers. When the mechanical force stops, the collageno-elastic fibers enable the tissue to return to its original length-except for any inelastic collagen fibers.
- 콜라겐-탄력섬유 복합체는 조직에 가해진 힘에의해 변형되는 힘의 차이에 의존하여 반응함.
- 결과적으로, 만약 섬유막이 원래 길이보다 30%늘어난다면 콜라겐 섬유에 따라서 탄력섬유는 늘어남.
- 기계적 힘이 멈추었을때, 콜라겐-탄력섬유는 비탄성적 콜라겐 섬유를 제외하고 원래길이로 되돌아 오려 함.
These fibers will remain stretched until the area of deformation is identified and addressed by a trained health professional.
Another situation arises when tissues are stretched to more than 30% of their original length, in which case both collagen and elastic fibers stretch simultaneously.
- 이 섬유는 스트레치된 상태로 머물 수 있음. 잘 훈련된 치료사에 의해서 조절되고 확인되면 늘어난 변형의 부위가 유지될 수 있음.
- 조직이 원래길이보다 30%이상 늘어나면 콜라겐과 탄력섬유는 동시에 스트레치 됨.
If the tissues remain stretched for only a short time, the fascia will return to its original length. If, however, the fibers remain stretched for an extended period of time, not only will the fibers not return to initial length, but the surrounding fascial matrix will be affected. The goal of the trained professional is to return the fibers to their original length while depolymerizing the matrix to restore increased tissue fluidity.
- 만약 조직이 짧은시간동안 늘어난 상태로 유지된다면, 섬유막은 원래길이로 되돌아 올 것임. 하지만 만약 섬유가 늘어난 상태로 오래 유지되면 섬유가 원래길이로 되돌아 오지 않을뿐 아니라 섬유막 주위조직도 영향을 받을 수 있음.
- 전문치료사의 목표는 조직의 원래길이로 되돌아오게 하는 것임. 그 과정에서 증가된 조직액을 회복시킴....
Extracellular Matrix
The extracellular matrix (ECM) occupies the intercellular space within a given tissue and is composed of collagenous and noncollagenous proteins. It is a complex structural network that includes the fibrous proteins, proteoglycans, and several glycoproteins. These macromolecular structures are classically known to provide mechanical support, physical strength, and elasticity to tissues.
- 세포외 기질은 세포간 공간을 콜라겐 섬유와 비콜라겐 단백질로 채우고 있음.
- 이것은 복잡한 구조적 네트워크이고 섬유성 단백질, 프로테오글리칸, 그리고 몇가지 글리코프로틴을 포함함.
- 이러한 대분자 구조는 기계적 지지, 물리적 강도, 조직의 탄력성 등을 제공함.
The current view of the extracellular components of connective tissue and their functional role reveals a dynamic system in which fibers, proteoglycans (some associated with ground substance and with surfaces), and specific glycoproteins such as fibronectin and laminin interact with other components. This section details the various components of ECM.
- 결합조직의 세포외 조성과 그들의 기능은 섬유, 프로테오글리칸(기질 포함) 그리고 특별한 당단백질인 파이브로넥틴, 라미닌이 다른 물질과 서로 관계하는 것을 드러냄.
참고) 기질(ground substance, extracellular matrix)
- 전통적으로 기질(ground substance)는 콜라겐, 탄력섬유를 포함하지 않은 물질이고, 세포외 기질은 포함한 것을 말함.
In connective tissue, the ground substance, also called extrafibrillar matrix, is an amorphous gel-like substance surrounding the cells. In a tissue, cells are surrounded and supported by an extracellular matrix. Ground substance traditionally does not include fibers (collagen and elastic fibers), but does include all the other components of the extracellular matrix.[1] The components of the ground substance vary depending on the tissue. Ground substance is primarily composed of water, glycosaminoglycans (most notably hyaluronan), proteoglycans, and glycoproteins. Usually it is not visible on slides, because it is removed during the preparation process.[2] The meaning of the term has evolved over time.[3]
- 결합조직에서 기질은 형태가 없는 젤과같은 물질.
- 원래 기질은 전통적으로 콜라겐 섬유, 탄력섬유를 포함하지 않음. 하지만 다른 세포외 물질은 포함함.
