Surgery of the Aortic Arch
DEFINITIONS AND CLASSIFICATION
Anatomically, the aortic arch is defined as the segment of aorta between a line at a right angle proximal to the innominate artery origin and extending to a line drawn at a right angle distal to the origin of the left subclavian artery.[47] Aneurysms are irreversible dilatations of the aorta exceeding the normal diameter for the age and height of the patient.[47] The exact size at which the aorta is labeled “aneurysmal” varies. Definitions vary from 1.5 times to twice the normal aorta. In patients with Marfan syndrome, we suggest that when the cross-sectional area (in square centimeters) divided by the patient’s height (in meters) exceeds a ratio of 10, this should then be considered significant and an indication that the patient requires surgical repair.[50] Thus, in some respect, the definition of an aneurysm is not absolute, but rather refers to the significant dilatation of the aorta.
Aneurysms can be divided further into aortic aneurysms without penetration through the aortic adventitia (true aneurysms) and those that penetrate through the adventitia and are contained by the surrounding tissue that prevents exsanguination of the patient (false aneurysms).[47] In addition, aneurysms are classified according to their likely etiology: medial degenerative aneurysms (typically showing loss of elastic tissue); those related to aortic dissection; other disorders of connective tissue, particularly loss of collagen as in Ehler–Danlos syndrome or loss of elastic tissue as in Marfan syndrome; those associated with blunt trauma; aortitis; primary aortic infections or following previous cardiovascular surgery, especially graft infection in the ascending aorta; and congenital abnormalities.[47]
We prefer the term medial-degenerative aneurysms to atherosclerotic aneurysms simply because not all medial-degenerative aneurysms have atherosclerosis within them.[47] Furthermore, atherosclerosis does not appear to be necessarily the sole etiological factor in the development of medial-degenerative aneurysms. It appears that atheroma formation, fibrosis, and calcification are results of degeneration that follow the primary injurious event that caused the aneurysm.
Aneurysms can be either fusiform, showing uniform dilatation, or saccular in appearance.[47] The three most common sites for saccular aneurysms are on the lesser curve of the aortic arch, the descending aorta, and opposite the visceral vessels.[47] The saccular aneurysms in the aortic arch are usually related to penetrating ulcers, often with localized dissection or mycotic aneurysm formation.[47] Fusiform aneurysms of the aortic arch are typically associated with dilatation of the ascending aorta, particularly when associated with inflammatory aortitis. Medial-degenerative aneurysms of the root are known as annuloaortic ectasia, a term coined by Cooley.[47] This results in a flask-like or hourglass appearance of the aortic root (Erdheim deformity), which is also associated in particular with Marfan syndrome. For example, in Marfan syndrome, initiation of aortic root dilatation results early in the annuloaortic ectasia stage and, if not treated, there is subsequent development of aortic root, ascending aorta, and aortic arch aneurysm formation. In fact, at this late stage, aortic dissection will often precede aortic arch aneurysm formation.
The human artery consists of five distinct layers. The first or innermost layer (the endothelial layer, which lies on a basement membrane) is known as tunica intima. Between the tunica intima and the tunica media is a fenestrated sheath of elastic fibers known as the internal elastic lamina. The tunica media has several layers of elastic tissue lamellae arranged concentrically along the length of the aorta and forms the bulk of the aortic wall. The amount of elastic tissue decreases in an amount from the sinotubular ridge as the aorta progresses down to the aortic bifurcation. Within the tunica media lies smooth muscle cells and the ground substance of the aorta. The latter consists of proteoglycans. The outer third of the tunica media receives its nutrition from the vasovasorum, lymphatics, and nerves. On the outside of the tunica media is the external elastic lamina, which separates the media from the adventitia. The tunica adventitia consists of strong, tough layers of collagen and elastic fibers. Because of its strength, this is the critical layer wherein the surgeon must sew the sutures for graft placement.[47]
To date, there has been no clear, systematic classification of aortic pathology in the literature with different pathologists coining a variety of terms. In our experience, we favor a definition of aortic pathology based on hematoxylin and eosin (H&E) findings and elastic tissue stains. Thus, medial-degenerative disease is defined as a loss of elastic fibers and medial necrosis as a loss of smooth muscle cells. The presence of atherosclerosis superimposed on degenerative disease is described as atherosclerotic with or without calcification. Atheroma is also frequently superimposed. Inflammatory disease is diagnosed when there is evidence of chronic inflammatory cell infiltrates. The intima and adventitia may also show various degrees of hyperplasia.[47]
