|
Synapsin I is a major immunoreactive protein where 17 shared epitopes were identified. Synapsin is a neuron-specific cytosolic phosphoprotein, present in most of the nerve terminals and coats synaptic vesicles. It binds to the cytoskeleton, and is believed to function in the regulation of neurotransmitter release. It affects nitric-oxide functions at a presynaptic level. Anti-AGA from patients with CD identified epitopes from this protein. Although, the potential pathogenic role of SYN1-cross-reactive anti-gliadin antibodies is still unclear [7,9], increasing evidence substantiated the relevance of alterations in synapsins as a major determinant in many neurological disorders, including AD, MS, bipolar disorder, psychosis, schizophrenia, depressive disorder, Huntington’s disease, amyotrophic lateral sclerosis, autism and epilepsy, as demonstrated by both genetic and functional studies [91,92].
Amyloid-beta precursor protein is a key protein in AD and is considered one of the main components and inducers of the built-up plaque in the brain. Autoantibodies against this protein are detected in patients with AD and have been shown to cause neuronal degeneration in individuals with compromised blood brain barrier [10,85,93,106].
Alpha-synuclein is a neuronal protein that plays several roles in synaptic activity such as regulation of synaptic vesicle trafficking and subsequent neurotransmitter release. This protein is a pathogenic hallmark of PD, and related to dementia with Lewy bodies, and multiple system atrophy [94].
Amyloid beta A4 precursor protein-binding family B member 1 (APBB1IP) is another protein with a significant homology of 15 epitopes. It functions in the signal transduction from Ras activation to actin cytoskeletal remodeling. It is associated with Late-onset AD [95].
Cerebellar degeneration-related antigen 1: Autoantibodies directed against this protein were found in some patients with paraneoplastic cerebellar degeneration, AD and autism [8].
Microtubule-associated protein (Tau) has roles primarily in promoting microtubule assembly in axons, and in maintaining their stability. It is abundant in the CNS neurons, and might be involved in the establishment and maintenance of neuronal polarity. Tau is a key protein involved in many neurodegenerative diseases, including PD and AD [93,96,97,106].
9. Autoimmune
Antibodies of the following four myelin proteins were reported in serum of patients suffering from MS [98]:
Myelin-associated glycoprotein is an adhesion molecule that mediates interactions between myelinating cells and neurons.
Myelin Oligodendrocyte Glycoprotein Precursor mediates homophilic cell-cell adhesion, and may be involved in maintenance of the myelin sheath and in cell-cell communication.
Myelin Proteolipid Protein plays an important role in the formation or maintenance of the multilamellar structure of myelin.
Myelin basic protein is the structural constituent of myelin sheath.
Myelin-oligodendrocyte glycoprotein is a minor component of the myelin sheath. It may be involved in completion and/or maintenance of the myelin sheath, in cell-cell communication and it mediates homophilic cell-cell adhesion. Antibodies are associated with MS, psychosis, schizophrenia and depressive disorder [98,99].
Reticulon-4 Receptor is a receptor for RTN4, OMG and MAG, and sialylated gangliosides GT1b and GM1. Proteomic analysis of cerebrospinal fluid in patient MS was found to contain these proteins significantly dysregulated [98,100].
Spectrin alpha chain, non-erythrocytic 1 is a structural protein that ensures vital cellular properties including polarity and cell stabilization. In addition, it is involved in cell adhesion, cell-cell contact, and apoptosis. This protein was also found to be associated with MS [98].
Phosphoglycerate Mutase 1 is a glycolytic enzyme that catalyzes step 8 of glycolysis. A proteomics-based analysis revealed high prevalence of autoantibodies against PGAM1 in patients with autoimmune CNS diseases, including MS and neuromyelitis optica [101].
10. Neuropsychiatric
Alpha-enolase: This glycolytic enzyme is involved in various processes such as growth control, hypoxia tolerance and allergic responses [107]. It stimulates immunoglobulin production [108] and is a diagnostic marker for many tumors. It is often significantly deregulated in schizophrenic patients compared with controls [102] and might have significance in CD [103].
GAD65 is the rate-limiting enzyme for the synthesis of GABA, the major inhibitory neurotransmitter in the CNS. Antibodies against GAD65 are seen in various CNS excitability disorders as well as autoimmune neurological conditions, including stiff-person syndrome, cerebellar ataxia, encephalitis, epilepsy, psychosis, bipolar disorder, depressive disorder, autism, mood dysfunction, anxiety, and behavioral dysfunction [104].