- 기질은 물, 글리코스아미노글리칸(대부분 hyaluronan), 프로테오글리칸, 글리코프로틴으로 구성됨.
Ground Substance
Ground substance is a viscous, clear substance with a slippery feel. It possesses high water content and a
structureless nature that makes its morphology not very distinct or consistent. Ground substance is often referred to as the "polysaccharide gel complex" that fills the space between the fibers and the cells (fibroblasts) of fascia.
- 기질은 점성이고, 미끄러지는 느낌을 가진 깨끗한 물질. 기질은 물함유량이 높고, 자연적 구조가 없음.
- 기질은 polysaccharide gel complex로 언급되고 섬유막의 섬유아세포와 콜라겐, 탄력섬유 사이의 공간을 가득 채움.
Ground substance provides the immediate environment for every cell in the body. The physical properties of ground substance, from its viscous nature in loose connective tissue to its more turgid character in cartilage, function to permit diffusion of oxygen and nutrients between the microvasculature and adjacent tissues.
- 기질은 인체에서 모든세포를 위한 중간 환경을 제공함.
- 기질의 물리적 특성은 loose 결합조직에서 점성을 갖는 것에서부터 연골에서 물이 부풀어 오르는 특성을 갖고, 미세 혈관과 주위조직에 산소와 영양물을 확산시킴.
This is due to the macromolecules (collagens and proteoglycans) it contains. The proteoglycan component is hydrophilic, attracting water into the area and producing a cushion effect as well as maintaining space between the collagen fibers. The other main component of ground substance is hyaluronic acid (HA).
- 세포외 기질은 대분자물질인 콜라겐, 프로테오글리칸을 함유하기 때문에 이러한 특성을 가짐. 프로테오글리칸 성분은 친수성으로 물을 빨아들이고 쿠션기능을 제공할 뿐아니라 콜라겐 섬유사이의 공간을 만들어냄.
- 세포외 기질의 다른 주요조성물은 히알루론산임.
Proteoglycans
Proteoglycans are peptide chains that form the gel of the ground substance. They have a brushlike structure with a protein backbone approximately 300 nm in length; and due to their mutually electronegative repulsion, the oligosaccharide chains form the long, stretched (60 nm to 100 nm) bristles. The molecular weight of proteoglycans lies between 106 and 109 daltons. These large macromolecules are comprised of a core protein to which many glycosaminoglycan
- 프로테오글리칸은 펩티드 사슬로 기질의 젤을 만들어냄. 단백질 구조에 브러쉬같은 구조를 가지고 있고, 서로간에 전기적 반발기능이 있기 때문에 올리고사카라이드 사슬은 길고 늘어난 bristle(털)을 형성함.
- 프로테오글리칸의 분자량은 106과 109달톤사이에 놓여있음. 이러한 대분자물질은 핵 단백질을 구성하여 글리코스아미노글리칸의 주요성분이 됨.
- ground substance + proteoglycan and GAGs + collagen fiber(elastic fiber, reticular fiber) = extracellular matrix
- 기질은 GAG chains의 친수성 구조로 물함유가 풍부한 상태를 포함함.
- Proteoglycan은 core protenin + GAG chains
- GAG chains은 repeating units of a common GAG인 Hyaluronate으로 구성됨.
Histology of the living Matrix molecules are covalently bound. Glycosaminoglycans (GAGs) are long-chain polysaccharides made up of repeating disacharide units. One of the two sugars in this disaccharide is a hexosamine (D-glucosamine or D-galactosamine), while the other saccharide is uronic acid (D-glucuronic acid, L-iduronic acid).
- 살아있는 조직분자의 조직학적 구성은 공유결합구조임. 글리코스아미노글리칸은 이당류의 반복적 연결로 만들어진 "long chaiin polysaccharide"임.
GAGs are highly negatively charged due to sulfate and carboxyl groups located on many of the sugar groups. This results in attraction of water molecules to form a hydrated gel. This physical property permits easy diffusion of water-soluble molecules but inhibits the movement of larger molecules and bacteria.
- 글라이코스아미노글리칸은 당그룹에 위치한 sulfate와 carboxyl그룹 덕분에 음전하를 가짐. 이는 물분자를 끌어당겨 수화 젤을 만듬.
- 이러한 물리적 특성은 물분자에 잘 분해되는 물질의 쉬운 확산을 허용하지만 박테리아나 큰분자의 이동은 억제함.