ETIOLOGICAL AND PREDISPOSING FACTORS
Congenital Aneurysms
Congenital aneurysms of the aortic arch are extremely rare, although they may be associated with aberrant right subclavian arteries from a Kommerell’s diverticulum situated in either the distal aortic arch or proximal descending aorta. Similarly, aneurysms can be associated with one of two types of right-sided congenital arches. For the Felson and Palayew type I right-sided arches, there is a vascular ring that encircles and compresses the esophagus and trachea. The distal arch and descending aorta may be aneurysmal. In patients with type II right-sided arches, the anatomy is basically a mirror image of an aberrant right subclavian artery with a Kommerell’s diverticulum. Thus, an aberrant left subclavian artery comes off the right-sided descending aorta.[36] More frequently, however, the aortic arch, in association with these two varieties, is hypoplastic unless the hypoplasia is severe enough to cause aortic stenosis and prestenosis or poststenosis aneurysm formation occurs. Coarctation of the aorta is often associated with a bicuspid valve and ascending aortic aneurysm but, if left untreated, may sometimes be associated with aortic arch aneurysm formation. A history of patent ductus arteriosus or ventricular septal defect may also be noted. More rarely, adult patients with ascending and aortic arch aneurysms, who have been previously operated upon for an interrupted aortic arch, may present.[47]
Medial-Degenerative Aneurysms
Medial degenerative aneurysms typically occur in elderly patients who have been long-term smokers or who have had a long history of hypertension. If the smoking history is severe and there is presence of chronic obstructive pulmonary disease (COPD), then extensive atheroma formation may also be found within the aneurysms. These types of aneurysms, with extensive atheroma and atherosclerosis formation, typically will involve not only the ascending aorta and the aortic arch but also the descending and thoracoabdominal aorta. Coronary artery disease and carotid artery disease are also common associations. At the time of inspection of the aorta, small ulcers are often observed and these can later form penetrating ulcers that result in dissection in the media adventitial plane or false aneurysm formation if the adventitia is penetrated.[47] Less typically, medial degenerative aneurysms are associated with systemic inflammatory disease and various types of arthritis or vasculitis (see later).
Aortic Dissection
Aortic dissection is discussed later in this chapter. It is important to keep in mind the difference between the DeBakey and Stanford classifications and also the different classes of dissection when replacing the aortic arch. The class of intimal tear will also influence the aortic arch repair technique.
Mycotic Aneurysms
For reasons not entirely clear, true primary mycotic aneurysms of the aorta, as described by Svensson and Crawford,[47] have a tendency to occur either on the lesser curve of the aortic arch with a variable extent of involvement or opposite the visceral vessels in the abdomen. Whether this is related to the structure of the aorta or because of flow patterns resulting in turbulence in these areas opposite branches of the aorta is unclear. The typical infective organisms are Escherichia coli, staphylococcal species, Salmonella, and streptococcal species including strep pneumococcus. Other strains, however, may sometimes be detected. Some of these may be related to atherosclerotic ulcers that initially act as a nidus for subsequent infection to occur. Mycotic aneurysms frequently penetrate through the aortic arch wall resulting in false aneurysms or free rupture. The reason Osler labeled these aneurysms as mycotic was because the gray slimy lining often seen in these aneurysms reminded him of fungal growth. Human fungal infections are, on the whole, very rare, with the exception of patients who have had previous graft infections.
Vasculitis and Aortitis
Inflammatory infiltrates of the aorta are not infrequent. In a prospective examination of histological specimens by both H&E and elastic tissue stains, inflammatory infiltrates were found in over 2570 of the specimens.[53] Although these inflammatory infiltrates consist of various types of leukocytes, often associated with the diseases listed below, an associated systemic illness may be absent. This would suggest that the etiological factor had gone unrecognized, causing aortic injury, which subsequently presents as a medial-degenerative aneurysm, including formation of atherosclerosis and calcification. Previous chest radiation for Hodgkin’s disease or breast malignancies may also be noted in the history. Radiation-induced vasculitis is associated with severe calcification and a porcelain aorta. A stiff left ventricle, scarred right ventricle, and fixed cardiac output increase the risk of surgery.