11. Discussion
Gluten is the offending nutrient in various gluten-dependent diseases like CD, dermatitis herpetiformis, gluten ataxia, gluten allergy and potentially in non-celiac sensitive conditions [13,14,45]. Despite being the major protein in wheat-the most frequently consumed staple food, it has some harmful effects on human health [13,45,52,53]. It plays a role in the extraintestinal manifestation of CD [16], including in brain pathologies [16,17,18,20,21,24,25,26], hence its involvement in neurodegenerative conditions has just started to be explored. The present review expands on two aspects, namely the cross reactivity and sequence homology between gluten and human brain epitopes, thus reinforcing the molecular mimicry between the two. The classification of the neurodegenerative conditions as ADs is debatable since they don’t fulfill the classical criteria of ADs. PD is an inflammatory condition with some autoimmune aspects [4]. Various autoantibodies against PD associated antigens were described suggesting non secondary, hence primarily causal relationship between the two, resulting in the dopaminergic neuronal loss [4,109,110,111]. Also, AD holds multiple autoimmune features. The vascular-derived anti-neuronal autoantibodies contained in specific brain neurons with degenerative and apoptotic features, including C1q and C5b-9 complement compounds and the permeable blood brain barrier, suggest autoimmunity-induced cell death in AD [112]. More specifically, autoantibodies targeting FcγR-mediated function, tau and ceramide in AD or FcγR-mediated function in PD, were observed to be pathogenic [113]. Most recently, putative 16 autoantibody biomarkers were detected in the cerebrospinal fluid of AD [114] So, not surprising is the above mentions gluten-brain cross-reactivity [8,9,10,78,79] and sequence homology between gluten/gliadin peptides and cephalic epitopes (Table 3). An interesting aspect is the similarity between cephalic antigenes that were detected by both technics, namely, cross-reactivity and sequence homology in relation with wheat/gluten/gliadin components. Neuropsychiatric antibodies against alpha enolase and GAD65 cross-reacted and had sequence similarity with wheat and gliadin, respectively [10,65,78,79]. More so, anti amyloid-beta peptides and anti alpha synuclein antibodies exist in AD and PD [84] and both had sequence homology with gluten/gliadin peptides (Table 3). Anti Purkinje cells and alpha-synuclein antibodies cross-react with gliadin/wheat [8], (Vojdani Aristo, personal communication), alpha synuclein accumulates in Purkinje cells in Lewy body [115] and have sequence homology with gliadin peptides (Table 3). Anti wheat antibodies reacted against dopamin receptors [10,79]. Despite the present lack of sequence homology between gliadin and dopamin receptors, gluten is the major protein in wheat and it is posible that the anti wheat anibodies contain anti gluten antibodies that cross react with the dopamin receptor. Since dopamin loss is a pivotal aspect in PD pathophysiology, one wonders if this cross reactivity might affect dopamin receptors functionality in PD. Based on the above, it is hypothsized that exploring the combined cross reactive antibodies and structure similarity between brain epitopes and gluten/gliadin peptide might shade novel aspects in human neurodegenarative conditions.
An additional interesting pathway by which gluten might affect the brain was summarized by Bressan and Kramer, 2016. It appears that gluten can generate exophines, as shown in animal models [116]. Intriguingly, the gluten originated opioids have higher activity compared to those from casein and many Western societies consume as much as 50 g of gluten, daily [15]. The bad side of those exorphins, when reaching their brain receptors, is their behavioral effects as shown in autism, schizophrenia and psychosis [65]. Decrease social interaction, reduced pain sensitivity, uncontrolled motor activity, disruptive effects on visual and auditory performances were described in mental illnesses as well as in neurodegenerative conditions [65]. The case report illustrating the life-changing amelioration, as achieved by gluten withdrawal in a patient with neuropsychiatric disorder having long term auditory and visual hallucinations, is very intriguing [117]. Finally, some cognitive impairment and “brain fog” associated with gluten-dependent diseases, may respond to gluten elimination [63,118].