In addition, its high water content makes this substance very shock-absorbent so that it is able to absorb compressive forces placed upon it. Besides their mechanical properties, proteoglycans are involved in cell adhesion, differentiation, and development. Other processes in the body such as metastasis and angiogenesis involve interactions between cells or between cells and the ECM where proteoglycans are involved. (Garcia-Manyes et aI., 2005).
- 게다가 많은 물분자가 충격흡수장치로 작동하기 때문에 압박힘을 흡수할 수 있음.
- 그것들의 기계적 특성에 더하여, 프로테오글리칸은 세포부착, 분화, 발달에 연관성을 가짐.
- 암전이와 혈관신생과 같은 다른 과정은 세포와 세포사이의 상호작용과 연관되는데, 세포외 기질인 프로테오글리칸이 연관되는 것임.
Depending on the degree of sulfation, specific sugar group attachments, and types of linkages, there are approximately seven types of GAGs (Table 1-2). GAGs account for 1 to 5% of the ECM. Through mutual charge loss, these long polymers are stretched; this action determines their biological characteristics and reciprocal effects with other molecules.
- 황산화 정도, 특수 당그룹부착과 연결형태에 의존하여 글라이코스아미노클리칸은 7가지 형태를 가짐
- 세포외 기질의 1~5%를 글라이코스아미노글리칸이 차지함.
- 상호전하를 잃어버림으로 인해 이러한 긴 중합체는 늘어남. 그 결과 그들의 생리학적 특성과 상호 효과를 결정함.
Hyaluronic Acid
The second component of ground substance is hyaluronic acid, which is one of the seven GAGs currently recognized. However, it differs from the other GAGs in several aspects.
- 기질의 두번째 구성물은 히알루론산으로 7가지 글리코스아미노글리칸 중에서 최근에 밝혀짐. 하지만 여러면에서 다른 GAGs와 차이가 있음
Firstly, it is much longer, being thousands of residues in length (molecular weight of about 100,000 to several million daltons). Secondly, hyaluronic acid is not bound to a protein in order to form a proteoglycan; instead linker proteins bind proteoglycans indirectly to hyaluronic acid. This structure results in the formation of giant macromolecules, which are fundamental to tissue such as cartilage.
- 첫째, 백만달톤 분자량을 가지고 다른 것보다 김.
- 둘째, 히알루론산은 프로테오글리칸을 만들기 위해 단백질이 결합하지 않음. 대신에 연결단백질은 히알루론산에 간접적으로 프로테오글리칸과 부착함. 이 구조는 히알루론산을 대분자로 만들고, 연골과 같은 조직의 기초가 됨.
These large hyaluronic acid molecules attract larger quantities of water molecules to form a viscous gel that makes joints able to withstand large amounts of compression (Price, Myers, Leigh, Et Navsaria, 2005). The movement of water is made possible by a polymerizing/depolymerizing action of the enzyme hyaloronidase (also known as diffusion factor). Polymerization forms large hyaluronic acid molecules, while depolymerization breaks down hyaluronic acid into smaller molecules.
- 이렇게 큰 히알루론산분자는 물분자의 많은 양을 끌어당겨 점성 젤을 만들어 관절이 오랜 압박에 견디게 함.
- 물의 이동은 중합/비중합 반응에 의해서 만들어짐.
- 중합은 큰 히알루론산 분자를 만들고, 비중합은 히알루론산을 깨뜨려 작은 분자로 만듬.
These actions of hyaloronidase cause fascia to fluctuate between a fluid state and a more gel-like state. Due to its highly viscous nature, hyaluronic acid lubricates collagen, elastin , and muscle fibers, allowing them to slide over each other with minimal friction. This lubrication is vital i n preventing collagen fibers from forming cross-links and adhering to one another.
- 히알루론산 분해효소의 작용은 섬유막을 젤과 같은 상태와 활액상태사이에서 변동하게 함. 높은 점성의 특성때문에, 최소의 마찰을 허용하면서 히알루론산은 콜라겐, 단력섬유, 근섬유를 윤활상태를 만듬.
Functions of Ground Substance
Ground substance has several primary functions besides structural support. Due to its high proportion of water content, a primary function of ground substance involves diffusion of nutrients and other substances including gases, hormones, white blood cells (leukocytes), antibodies, and cellular waste.