Inflammatory systemic diseases may result in aneurysms. For example, the development of aortitis is commonly associated with Takayasu’s disease (nonspecific aortoarteritis); giant cell arteritis (Horton’s disease); temporal arteritis; polymyalgia rheumatica; Behçet’s, Buerger’s, Logan’s, Sjögren’s, Reiter’s, or Kawasaki’s disease; relapsing polychondritis; systemic lupus erythematosus (often mycotic); rheumatoid arthritis; sarcoid and ankylosing spondylitis; osteoarthritis of unknown origin; ulcerative colitis; and potentially autoimmune disease of the thyroid such as Hashimoto’s.
Histologically, Takayasu’s disease has panaortitis, severe intimal hyperplasia, severe adventitial fibrosis with perivascular inflammation. In contradistinction, giant cell aortitis has inflammatory margins around areas of medial necrosis and inflammation of the media. Fibrosis and intimal hyperplasia are minimal.
Trauma
Ten percent of traumatic lesions of the aorta occur in the aortic arch. The remaining 90% occur in other segments that will be discussed in Chapter 69B . The aneurysms are most often related to tears at the hinge point of the aorta during acceleration or deceleration injuries. Thus, the usual sites of primary tears occur at either the origin of the innominate artery or the subclavian artery (70–80%), although the origin of the common carotid artery may also be involved.[47] Although blunt trauma is the most common etiology in the United States, for traumatic arch injuries, penetrating injuries from shrapnel or bullets or knife injuries are more frequently observed in the third world. With penetrating lesions, involvement of the trachea, esophagus, venous system, nerves, and vertebral column significantly complicates the management of the injuries.
Tumors of the Arch
Tumors of the aortic arch are extremely rare and when they do occur are usually found distal to the subclavian artery. Very rarely have tumors been related to prosthetic grafts.
HISTORY AND PHYSICAL EXAMINATION
aortic arch aneurysms를 가진 환자의 symptoms 과 physical examination에 대해 질문할 때 보통 aneurysm에 대한 정보를 얻지 못한다.
aortic root aneurysms과 연관된 aortic valvular diseas의 history에 대해 질문을 할때는 환자의 neurological 나 neurocognitive events에 대한 histor가 필요하다.
f brain injury를 가진 환자 중 40~60%는 aortic arch surgery하기 전 computed tomography (CT) scans 나 magnetic resonance image (MRI) studies를 시행한다.
randomized study에서 residual deficits를 지닌 strokes 가진 환자와 aortic arch surgery전에 a neurocognitive deficit를 가지고 있는 75세 이상의 환자를 제외한 38%의 환자는 aortic arch surgery를 하였다.
hoarseness may develop, the distal aortic arch 가 enlarge 되어 있다면 hoarseness가 발생한다. 그 이유는 ligamentum arteriosis에 있는 distal aortic arch주위를 left recurrent nerve가 감싸고 있고 aneurysm에 의해 stretch될수 있기 때문이다.
Dysphagia 는 congenital lesions에서 자주 발생한다.(그림69A-1) 1794년에 Bayford 는 “lusoria” 라 명명하였다. dysphagia lusoria는 descending aorta에서 나오고 right subclavian a.가 abnormal하여 발생하는 dysphagia이다.
Dyspnea는 the pulmonary artery 나 left bronchus 가 constricted되었을 때 나타나는 증상이다.
환자들은 때때로 enlarged descending 나 thoracoabdominal aorta aneurysms일때 mid-scapular pain을 호소하기도 한다.
penetrating ulcer 나 mycotic aneurysm과 연관된 aortic dissection 나 a false aneurysm에서는 심한 chest pain이 있다. 이것은 anterior 나 posterior chest pain 에서 the neck 으로 방사된다.
the aortic arch aneurysm과 연관된 대부분의 환자들에서 특별한 physical findings 찾지 못하였다. 그 환자들의 the aneurysm이 크고 the anterior chest wall 에서 pulsatile이 있고 좋지 않은 환경과 sternum 나 manubrium의 감염에 의한 손상을 가지고 있을 때도 특별한 physical findings 찾지 못하였다.
An associated pulsatile mass나 the lower neck에 있는 a pulsatile mass를 가진 a fullness of the neck는 있었다. the arch의 Displacement는 cranially하게 tortuosity of the carotid arteries의 결과이다. the thoracic outlet의 the left side clavicle위의 Palpation은 a pulsatile mass를 나타낸다.