If the gluten involvement in neurodegenerative process evolvement is substantiated, a more practical question will be: Will GFD be a novel nutritional therapeutic strategy in preventing or suppressing those conditions? Since adhering to GFD is a tough ally [54,119], several alternative ways to decrease gluten-brain exposure might be envisioned. GF-Mediterranean diet [120], might be very rewarding as Mediterranean diet adherence significantly correlated with 8.4 years of later onset of PD [121]. The dysbiosis in CD and the gluten degrading microbial enzyme (glutenase) capacity might suggest probiotic and lactobacilli enhancing prebiotic therapies [122]. Multiple microbial, fungi and plant proteases were suggested to digest the luminal gluten [123], but it seems that they are not efficient for complete remove of the detrimental gluten peptides, but can help as supplemental therapies. Since one of the drawbacks of GFD is its deficiency in fiber [55] and indigestible polysaccharides are a major nutritional source for the healthy microbiome, prebiotics can boost a normal protective flora. Various functional food supplements, recently summarized by Chander et al., 2018, might decrease gluten exposure. Nutraceuticals are beneficial for PD and AD [93,94,124] and can potentially prevent or treat intestinal barrier dysfunctions and decrease intestinal permeability, thus counteracting the gluten effects on the tight junction functional integrity [12,13,16,45,52,53]. Since tTG and microbial TG can turn naïve gluten peptide to immunogenic molecules [38,39], their specific inhibitors might decrease the cross-linked gluten peptide load on the brain [62,125]. Due to their involvement, transglutaminases were suggested as a therapeutic target for AD [126,127] as well as for PD [128], both aiming to suppress their cross-linked substrate, including gluten peptides, that are rich in proline and glutamine sites [38,39,56,57,58,59,60,61,62]. The harmful effects of industrial processed food, a hallmark of the Western diet, on the gut eco-events and its pro-inflammatory and pro-oxidative, favoring the development of neurodegenerative diseases were recently summarized [129]. Notably, microbial transglutaminase and its gluten peptides preferred substrates are frequently used as food additives [12,38,39]. The resulting cross-linked gluten complexes were recently suggested as potential driver of autoimmunity, not sparing neurodegenerative conditions [56,57,58,59,60,61,62]. Moreover, a trans-enterocytic transport of gliadin and microbial transglutaminase [42] and anti-gluten cross-linked systemic antibodies were recently reported [130,131]. Avoiding process nutrients might decrease the gluten load and diminish its enzymatic cross-linking effects on the human brain. In addition, based on the above, avoiding gluten–brain cross-reactive nutrients and abstaining from gluten–brain sequence similar proteins to minimize molecular mimicry is suggested to be explored in the future.
12. Conclusions
It is concluded that Hippocrates was holistically right. Gluten already existed in 400 BC and even much earlier, but sometimes the food is not “thy medicine”, nor the solution. Gluten might be a potential detrimental nutrient in neurodegenerative diseases evolvement. Circulating systemically, being localized in the brain and being a prime substrate for tissue and microbial transglutaminases posttranslational modifications, gluten/gluten peptides should be thoroughly investigated for their pathophysiology in neurodegenerative conditions. The anti-gluten antibodies cross-reactivity and the numerous epitope sequence homologies with CNS peptides direct to the possible pathophysiological pathway of molecular mimicry, operating in neurodegenerative diseases. Figure 2 summarizes the gluten–brain relationship that might operate in neurodegenerative diseases. The quote from Matthew 6:11, 13: “Give us this day our daily bread (…..) but deliver us from evil” might be actual in the frame of gluten induced neurodegeneration and mental illness [65]. The gluten–brain degeneration axis exploration is only in its infancy and deserves extensive research exploration. If substantiated, it could represent a new therapeutic strategy for neurodegenerative conditions.
Ingested gluten and gliadin’s peptides cross talks with brain epitopes in neurodegenerative diseases. (A) Wheat reach gluten is ingested and digested to gliadin peptides. (B) By deamidation and cross-linking, luminal and mucosal tissue and microbial transglutaminases post translate those peptides to immunogenic molecules. (C) In parallel, gluten affects the microbiome/dysbiome ratio, resulting in proinflammatory metabolome and harmful microbial constituents. (D) This mobilome finds its way, trans- or inter-enterocytically, through the failed tight junction to end up sub-epithelially. (E) In addition, the sensing epithelial and subepithelial cells are activated and deliver signals to the adjacent local or systemic blood, lymphatic and neuronal networks (E,F), respectively. (G) Finally brain neuroinflammatory and neurodegenerative processes are affected.
Acknowledgments
The author thanks Vered Raanan for the English revision of the manuscript. The figures were created with BioRender.com (accessed on 19 March 2021).
Abbreviation
tTG-tissue transglutaminase; CD-celiac disease; GFD-gluten-free diet. PD-Parkinson’s disease; AD-Alzheimer’s disease; MS-multiple sclerosis; CNS-central nervous system; GAD-Glutamic acid decarboxylase.
Author Contributions
A.L. and C.B. designed the study and screened the literature, carried out, and wrote this study. The two authors contributed to the article and approved the submitted version. All authors have read and agreed to the published version of the manuscript.
Funding
Not funded nor grant or institutional supported.
Institutional Review Board Statement
Not applicable.
Informed Consent Statement
Not applicable.
Conflicts of Interest
The authors declare that the research was conducted in the absence of any commercial or financial relationship that could be construed as a potential conflict of interest.