- 기질은 구조지지이외에 몇가지 주요기능을 가짐. 물분자 비율이 높기 때문에 기질의 주요기능은 영양물질의 확산과 연관됨. 다른 물질 가스, 호르몬, 백혈구, 항체, 세포찌거기 등의 확산을 포함함.
This property is important to the cells in the surrounding area since it provides a means of exchanging substances between blood and cells. Proper diffusion rates will help keep the cells healthy and functioning effectively and efficiently.
- 세포에서 이러한 특성은 매우 중요함. 적절한 확산비율은 세포를 건강하게 효과적으로 기능하게 만드는데 중요한 역할을 수행함.
The high water content of ground substance also enables it to absorb and disperse shock throughout the body. If the ground substance o f fascia has inadequate water content at the time of injury or trauma, the body cannot efficiently absorb and disperse the impact of forces acting on it.
- 기질의 높은 물함유는 인체의 충격을 분산, 흡수를 가능케 함. 만약 섬유막의 기질이 물이 적다면 인체는 충격을 적절하게 분산, 흡수하지 못할 것임.
While ground substance is an effective exchange medium, it also functions as an important barrier against any invading bacteria or other microorganisms. Since connective tissue cells are part of the reticulo-endothelial system , they provide the first line of defense against invading organisms.
- 기질이 효과적인 교환 매개물로 작용하는 동안, 박테리아나 다른 미생물의 침입으로부터 중요한 장벽 역할을 수행함.
- 결합조직 세포가 피부시스템의 일부이기 때문에, 박테리아 미생물 침입에 첫번째 방어선임.
Ground substance also functions to keep the connective tissue fibers lubricated to allow easier sliding over one another, although this is more a function of hyaluronic acid. Collagen fibers that approximate one another can potentially adhere together if a certain distance, known as critical interfiber distance, is not maintained between them. The ground substance, which provides some of the tissue volume, can effectively maintain the distance between fibers to prevent microadhesions and maintain extensibility.
- 기질은 또한 결합조직 섬유가 서로 활주하도록 윤활역할을 함.
- 콜라겐 섬유는 세포사이를 구조적으로 연결하는 역할.
- 기질은 조직 볼륨을 제공하고 섬유와 섬유사이에 미세유착을 막아 신장성을 유지하게 함.
With increasing age, the ground substance content in connective tissue decreases. Decreased ground substance
can lead to the formation of numerous micro adhesions, and possibly contribute to a decrease in flexibility. Decrease in flexibility and movement will result in the ground substance changing from a fluid to a more solid form. When it is left immobile and undisturbed, ground substance has a tendency to further solidify. This in turn results in solidification of
synovium and connective tissue, leaving a n individual much more vulnerable to injury.
- 나이가 증가함에 따라, 결합조직에서 기질조직은 감소함. 기질감소는 많은 미세유착형성을 야기하고, 유연성 감소에 공헌함.
- 유연성과 움직임의 감소는 기질이 활액이 많은 윤활상태에서 좀더 굳는 형태로 변화하게 함. 그것을 움직이지 않는 상태로 방치하면 기질은 좀더 굳어지는 경향이 됨. 이는 활막과 결합조직의 응고(solidification)을 야기하고, 각 개인을 좀더 쉽게 손상되게 함.
Unless irreversible fibrotic changes have occurred or other underlying pathologies exist, the state of an individual's connective tissue can be changed from a gel-like substance (which limits movement) to a more watery and flexible solute through therapeutic intervention applied by a trained practitioner. Interventions might include introduction of energy through muscular activity, soft tissue manipulation, heat, and vibration.
- 만약 비가역적인 섬유성 변화가 일어나지 않거나 다른 기저질병이 존재하지 않는다면, 결합조직의 상태는 젤과같은 형태로 바뀔 수 있음.
- 치료적 개임은 근육활성화, 연부조직수기치료, 열, 진동 등을 통한 에너지를 포함함.
Water
Water accounts for 70% of the ECM (25% of the fascia) and flows freely, carrying oxygen, electrolytes, and salts between spaces created by the fibers. Water movement through fascia is affected by several factors such as the presence of macromolecules and the attachment of their chemical groups (side chains) and polymerization of hyaluronic acid (discussed earlier).