실험기간동안 aortic dissection or aortitis, particularly giant cell arteritis or Takayasu’s disease와 관련되어 discrepancies 나 absent pulses 있었던 환자들은 arm, neck, and head pulses를 체크하였다,
Preoperative Studies
수술 전 routine laboratory work로 pulmonary function tests를 하는 이유는 많은 환자들이 predisposing factors(smoking history, Marfan syndrome with bullae formation, obstructive lesions related to the arch aneurysms, and right-sided aortic arches) 를 가지고 있기 때문이다.
여러 해 동안 aneurysms에 의한 the trachea or bronchi compression 때문에 생긴 천식을 치료 받는 환자들을 볼 수 있었다.
Routine brain MRIs or CTs는 발생한 asymptomatic infarcts or brain lesions를 수술 전에 찾을 수 있다.
history of coronary artery disease, peripheral vascular disease, or left main coronary artery stenosis를 가진 환자들은 carotid ultrasound studies를 시행한다.
모든 환자들은 수술 전에 echocardiography을 한다.
atheromatous disease를 체크하기 위해 transesophageal echocardiography를 시행하여 the ascending aorta and descending aorta에 대한 좋은 views를 얻을 수 있다.
coronary artery disease or valvular heart disease를 현제 가지고 있는지를 알아내기위해 모든 환자들은 cardiac catheterization를 시행한다.
Routine 24-h Holter monitor examinations는 많은 환자들이 cardiac arrhythmias를 가지고 있기 때문에 시행한다. 이것은 valvular heart disease, chronic hypertension, coronary artery disease, or displacement of the left ventricle and the heart downward and to the left by the aneurysm과 관련이 있다.
Arrhythmias는 abnormal vagal and sympathetic innovation stimulation과 관련이 있다.
cardiac catheterization를 할때 cardiologists들은 the innominate artery의 proximal쪽을 조영한 the aortic arch의 left anterior-oblique views를 요구한다. 이것은 좋은 the aortic arch의 views를 얻고 elephant trunk procedure가 필요한 the extent of the aortic arch를 감별하는데 가장 좋은 방법이기 때문이다.
환자들은 보통 CT scans with contrast of the chest 이나 MRI studies를 한다. 그러나 이것들은 repair가 필요한 the extent of aortic arch를 결정하는데 좋은 기술이 아니다.
우리는 정확한 정보를 얻기 위해서 magnetic resonance angiography (MRA) studies를 추천한다.
모든 환자의 aortography를 찍는다. 그러나 이것은 scheduling이 필요하고 invasive nature, and the dye load이며 잠재적으로 renal function에 영향을 줄수있기 때문에 더 이상 사용되지 않는다.
환자와 상의하여 The operative procedure를 계획하여야 한다. preoperative studies를 기초로 하여 a hemiarch, a total arch, or a total arch인지 elephant trunk procedure필요한지 미리 결정하여야 한다. stenotic lesions or aneurysmal disease, particularly in association with aortic dissection 때문에 bypasses가 필요한 the greater vessels인지 확실히 해야한다.
다음으로, preoperative studies로부터 수술을 위한 site of the arterial inflow 를 결정해야한다. aortic arch surgery를 한 대부분의 환자들은 the right subclavian artery를 사용하였다.
그러나 젊은 환자들은 the right femoral artery를 사용하였다.
the left femoral artery is not used in aortic dissection를 가진 patients들은 the left femoral artery 를 사용하지 않는다. the dissection 은 대부분 left iliac artery를 침범하고 the femoral artery perfusion cannula는 a flutter-valve effect의 결과로 the false lumen을 침범한다.
The aortic arch는
first, it limits the extent of the repair
second, the cannula gets in the way of the operation
third, aortic dissection may be precipitated
fourth, if a graft is inserted, the cannula must be repositioned, either through a side graft or directly into the new aortic graft 때문에 사용되지 않는다.