Footnotes
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References
1. Konjevod M., Nikolac Perkovic M., Sáiz J., Svob Strac D., Barbas C., Rojo D. Metabolomics Analysis of Microbiota-Gut-Brain Axis in Neurodegenerative and Psychiatric Diseases. J. Pharm. Biomed. Anal. 2021;194:113681. doi: 10.1016/j.jpba.2020.113681. [PubMed] [CrossRef] [Google Scholar]
2. Ghaisas S., Maher J., Kanthasamy A. Gut Microbiome in Health and Disease: Linking the Microbiome-Gut-Brain Axis and Environmental Factors in the Pathogenesis of Systemic and Neurodegenerative Diseases. Pharmacol. Ther. 2016;158:52–62. doi: 10.1016/j.pharmthera.2015.11.012. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
3. Hirschberg S., Gisevius B., Duscha A., Haghikia A. Implications of Diet and the Gut Microbiome in Neuroinflammatory and Neurodegenerative Diseases. Int. J. Mol. Sci. 2019;20:3109. doi: 10.3390/ijms20123109. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
4. Jiang T., Li G., Xu J., Gao S., Chen X. The Challenge of the Pathogenesis of Parkinson’s Disease: Is Autoimmunity the Culprit? Front. Immunol. 2018;9:2047. doi: 10.3389/fimmu.2018.02047. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
5. Vojdani A., Kharrazian D., Mukherjee P.S. The Prevalence of Antibodies against Wheat and Milk Proteins in Blood Donors and Their Contribution to Neuroimmune Reactivities. Nutrients. 2013;6:15–36. doi: 10.3390/nu6010015. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
6. Garcia-Quintanilla A., Miranzo-Navarro D. Extraintestinal Manifestations of Celiac Disease: 33-Mer Gliadin Binding to Glutamate Receptor GRINA as a New Explanation. BioEssays. 2016;38:427–439. doi: 10.1002/bies.201500143. [PubMed] [CrossRef] [Google Scholar]
7. Yu X.B., Uhde M., Green P.H., Alaedini A. Autoantibodies in the Extraintestinal Manifestations of Celiac Disease. Nutrients. 2018;10:1123. doi: 10.3390/nu10081123. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
8. Vojdani A., O’Bryan T., Green J.A., McCandless J., Woeller K.N., Vojdani E., Nourian A.A., Cooper E.L. Immune Response to Dietary Proteins, Gliadin and Cerebellar Peptides in Children with Autism. Nutr. Neurosci. 2004;7:151–161. doi: 10.1080/10284150400004155. [PubMed] [CrossRef] [Google Scholar]
9. Alaedini A., Okamoto H., Briani C., Wollenberg K., Shill H.A., Bushara K.O., Sander H.W., Green P.H.R., Hallett M., Latov N. Immune Cross-Reactivity in Celiac Disease: Anti-Gliadin Antibodies Bind to Neuronal Synapsin I. J. Immunol. 2007;178:6590–6595. doi: 10.4049/jimmunol.178.10.6590. [PubMed] [CrossRef] [Google Scholar]
10. Vojdani A., Gushgari L.R., Vojdani E. Interaction between Food Antigens and the Immune System: Association with Autoimmune Disorders. Autoimmun. Rev. 2020;19:102459. doi: 10.1016/j.autrev.2020.102459. [PubMed] [CrossRef] [Google Scholar]
11. Gershteyn I.M., Ferreira L.M.R. Immunodietica: A Data-Driven Approach to Investigate Interactions between Diet and Autoimmune Disorders. J. Transl. Autoimmun. 2019;1:100003. doi: 10.1016/j.jtauto.2019.100003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
12. Lerner A., Matthias T. Changes in Intestinal Tight Junction Permeability Associated with Industrial Food Additives Explain the Rising Incidence of Autoimmune Disease. Autoimmun. Rev. 2015;14:479–489. doi: 10.1016/j.autrev.2015.01.009. [PubMed] [CrossRef] [Google Scholar]
13. Lerner A., Matthias T. Gluten and Autoimmunogenesis. In: Perricone C., Shoenfeld Y., editors. Mosaic of Autoimmunity: The Novel Factors of Autoimmune Diseases. 2nd ed. Elsevier; Amsterdam, The Netherlands: 2019. pp. 315–321. [Google Scholar]
14. Sergi C., Villanacci V., Carroccio A. Non-Celiac Wheat Sensitivity: Rationality and Irrationality of a Gluten-Free Diet in Individuals Affected with Non-Celiac Disease: A Review. BMC Gastroenterol. 2021;21:1–12. doi: 10.1186/s12876-020-01568-6. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