- 물은 섬유막의 25%, 세포외 기질의 75%를 차지하고, 자유롭게 이동하고, 산소, 전해질, 소금 등을 이동하게 함.
- 섬유를 통한 물의 이동은 몇가지 요소에 의해서 영향 받음.
The dipolar nature of water (electrically charged) attracts the large macromolecules found in the ground substance and ECM. The number of macromolecules present definitely affects the hydration, viscosity, and permeability of the matrix.
- 물의 양극성 특성은 기질과 세포외기질에서 대분자물질을 끌어당김.
- 대분자 물질의 대부분은 분명하게 수화, 점성, 물질의 투과정도에 영향을 줌.
Glycoproteins(당단백질)
Glycoproteins are short chains formed by sugars bound to a polypeptide chain. Unlike proteoglycans, glycoproteins have a hydrophobic property that plays a role in the formation of intermolecula bridges and orientation of fibrous proteins. The ECM has a number of noncollagenous adhesive proteins.
- 당단백질은 폴리펩티드 사슬의 당결합에 의해서 형성된 짧은 사슬구조.
- 프로테오글리칸과 다르게 당단백질은 소수성 특성을가지고 있어서 섬유성 당백질의 배열과 중간물질 연결의 형성에 중요한 역할.
- 세포외기질은 많은 비콜라겐 유착단백질을 가짐.
Typically, these proteins have multiple domains, each with specific binding sites for other matrix macromolecules and for receptors on the surface of cells. Fibronectin and laminin are two characteristic glycoproteins. Both of these high
molecular glycoproteins mediate between cell surfaces and the ECM due to their collagen- binding capacity, and they are easily degraded by proteases.
- 전형적으로, 이러한 단백질은 multiple domain을 가지고, 다른 기질대분자물질을 위한 각기 다른 부착부와 세포의 표면을 위한 수용기를 가짐. 피브로넥틴과 라미닌은 두가지 특징적인 당단백질임.
-
Fibronectin
Fibronectin is a large glycoprotein found in all vertebrates, where it exists as a monomeric, dimeric, and polymeric molecule. It appears invertebrate blood as a dimer composed of two very large subunits joined by a pair of disulfide bonds near the carboxyl terminus.
- 피브로넥팅은 큰 당단백질로 모든 척추에서 발견됨. 이는 monomeric, dimeric, and polymeric molecule로 존재함.
In addition to blood plasma, fibronectin has been found in amniotic fluid and cerebrospinal fluid (CSF). Fibronectin has multiple binding domains; it binds to collagen, heparin, cell surface, heparin sulfate, hyaluronic acid, proteoglycans, and actin . The actin-binding site is of interest since it indicates that fibronectin can very likely connect with the actin filaments of the cellular cytoskeleton.
- 혈장에서, 피브로넥틴은 알카리성 활액과 척수액에서 발견됨. 피브로넥틴은 multiple binding domain을 가짐. 이는 콜라겐, 헤파린, 세포표면, 헤파린 황산염, 히알루론산, 프로테오글리칸, 액틴등과 결합함.
- 액틴부착부는 흥미로움.
Fibronectin is important for normal growth and adhesion of cells, cell migration, and tissue growth (Mao 8: Schwarzbauer, 2005). It promotes cell migration by helping cells attach to the matrix, and it interconnects the macromolecules of the ECM with each another and with the glycocalyxes of cell surfaces.
- 피부로넥틴은 세포부착, 세포이동, 조직성장을 위해 매우 중요한 역할.
- 피부로넥틴은 세포가 기질에 부착하는 것을 도와 세포이동을 촉진하고, ....
This process is exact so that migrating cells attach to the matrix without becoming stuck to it. Due to the high proteolytic sensitivity of fibronectin, a nonphysiological increase in proteases can disrupt the information coupling between the cells and the ECM. Increases in protease content can be due to autoimmune diseases and/or inflammation. As a protective measure, the sugar content of fibronectin prevents both proteolytic splitting and turnover of the polypeptide chains from occuning too rapidly.
- 이 과정은 세포이동이 기질에 부착하기 위해 정확함.
- 피브로넥틴의 높은 단백분해감수성때문에 .....