CARDIOPULMONARY PERFUSION ASPECTS
Sabik and Lytle and colleagues는 the right subclavian artery를 사용하는 technique(complex cardiovascular surgery)를 발표하였다.
randomized study에서 antegrade brain perfusion을 위한 a useful means이다.
the common carotid artery의 The balloon catheter는 the left side of the brain의 perfusion을 allowed하였고 a safe and effective technique임이 증명되었다.
the subclavian artery에 a side graft를 붙이는 것은 the first rib의 the lateral edge에 proximal 한 the artery의 부분으로 하였다. 이유는 이곳은
fewer branches가 있고 pectoral muscles로 가는 the arter를 가로지르는 신경이 있기 때문이다. 그러나 clavicle아래에서 electrocautery를 가지고 구분되어진 subclavius muscle은 필요하다. procedure 동안 정맥이 손상되지 않도록 주의 하여야 한다.
the axillary artery를 좀더 laterally하게 자르기 위해서는 the nerves out of the way을 끌어당기고 the arterial branches에 손상을 주지 않도록 주의 하여야한다.
the subclavian artery 의 perfusion을 얻기 위한 가장 안전하고 좋은 방법을 발견하였다. 그것은 끝 쪽 편에 an 8-mm side graft를 붙이는 것이다. a 5-0 Prolene suture로 position 을 잡고 새는 곳에는 6-0 Prolene으로 oversewn하면 된다.
proximally and distally한 혈관 모두의 perfusion과 greater flow rates를 허용하였다.
the subclavian artery의 direct cannulation 을 피하기 위해서, 적은 tears나 끝 쪽의 the artery repairing의 difficulty가 적어지고 the cannula가 the subclavian artery로부터 너무 멀리 삽입되었거나, the common carotid artery 의 폐쇄가 발생할 수 있거나 the innominate artery wall을 압박하여 inadequate flows가 생겼을 때의 상황이 생기지 않도록 한다.
1336 circulatory arrest patients를 가지고 시행한 recent report에서 use of a side graft in the subclavian artery 는 the risk of stroke를 40%가량 감소 시켰다.
그러나 the subclavian artery의 사용을 제외할 경우, 환자들은 aortic dissection이 발생하는 것을 피할 수 있었고 혈관에서 the extension of the aortic dissection의 시기를 알수 있었다. three patients in whom we used the subclavian artery를 사용한 the artery에 dissection이 있는 세명의 환자들 중에 두명은 수술 후 dissection에 의해 발생한 malperfusion 때문에 생긴 strokes이 발생하였다. 환자들은 몸무게가 250 pounds를 초과하였고 a larger 10-mm side-graft 를 사용하였다.
The graft를 시행한 patient 는 heparinized 하였고 to collect any blood that accumulates within the subclavian incision pocket, a basket or coil sucker leaking blood를 모았다.The graft 는 주의깊게 deaired 하였고 quarter-inch perfusion connector에 a three-eighths inch 를 연결하여 the cardiopulmonary bypass machine 의 the arterial line에 연결하였다.
the femoral artery 를 사용할 때는 the right femoral artery가 더 선호 되었다. the femoral artery를 사용한 환자들은 반드시 the arterial system에 atheroma present가 없는지 확실하게 확인하고 brain으로 올라가는 the femoral artery를 사용한 retrograde pumping에 잠재적으로 embolize 가 올수 있는지 확실하게 확인 하여야 한다.
atherosclerotic disease, aneurysms of the descending thoracoabdominal and abdominal aorta, reoperations, DeBakey Type I and Type III aortic dissections, and extensive aortitis를 가지고 있는 나이 많은 환자에게는 the femoral artery를 사용하지 않는다.
antegrade brain perfusion or elephant trunk procedure or acute dissection을 시행할 환자의 계획을 짤 때는 the subclavian artery를 사용하는 것이 좋다.
Brain protection
Aortic arch surgery에서 최선의 뇌보호 방법을 찾기위한 여러가지 관점이 논의되어 왔다. 요약해보면 femoral artery보다는 subclavian artery에 cannulation을 하는 것이 선호되며 20℃의 deep hypothermia가 선호된다. EEG는 silence한 것이 좋다. Retrograde brain protection은 효과적인 방법이 아니며 약간의 side effect까지 생길 수 있다. Antegrade brain perfusion은 20분 이상의 long circulatory arrest시에 고려될 수 있다. 그리고 cardiopulmonary bypass time이 길어지는 것은 해롭다.
Primum Non Nocere, First Do No Harm
Cardiopulmonary bypass를 안정하게 사용하기 전에 aortic arch의 수술은 heart-lung machine의 사용을 피하기 위해 Ascending aorta에서 greater vessels로의 bypass shunt를 이용한다. 하지만 이 방법은 stroke와 사망의 높은 발생과 관련이 있다.