15. Sapone A., Bai J.C., Ciacci C., Dolinsek J., Green P.H.R., Hadjivassiliou M., Kaukinen K., Rostami K., Sanders D.S., Schumann M., et al. Spectrum of Gluten-Related Disorders: Consensus on New Nomenclature and Classification. BMC Med. 2012;10:1–12. doi: 10.1186/1741-7015-10-13. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
16. Lerner A., Matthias T., Wusterhausen P. Autoimmunity in Celiac Disease: Extra-Intestinal Manifestations. Autoimmun. Rev. 2019;18:241–246. doi: 10.1016/j.autrev.2018.09.010. [PubMed] [CrossRef] [Google Scholar]
17. Lerner A., Matthias T. GUT-the Trojan Horse in Remote Organs’ Autoimmunity. J. Clin. Cell. Immunol. 2016;7:1–10. doi: 10.4172/2155-9899.1000401. [CrossRef] [Google Scholar]
18. Lerner A., Neidhöfer S., Matthias T. The Gut Microbiome Feelings of the Brain: A Perspective for Non-Microbiologists. Microorganisms. 2017;5:66. doi: 10.3390/microorganisms5040066. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
19. Lebwohl B., Rubio-Tapia A. Epidemiology, Presentation, and Diagnosis of Celiac Disease. Gastroenterology. 2021;160:63–75. doi: 10.1053/j.gastro.2020.06.098. [PubMed] [CrossRef] [Google Scholar]
20. Mohan M., Okeoma C.M., Sestak K. Dietary Gluten and Neurodegeneration: A Case for Preclinical Studies. Int. J. Mol. Sci. 2020;21:5407. doi: 10.3390/ijms21155407. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
21. Trovato C.M., Raucci U., Valitutti F., Montuori M., Villa M.P., Cucchiara S., Parisi P. Neuropsychiatric Manifestations in Celiac Disease. Epilepsy Behav. 2019;99:106393. doi: 10.1016/j.yebeh.2019.06.036. [PubMed] [CrossRef] [Google Scholar]
22. Wills A.J., Turner B., Lock R.J., Johnston S.L., Unsworth D.J., Fry L. Dermatitis Herpetiformis and Neurological Dysfunction. J. Neurol. Neurosurg. Psychiatry. 2002;72:259–261. doi: 10.1136/jnnp.72.2.259. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
23. Ortiz C., Valenzuela R., Lucero Alvarez Y. Celiac Disease, Non Celiac Gluten Sensitivity and Wheat Allergy: Comparison of 3 Different Diseases Triggered by the Same Food. Rev. Chil. Pediatr. 2017;88:417–423. doi: 10.4067/S0370-41062017000300017. [PubMed] [CrossRef] [Google Scholar]
24. Slim M., Rico-Villademoros F., Calandre E.P. Psychiatric Comorbidity in Children and Adults with Gluten-Related Disorders: A Narrative Review. Nutrients. 2018;10:875. doi: 10.3390/nu10070875. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
25. Zelnik N., Pacht A., Obeid R., Lerner A. Range of Neurologic Disorders in Patients with Celiac Disease. Pediatrics. 2004;113:1672–1676. doi: 10.1542/peds.113.6.1672. [PubMed] [CrossRef] [Google Scholar]
26. Lerner A., Makhoul B.F., Eliakim R. Neurological Manifestations of Celiac Disease in Children and Adults Affiliations Celiac Disease and Environment View Project Neurological Manifestations of Celiac Disease in Children and Adults. Eur. Neurol. J. 2012;4:15–20. [Google Scholar]
27. Jackson J.R., Eaton W.W., Cascella N.G., Fasano A., Kelly D.L. Neurologic and Psychiatric Manifestations of Celiac Disease and Gluten Sensitivity. Psychiatr. Q. 2012;83:91–102. doi: 10.1007/s11126-011-9186-y. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
28. Rouvroye M.D., Zis P., Van Dam A.M., Rozemuller A.J.M., Bouma G., Hadjivassiliou M. The Neuropathology of Gluten-Related Neurological Disorders: A Systematic Review. Nutrients. 2020;12:822. doi: 10.3390/nu12030822. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
29. Vinagre-Aragón A., Zis P., Grunewald R., Hadjivassiliou M. Movement Disorders Related to Gluten Sensitivity: A Systematic Review. Nutrients. 2018;10:1034. doi: 10.3390/nu10081034. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
30. Losurdo G., Principi M., Iannone A., Amoruso A., Ierardi E., DiLeo A., Barone M. Extra-Intestinal Manifestations of Non-Celiac Gluten Sensitivity: An Expanding Paradigm. World J. Gastroenterol. 2018;24:1521–1530. doi: 10.3748/wjg.v24.i14.1521. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
31. Lerner A., Jeremias P., Matthias T. The World Incidence and Prevalence of Autoimmune Diseases Is Increasing. Int. J. Celiac Dis. 2015;3:151–155. doi: 10.12691/ijcd-3-4-8. [CrossRef] [Google Scholar]