Laminin(라미닌)
Laminin is one of the first ECM proteins synthesized in a developing embryo. During early development, the basal lamina contains little or no type IV collagen; instead, it consists mainly of a laminin network. This glycoprotein is found in the basement membrane as a large molecule consisting of three long, flexible polypeptide chains interconnected via
disulfide bonds.
- 라미닌은 세포외기질 단백질의 주요단백질.
Laminin is involved in the adhesion of epithelia to type IV collagen; both of these molecules are ubiquitous and integral parts of the basal lamina. The fundamental role of laminin is to maintain cell polarity, organizing cells into tissues through extracellular signaling for completion and assembly of the basement membrane (Kao, H uang, H edgecock, Hall, Et Wadsworth, 2006).
- 라미닌은 콜라겐의 상피조직에 부착하는 단백질
Like many other extracellular proteins, laminin contains a number of binding domains. These binding sites include one for type IV collagen, one for heparin sulfate, one for entactin, and two or m o re for laminin receptor proteins found on cell surfaces.
A single dumbbell-shaped entactin molecule binds tightly to each laminin molecule, and since entactin also has an affinity for type IV collagen, it can act as an extra connection between type IV collagen and laminin in basal membranes. Severe progressive muscle-wasting diseases, such as congenital muscular dystrophies, are a result of mutations in the laminin alpha-2 chain, which is the most prominent alpha chain in muscle and peripheral nerve.
Fibroblasts and the ECM
One question that scientists were concerned with for sometime was whether fibroblasts rest passively within the ECM, or whether in fact some type of mechanical attachment was connecting the two. Of course, as explained earlier, the fibroblast is important in producing and maintaining the ECM.
- 과학자들의 질문은 "섬유아세포가 세포외기질내에서 수동적으로 멈추고 있는지 또는 기계적 부착의 어떤 형태가 두가지를 연결하는지"임.
- 물론 앞에서 설명했듯이, 섬유아세포는 세포외기질을 유지, 생성하는데 중요한 역할.
Nonetheless, research has shown that the two are indeed connected mechanically and that these attachments are critical in cell movement. Two types of attachments deserve special attention. First is a class of surface receptors (the glycocalyx) for proteins found in collagen fibrils and glycoproteins (such as fibronectin and laminin, discussed earlier). The second type of attachment involves a specific integral plasma membrane protein (integrin) that covalently has an affinity for GAGs.
- 그럼에도 불구하고, 연구자들은 ... 당질피질과 당단백질..
The Glycocalyx: Sugars of the Cell Surface
On the extracellular surface of the plasma membrane, carbohydrates are attached either to protein molecules (glycoproteins) or lipids of the bilayer (glycollipids). These complex carbohydrates, consisting of branched oligosaccharides with terminal N-acetylneuraminic acid, extend into the proteins and lipids of the cell membrane. These polysaccharide-rich components constitute a layer at the surface of all cells and are referred to as glycocalyxes (Basivireddy, Jacob, Ramamoorthy, Et Balasubramanian, 2005).
- 다당류 중합체가 풍부한 세포 표면에 존재하는 물질을 당질 피질(glycocalyxes)이라고 함.
The glycocalyx usually contains both glycoproteins and glycosaminoglycans that have been secreted into the ECM, and they then migrate onto the cell surface. Many of these absorbed macromolecules are components of the extracellular matrix, which makes the division between the plasma membrane and the ECM almost indistinguishable. In this way,
the glycocalyx mediates functionally between the cell interior and the extracellular space.
- 당질피질은 일반적으로 당단백질과 글리코스아미노글리칸을 함유하여 세포외기질로 분비함. 그리고 세포표면으로 이동함.
The function of the glycocalyx depends on its location in the body. In the intestines, it has multiple functions: protects the underlying villi from infectious bacteria and stomach acids, serves as a platform for normal bacterial flora, and allows transport of nutrients across the microvilli (Horiuchi et a!., 2005 ) . The endothelial glycocalyx protects blood vessels from ischemia/reperfusion injury and formation of atherogenic plaque ( Nieuwdorp et aI.,2005).
- 당질피질의 기능은 인체에서 그 위치에 의존함. 내장에서 당질피질은 많은 기능을 하는데, 박테리아 방어, 영양물 이동 등..
- 내피세포에서 당질피질은 혈관을 보호함...