Crawford등의 연구에서 brain의 perfusion을 위해 aortic arch와 greater vessels를 cannulation을 한 경우 1/3이 넘는 환자에서 stroke의 발생이 관찰되었다. 이는 balloon catheter, occluding clamps나 atheroma에 의해서 greater vessel이 손상되어 stroke가 된 것으로 보고 있다.
656명의 연구에서 deep hypothermia와 circulatory arrest 단독으로 수술을 한 경우 10%의 사망률과 7%의 stroke발생을 보였다. Deep hypothermia와 circulatory arrest 동안의 embolic events나 brain metabolism이 stroke와 관련이 있다는 일치된 의견이 있다. Report에서 retrograde perfusion을 한 경우 성공율이 증가였음을 보였는데 이를 통해 retrograde brain perfusion이 잠재적인 보호역할을 하는 것으로 느껴진다. 하지만 retrograde brain perfusion은 해로운 부작용과 관계가 있는데 stroke나 neurocognitive deficit, depression의 발생이 증가할 수 있다. 우리들이 처음 retrograde brain perfusion을 이용할 때에는 우리가 알고 있는 환자가 견딜 수 있는 압력인 25~30cmH2O의 perfusion pressure를 넘지 않도록 하였다. Griepp’s group에서는 higher perfusion pressure가 어떠한 종류의 retrograde brain perfusion을 얻기 위하여 필요하다는 것을 보여줬다. 그것에 더해 perfusion pressure가 60cmH2O를 넘으면 brain edema를 유발한다고 하였다.
따라서 retrograde brain perfusion은 덜 이용되고 있으며 현재는 total arch replacement에서 이것을 더 증명하기 위하여 연구 중이다.
Prevention of Strokes
대부분의 심장 수술 후 stroke는 microemboli와 연관이 있다. 그리고 대부분의 emboli는 atheromatous나 calcific debris에서 관찰된다. 다른 emboli의 source로는 chronic atrial fibrillation 환자에서 left atrium에서 발생할 수 있고, atrial septal defect에서 이행될 수 있으며 또 다른 잠재적인 source로는 femoral artery perfusion동안에 descending aorta나 abdominal aorta, iliac artery나 femoral artery에서 생길 수 있다. 현대의 cardiopulmonary bypass 기술에서 massive air embolism이나 pump failure도 stroke를 발생할 수 있다.
Emboli와 관련된 stroke의 위험을 감소시키기 위하여 여러가지 기술, 방법, 술기등이 시도되어 왔다. 그리고 centrifugal pump, arterial line filtration, leukocyte filtration, clesed-bag venous reservoir, cell saver, avoiding pump suction, cardiopulmonary bypass time의 감소등이 유익하다고 나타났다. Leukocyte filter는 platelet을 제거하므로 수술 전 plasmapheresis의 사용에 매우 중요하다. Cardiopulmonary bypass를 하는 동안 pH를 관리하기 위하여 소아에서는 pH-stat method를 이용하고 성인에서는 α-stat method를 이용한다.
Gaseous material과 관련된 microcirculation의 위험을 줄이기 위하여 carbon dioxide를 이용하면 일반 공기보다 25배 이상 다시 흡수되는 성질로 인해 위험을 줄일 수 있다.
이외에도 환자의 머리를 얼음으로 싸서 온도를 낮추는 방법과 thiopental을 circulatory arrest전에 5mg/kg를 주입하여 EEG의 activity를 없애는 방법이 권장된다.
Prevention of Neurocognitive Deficits
Stroke같은 합병증을 감소시키는 향상된 결과를 보여주면서 관심은 수술 후 neurocognitive deficits을 예방하기 위한 것으로 옮겨갔다. 이유는 확실하지 않지만 수술 전의 silent brain injury와 neurocognitive deficits와 관련이 있는 것으로 보이며 또한 neurocognitive deficits와 heart failure와 NYHA의 dyspnea같은 preoperative factor들이 연관이 있다. 이는 수술 전 neurocognitive deficits를 가진 환자들이 deep hypothermia와 circulatory arrest를 잘 견디지 못하기 때문으로 생각된다.