32. Hirsch L., Jette N., Frolkis A., Steeves T., Pringsheim T. The Incidence of Parkinson’s Disease: A Systematic Review and Meta-Analysis. Neuroepidemiology. 2016;46:292–300. doi: 10.1159/000445751. [PubMed] [CrossRef] [Google Scholar]
33. Niu H., Álvarez-Álvarez I., Guillén-Grima F. Prevalence and Incidence of Alzheimer’s Disease in Europe: A Meta-Analysis. Neurología. 2017;32:523–532. doi: 10.1016/j.nrl.2016.02.016. [PubMed] [CrossRef] [Google Scholar]
34. Lerner A., Jeremias P., Matthias T. The world incidence of celiac disease is increasing: A review. Int. J. Recent Sci. Res. 2015;6:5491–5496. [Google Scholar]
35. Lerner A., Neidhöfer S., Matthias T. Transglutaminase 2 and Anti Transglutaminase 2 Autoantibodies in Celiac Disease and Beyond: TG2 Double-Edged Sword: Gut and Extraintestinal Involvement. Immunome Res. 2015;11:1–4. doi: 10.4172/1745-7580.10000101. [CrossRef] [Google Scholar]
36. Schrödl D., Kahlenberg F., Peter-Zimmer K., Hermann W., Kühn H.J., Mothes T. Intrathecal Synthesis of Autoantibodies against Tissue Transglutaminase. J. Autoimmun. 2004;22:335–340. doi: 10.1016/j.jaut.2004.02.001. [PubMed] [CrossRef] [Google Scholar]
37. Min B., Chung K.C. New Insight into Transglutaminase 2 and Link to Neurodegenerative Diseases. BMB Rep. 2018;51:5–13. doi: 10.5483/BMBRep.2018.51.1.227. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
38. Lerner A., Aminov R., Matthias T. Dysbiosis May Trigger Autoimmune Diseases via Inappropriate Post-Translational Modification of Host Proteins. Front. Microbiol. 2016;7:84. doi: 10.3389/fmicb.2016.00084. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
39. Lerner A., Aminov R., Matthias T. Transglutaminases in Dysbiosis as Potential Environmental Drivers of Autoimmunity. Front. Microbiol. 2017;8:66. doi: 10.3389/fmicb.2017.00066. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
40. Severance E.G., Gressitt K.L., Halling M., Stallings C.R., Origoni A.E., Vaughan C., Khushalani S., Alaedini A., Dupont D., Dickerson F.B., et al. Complement C1q Formation of Immune Complexes with Milk Caseins and Wheat Glutens in Schizophrenia. Neurobiol. Dis. 2012;48:447–453. doi: 10.1016/j.nbd.2012.07.005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
41. Costa A.F., Sugai E., De La Paz Temprano M., Niveloni S.I., Vázquez H., Moreno M.L., Smecuol E., Stefanolo J.P., González A.F., Mauriño E., et al. Gluten Immunogenic Peptide Excretion Detects Dietary Transgressions in Treated Celiac Disease Patients. World J. Gastroenterol. 2019;25:1409–1420. doi: 10.3748/wjg.v25.i11.1409. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
42. Stricker S., de Laffolie J., Rudloff S., Komorowski L., Zimmer K.-P. Intracellular Localization of Microbial Transglutaminase and Its Influence on the Transport of Gliadin in Enterocytes. J. Pediatr. Gastroenterol. Nutr. 2019;68:e43–e50. doi: 10.1097/MPG.0000000000002171. [PubMed] [CrossRef] [Google Scholar]
43. Rudzki L., Szulc A. “Immune Gate” of Psychopathology-The Role of Gut Derived Immune Activation in Major Psychiatric Disorders. Front. Psychiatry. 2018;9:205. doi: 10.3389/fpsyt.2018.00205. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
44. Diamond B., Honig G., Mader S., Brimberg L., Volpe B.T. Brain-Reactive Antibodies and Disease. Annu. Rev. Immunol. 2013;31:345–385. doi: 10.1146/annurev-immunol-020711-075041. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
45. Lerner A., Shoenfeld Y., Matthias T. Adverse Effects of Gluten Ingestion and Advantages of Gluten Withdrawal in Nonceliac Autoimmune Disease. Nutr. Rev. 2017;75:1046–1058. doi: 10.1093/nutrit/nux054. [PubMed] [CrossRef] [Google Scholar]
46. Hollon J., Puppa E.L., Greenwald B., Goldberg E., Guerrerio A., Fasano A. Effect of Gliadin on Permeability of Intestinal Biopsy Explants from Celiac Disease Patients and Patients with Non-Celiac Gluten Sensitivity. Nutrients. 2015;7:1565–1576. doi: 10.3390/nu7031565. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