Integrins(인테그린)
The principal receptors on the cell surface for binding most ECM proteins-including collagen, fibronectin, and laminin-are the integrins. They are a large family of homologous, transmembrane linker proteins com posed of two noncovalently bound transmembrane glycoprotein subunits (a heterodimer), both of which contribute to the binding of the matrix protein. Most integrins bind to one specific molecule; however, integrins found in fibroblasts bind to collagen, fibronectin, and laminin.
- 콜라겐, 피브로넥틴, 라미닌을 포함한 세포외기질 단백질과 부착한 세포표면의 주요 수용기는 인테그린임.
- 대부분의 인테그린은 하나의 특이분자와 단단하게 부착함. 하지만 인테그린은 섬유아세포가 콜라겐, 피브로넥틴, 라미닌과 연결된 곳에서 발견됨.
Laminin deposition into the ECM is controlled by integrins (Li, Rao, Burk i n , Kaufm a n , Ct Wu, 200 3 ) . Integrins differ from other cell surface receptors in that they bind their ligand with relatively low affinity and are usually present at about 1 0- to 100-fold higher concentration on the cell surface. This weak binding to many of the matrix molecules allows cells to move with some ease. However, if the binding to the ligand was tighter, then the cells would not be able to move freely.
- 세포외기질에 라미닌 부착은 인테그린에 의해서 조절됨.
Integrins mediate extracellular membrane signaling and thus play an important role in differentiation, migration, and proliferation of cells (Tarone et a\., 2000). Mutated fibroblasts have been shown to produce less fibronectin than normal cells, while not adhering properly to the substratum and failing to develop organized actin filament bundles (Turner Ct Burridge, 1 99 1 ). The interactions of actin filaments and fibronectin are mediated mainly by integrins.
Thus, integrins are fundamental to the interactions of cells and the matrix around them.
- 인테그린은 세포외막을 중계하여 세포의 분화, 이동, 증식에 중요한 역할을 수행함.
- 변화한 섬유아세포는 정상세포보다 피브로넥틴을 덜 생성함.
Intracellular Components are Indirectly Attached to the ECM Cytoskeleton
The ability of cells to adopt various shapes and carry out coordinated a n d directed movements depends on a complex network of protein filaments that extends throughout the cytoplasm. This network is called the cytoskeleton. The cytoskeleton is directly responsible for movements such as the crawling of cells on the substratum, muscle contraction,
and the many changes in shape of the developing vertebrate embryo. The ECM provides biochemical information governing cell differentiation, adhesion, intracellular movements such as transport of organelles from one place to another in the cytoplasm, a n d segregation of chromosomes during the process of mitosis (Oschmann, 1 998).
These multiple activities of the cytoskeleton depend on three major classes o f filamentous polymers: actin filaments, microtubules, and intermediate filaments. As mentioned earlier, it is these structures for which cell surface molecules, like the glycocalyx and integrins, act as a bridge connecting the ECM components (Khatiwala, Peyton, Ct Putnam, 2006).
Summary
The living matrix is a complex structure with diverse functions in the body. Evidence accumulates in support of the thesis that nuclear matrices, cytoskeletons, and extracellular matrices are mechanically, chemomechanically, electromechanically, and functionally iterconnected throughout the organism (Oschmann, 1 998). T h e entire molecular continuum has been called a tissue tensegrity matrix system, o r simply the living matrix .
More research is required to foster an understanding of the importance of individual living matrix components i n
rel a t i o n to their synergistic a n d complementary action on the fascial system. Research is also required
to comprehend the changes i n cell u l a r components of fascia that occur during the aging process a n d learn how these age-related changes can be mitigated to p reserve the overall functioning of the fascia.
첫댓글 Water accounts for 70% of the ECM (25% of the fascia) and flows freely, carrying oxygen, electrolytes, and salts between spaces created by the fibers. Water movement through fascia is affected by several factors such as the presence of macromolecules and the attachment of their chemical groups (side chains) and polymerization of hyaluronic acid (discussed earlier).
- 물은 섬유막의 25%, 세포외 기질의 75%를 차지하고, 자유롭게 이동하고, 산소, 전해질, 소금 등을 이동하게 함.
- 섬유를 통한 물의 이동은 몇가지 요소에 의해서 영향 받음.