Deficit이 발생하는 이유는 preoperative neurocognitive dysfunction, brain microvasculature의 atherosclerosis, coronary artery의 atherosclerosis등으로 다양하다. Coronary bypass surgery에서 off-pump와 on-pump에서 neurocognitive deficits의 차이가 없음을 볼 때에는 다른 요소가 관계되는 것으로 보이며 anesthesia management같은 것들이 중요한 것으로 보인다.
잠재적인 수술 후 neurocognitive dysfunction의 이유는 여러가지 이다. Anesthetic gas, pharmacological agents(including barbiturate), 그리고 다른 잠재적인 이유로는 brain edema, third space fluid accumulation으로 인한 swelling이 있다. Chemical 과 metabolite의 축적도 역할을 할 수 있으며 microemboli도 요소가 될 수 있다.
한 때는 emboli의 선택적인 흐름이 middle cerebral artery로 들어가서 infart을 일으킨다는 생각도 있었지만 platelet aggregates를 injection하여 실험한 결과에서는 그런 점을 찾을 수 없었다.
어느 정도의 cardiopulmonary bypass 후 neurocognitive decline은 frontal lobe로의 microemboli와 infarction과 관련이 있다. 이는 서서히 발전되고 있는 분야이며 microembolism과 수술 후의 neurocognitive function과의 관계가 더 밝혀져야 할 것이다.
Prospective randomized study에서 antegrade brain perfusion이나 retrograde brain perfusion의 그 어떤 이득도 밝혀내지 못했다.
여기에는 여러 경고가 있다.
첫째로 circulatory arrest가 상대적으로 짧고 hemiarch repair를 위해 antegrade brain perfusion 이 더 긴 circulatory arrest time을 유발한다는 것이다. 이는 common carotid artery와 innominate artery에 catheter를 연결하기 위해서 더 시간이 걸리기 때문이다. 하지만 total arch replacement를 위해서는 더 많은 시간이 필요하지는 않다. Retrograde brain perfusion은 circulatory arrest단독 시행에 비해 약간의 시간이 더 걸린다. 이유는 retrograde brain perfusion이 operative field에 blood accumulation이 유발되기 때문이다. 하지만 수술 시에 aorta에 atheroma가 있고 endarterectomy를 해야하는 경우 antegrade perfusion이나 retrograde perfusion을 embolic material을 fluch out하기 위해 시행한다. Antegrade perfusion에서 balloon perfusion catheter는 불명확하다.
Circulatory arrest가 30-40분이 넘어가는 total arch replacement를 하는 경우 antegrade나 retrograde perfusion이 이용될 수 있다.
Operation field와 suturing을 보는 관점에서 편리하기에 antegrade brain perfusion은 circulatory arrest 전기간에 걸쳐 이용되지는 못하더라도 적어도 간헐적으로 이용한다. Balloon occlusion catheter는 쉽게 field에서 빼낼 수 있어서 시야를 방해하지 않는다. Right subclavian artery가 perfusion되어 있기 때문에 arch에서 balloon catheter가 제거되면 문합이 완료되기 전에 embolic material이 flush된다.
만약 elephant trunk procedure가 이용될 때 right subclavian artery가 perfusion되고 있으므로 antegrade perfusion을 위한 elephant trunk로의 side graft는 필요없다.
이와 유사하게 acute dissection repair에서 subclavian artery가 perfusion되고 있어서 side graft가 필요하지 않다.
앞으로는 total arch replacement에서 최적의 온도를 포함한 최선의 perfusion method를 결정하는데 필요한 연구를 해야할 것이다.
OPERATIVE TECHNIQUES
hemiarch repairs or entire arch repairs, with or without a distal descending elephant trunk procedure.
the choice of aortic arch procedure
the proximal aortic root or the ascending aorta operative technique whether composite graft, root remodeling, separate valve and graft, valve reimplantation, Ross procedure, or no valve procedure.
in choosing a valve type
- durability, particularly for biological valves
Hemiarch Replacement
the simplest and quickest operative technique
The anastomosis can be achieved in 5–15 min depending on the aortic arch pathology.
In patients undergoing reoperations
- full median sternotomy or a minimally invasive approach
transection of the aorta
- easier to obtain hemostasis at the distal anastomosis if the aorta was transected and, thus, the risk of false aneurysm formation is also less.