47. Smecuol E., Sugai E., Niveloni S., Vázquez H., Pedreira S., Mazure R., Moreno M.L., Label M., Mauriño E., Fasano A., et al. Permeability, Zonulin Production, and Enteropathy in Dermatitis Herpetiformis. Clin. Gastroenterol. Hepatol. 2005;3:335–341. doi: 10.1016/S1542-3565(04)00778-5. [PubMed] [CrossRef] [Google Scholar]
48. Cardoso-Silva D., Delbue D., Itzlinger A., Moerkens R., Withoff S., Branchi F., Schumann M. Intestinal Barrier Function in Gluten-Related Disorders. Nutrients. 2019;11:2325. doi: 10.3390/nu11102325. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
49. Sanz Y. Microbiome and Gluten. Ann. Nutr. Metab. 2015;67:28–41. doi: 10.1159/000440991. [PubMed] [CrossRef] [Google Scholar]
50. Panelli S., Capelli E., Lupo G.F.D., Schiepatti A., Betti E., Sauta E., Marini S., Bellazzi R., Vanoli A., Pasi A., et al. Comparative Study of Salivary, Duodenal, and Fecal Microbiota Composition Across Adult Celiac Disease. J. Clin. Med. 2020;9:1109. doi: 10.3390/jcm9041109. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
51. De Angelis M., Vannini L., Di Cagno R., Cavallo N., Minervini F., Francavilla R., Ercolini D., Gobbetti M. Salivary and Fecal Microbiota and Metabolome of Celiac Children under Gluten-Free Diet. Int. J. Food Microbiol. 2016;239:125–132. doi: 10.1016/j.ijfoodmicro.2016.07.025. [PubMed] [CrossRef] [Google Scholar]
52. Lerner A., Ramesh A., Matthias T. Are Non-Celiac Autoimmune Diseases Responsive to Gluten-Free Diet? Int. J. Celiac Dis. 2017;5:164–167. doi: 10.12691/ijcd-5-4-6. [CrossRef] [Google Scholar]
53. Lerner A., Ramesh A., Matthias T. Going Gluten Free in Non-Celiac Autoimmune Diseases: The Missing Ingredient. Expert Rev. Clin. Immunol. 2018;14:873–875. doi: 10.1080/1744666X.2018.1524757. [PubMed] [CrossRef] [Google Scholar]
54. Lerner A., Matthias T. Gluten-Free Diet Tough Alley in Torrid Time. Int. J. Celiac Dis. 2017;5:50–55. doi: 10.12691/ijcd-5-2-4. [CrossRef] [Google Scholar]
55. Lerner A., O’Bryan T., Matthias T. Navigating the Gluten-Free Boom: The Dark Side of Gluten Free Diet. Front. Pediatr. 2019;7:414. doi: 10.3389/fped.2019.00414. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
56. Lerner A., Matthias T. Possible Association between Celiac Disease and Bacterial Transglutaminase in Food Processing: A Hypothesis. Nutr. Rev. 2015;73:544–552. doi: 10.1093/nutrit/nuv011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
57. Matthias T., Lerner A. Microbial Transglutaminase Is Immunogenic and Potentially Pathogenic in Pediatric Celiac Disease. Front. Pediatr. 2018;6:389. doi: 10.3389/fped.2018.00389. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
58. Lerner A., Matthias T. Microbial Transglutaminase: A New Potential Player in Celiac Disease. Clin. Immunol. 2019;199:37–43. doi: 10.1016/j.clim.2018.12.008. [PubMed] [CrossRef] [Google Scholar]
59. Lerner A., Matthias T. Microbial Transglutaminase Is Beneficial to Food Industries but a Caveat to Public Health. Med. One. 2019;4:e190001. doi: 10.20900/mo.20190001. [CrossRef] [Google Scholar]
60. Lerner A., Matthias T. Processed Food Additive Microbial Transglutaminase and Its Cross-Linked Gliadin Complexes Are Potential Public Health Concerns in Celiac Disease. Int. J. Mol. Sci. 2020;21:1127. doi: 10.3390/ijms21031127. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
61. Lerner A., Matthias T. Microbial Transglutaminase Should Be Considered as an Environmental Inducer of Celiac Disease. World J. Clin. Cases. 2019;7:3912–3914. doi: 10.12998/wjcc.v7.i22.3912. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
62. Lerner A., Matthias T. Don’t Forget the Exogenous Microbial Transglutaminases: It Is Immunogenic and Potentially Pathogenic. Aims Biophys. 2016;3:546–552. doi: 10.3934/biophy.2016.4.546. [CrossRef] [Google Scholar]
63. Makhlouf S., Messelmani M., Zaouali J., Mrissa R. Cognitive Impairment in Celiac Disease and Non-Celiac Gluten Sensitivity: Review of Literature on the Main Cognitive Impairments, the Imaging and the Effect of Gluten Free Diet. Acta Neurol. Belg. 2018;118:21–27. doi: 10.1007/s13760-017-0870-z. [PubMed] [CrossRef] [Google Scholar]
