거인이 지구 위에 삼각형을 그린다고 생각해 보자. 거인은 막대기로 삼각형 변을 똑바로 긋는다. 그런데 아무리 똑바로 그으려고 해도 둥근 지구 위에는 애당초 직선이 존재하지 않는다. 거인은 어떻게 삼각형을 그릴까? 거인이 삼각형을 못 그릴까 봐 걱정하기 전에 우선 직선의 의미부터 되짚어 보자.
우리는 직선을 똑바로 그은 선으로 알고 있다. 이것은 자연스러운 일이다. 학교를 졸업할 때까지 책에 나오는 직선은 항상 똑바로 그은 선이고, 곡선은 구부러져 있기 때문이다. 학교에서 배운 대로 직선을 생각한다면, 책상과 같이 평평한 평면 위가 아닌 땅 위에 그린 직선을 정말 직선이라고 말할 수 있을까? 그렇지 않다. 구부러진 곡면 위에 그린 직선은 모두 직선이 아니고, 거인이 구 모양 위에 그린 삼각형은 세 내각의 합이 180°보다 커지는 일이 벌어진다.
책상 위에 직선을 그릴 때는 직선이 되지만 땅바닥에 그릴 때는 직선이 아니라면 얼마나 황당할까. 이런 고민을 처음 한 사람은 이탈리아의 수학자 사케리(Girolamo Saccheri, 1667~1733)로 알려져 있다. 사케리도 처음에는 다른 수학자들과 마찬가지로 ‘원론’을 읽으면서 도형을 연구했다. 원론은 고대 그리스의 수학자 유클리드(Euclid, BC330?~BC275?)가 남긴 도형에 대한 책으로 도형에 대한 당시까지의 연구를 집대성한 책이다.
19세기까지 수학자들은 원론으로 기하학을 연구했다. 이 책에서는 어느 점에서나 직선을 그을 수 있다고 말하지만 직선이 무엇이라는 설명은 하지 않았다. 이유는 아주 간단하다. 우리가 어떤 용어를 정의한 후에 이를 사용하려면 그 정의에 들어 있는 말을 다시 정의해야 한다. |