In patients with acute dissections
- certain that all layers are transected, the adventitia freed of the posterior lying pulmonary artery and a bit further cranial to the pulmonary artery to ensure adequate tissue is present for effective suturing.
To further reduce risk of gaseous embolism
- carbon dioxide is run into the operative field during the procedure
In patients who have either had aortic root remodeling
- an interposition graft is usually required
In patients who have undergone aortic valve replacement only
- the hemiarch graft is used to suture the proximal anastomosis
In patients in whom a composite valve graft will be inserted
- the proximal anastomosis of the composite valve graft to the aortic valve annulus and the left main coronary artery anastomosis can first be performed while cooling the patient and the hemiarch anastomosis done directly to the composite graft without using an interposition graft, but always being careful to deair the graft.
In patients who have had a homograft inserted with an aortic root repair
- prosthetic polyester graft material should be used for the hemiarch
In patients with extensive infection of a previous inserted graft
- replace the aortic root with a new homograft and use another homograft
For those patients undergoing reoperations with extensive scar tissue formation that restricts the ability to transect the proximal and distal aorta,
- the hemiarch anastomosis may be done inside the aortic arch without transecting the aorta.
A variation on the hemiarch replacement
① if the anastomosis is quite far down the descending aorta, parachuting the distal anastomosis makes it easier.
② the patient should be warned prior to surgery that hoarseness may occur because the recurrent laryngeal nerve often cannot be preserved where it wraps around the distal aortic arch.
③ hemostasis at the distal anastomosis must be secure prior to continuing the operation after doing the arch repair since obtaining hemostasis is much more difficult once the graft is pressurized and connected proximally.
④ the extent distally to which the anastomosis can be performed may be judged, to some extent, by examining the CT scan or the left anterior oblique view of the arch on MRA or cardiac catheterization.
Replacement of the Entire Aortic Arch
with or without a distal elephant trunk procedure



< Steps for the elephant trunk procedure technique with modification of inverting the graft and placing it in the descending aorta >
1. A side graft is sewn to the graft that will be used for the aortic replacement and then the graft is inverted on itself, including the side graft. The distal extent of the elephant trunk should be 10–15 cm in length and an approximately 1–2 cm rim is left between the side graft and the inverted edge turned down for sewing. If the right subclavian artery is used for arterial inflow, then the side graft is not necessary.
2. Once the patient is cold enough, circulation is arrested and the aorta is opened.
3. The aorta can be transected to improve exposure, if needed.
4. The previously prepared graft is then placed in the descending aorta.
5. The distal anastomosis is performed starting at the three o’clock position as the surgeon looks at the anastomosis.
6. The inner inverted tube is then pulled back into the operative field.
7. The posterior suture line is then performed for the aortic arch.
8. The anterior suture line is then performed.
9. At the second stage operation, the graft is exposed within the aneurysm and clamped.
10. The remainder of the aorta is then repaired.
11.For thoracoabdominal aneurysms, an interposition graft is necessary to complete the repair
To shorten the period of circulatory arrest,
the elephant trunk and inverted graft should be prepared while the patient is cooled.
The elephant trunk graft material should be one of the collagen-coated woven grafts and not a gel-coated graft.
Reasons for inverting the graft on itself and placing it in the descending aorta
① the anastomosis is easier to perform, even though it can be difficult to drive the needle through a double layer of graft material.
② when the inverted graft is withdrawn from inside the elephant trunk, it has the effect of tightening the anastomosis → improving hemostasis at the distal anastomosis.
③ the larger contact surface area between the graft and aortic wall is increased so that there is less bleeding past the anastomosis.
④ if the graft is not inverted, suturing in a tight space between a graft and the aorta in a deep “V” results more often in the aorta tearing with a potential for disastrous rupture in the postoperative period.
One of the problems with elephant trunk procedures is the risk of rupture during the interval between the first operation and second stage operation.
A second stage operation is usually planned after the patient’s recovery from respiratory problems related to the first operation, usually 6 weeks to 4 months after the first stage. Alternatively, if the patient is in poor condition after the first operation, including respiratory problems, we will electively proceed to stent grafting the elephant trunk as part of the second stage procedure, provided that the descending aorta down to the celiac artery can be stented.
In patients with acute dissection, total arch replacement is avoided as much as possible.
An alternative for a dilated distal arch is to sew the anastomosis between the common carotid and left subclavian artery