64. Di Lazzaro V., Capone F., Cammarota G., Di Giud D., Ranieri F. Dramatic Improvement of Parkinsonian Symptoms after Gluten-Free Diet Introduction in a Patient with Silent Celiac Disease. J. Neurol. 2014;261:443–445. doi: 10.1007/s00415-014-7245-7. [PubMed] [CrossRef] [Google Scholar]
65. Bressan P., Kramer P. Bread and Other Edible Agents of Mental Disease. Front. Hum. Neurosci. 2016;10:1–11. doi: 10.3389/fnhum.2016.00130. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
66. Pynnönen P.A., Isometsä E.T., Verkasalo M.A., Kähkönen S.A., Sipilä I., Savilahti E., Aalberg V.A. Gluten-Free Diet May Alleviate Depressive and Behavioural Symptoms in Adolescents with Coeliac Disease: A Prospective Follow-up Case-Series Study. BMC Psychiatry. 2005;5:1–6. doi: 10.1186/1471-244X-5-14. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
67. Liberto D.D., D’anneo A., Carlisi D., Emanuele S., De Blasio A., Calvaruso G., Giuliano M., Lauricella M. Brain Sciences Review Brain Opioid Activity and Oxidative Injury: Different Molecular Scenarios Connecting Celiac Disease and Autistic Spectrum Disorder. Brain Sci. 2020;10:437. doi: 10.3390/brainsci10070437. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
68. Serratrice J., Disdier P., Kaladjian A., Granel B., Azorin J.M., Laugier R., Berenguer M., Weiller P.J. Psychose Révélant Une Maladie Cœliaque Silencieuse Chez Une Jeune Femme Ayant Une Trisomie 21. Press. Med. 2002;31:1551–1553. [PubMed] [Google Scholar]
69. Rodrigo L., Hernández-Lahoz C., Fuentes D., Mauri G., Alvarez N., Vega J., González S. Randomised Clinical Trial Comparing the Efficacy of A Gluten-Free Diet Versus A Regular Diet in A Series of Relapsing-Remitting Multiple Sclerosis Patients. Int. J. Neurol. Neurother. 2014;1:1–6. [Google Scholar]
70. Bellastella G., Maiorino M.I., Cirillo P., Longo M., Pernice V., Costantino A., Annunziata C., Bellastella A., Esposito K., De Bellis A. Remission of Pituitary Autoimmunity Induced by Gluten-Free Diet in Patients With Celiac Disease. J. Clin. Endocrinol. Metab. 2020;105:2252–2261. doi: 10.1210/clinem/dgz228. [PubMed] [CrossRef] [Google Scholar]
71. Hadjivassiliou M., Grünewald R.A., Sanders D.S., Shanmugarajah P., Hoggard N. Effect of Gluten-Free Diet on Cerebellar MR Spectroscopy in Gluten Ataxia. Neurology. 2017;89:705–709. doi: 10.1212/WNL.0000000000004237. [PubMed] [CrossRef] [Google Scholar]
72. Klack K., Pereira R.M.R., De Carvalho J.F. Uveitis in Celiac Disease with an Excellent Response to Gluten-Free Diet: Third Case Described. Rheumatol. Int. 2011;31:399–402. doi: 10.1007/s00296-009-1177-z. [PubMed] [CrossRef] [Google Scholar]
73. Hmidchat L.M., Laghmari M., Tijan M., Cherkaoui O. Uveitis and celiac disease: About two cases. Case Rep. JMSR. 2018;1:512–514. [Google Scholar]
74. Kopishinskaya S.V., Gustov A.V. Gluten Migraine. Zhurnal Nevrol. I Psikhiatrii Im S.S. Korsakova. 2015;115:13. doi: 10.17116/jnevro20151158113-17. [PubMed] [CrossRef] [Google Scholar]
75. Walker R.H. Further Evidence for Celiac Disease-Associated Chorea? Tremor Other Hyperkinetic Mov. 2011;1:tre-01-32-96-3. doi: 10.5334/tohm.80. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
76. Julian T., Hadjivassiliou M., Zis P. Gluten Sensitivity and Epilepsy: A Systematic Review. J. Neurol. 2019;266:1557–1565. doi: 10.1007/s00415-018-9025-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
77. Ameghino L., Farez M., Wilken M., Goicochea M. Headache in Patients with Celiac Disease and Its Response to the Gluten-Free Diet. J. Oral Facial Pain Headache. 2019;33:294–300. doi: 10.11607/ofph.2079. [PubMed] [CrossRef] [Google Scholar]
78. Vojdani A. A Potential Link between Environmental Triggers and Autoimmunity. Autoimmune Dis. 2014;2014:437231. doi: 10.1155/2014/437231. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
79. Vojdani A. Reaction of Food-specific Antibodies with Different Tissue Antigens. Int. J. Food Sci. Technol. 2020;55:1800–1815. doi: 10.1111/ijfs.14467. [CrossRef] [Google Scholar]
80. Halpert G., Shoenfeld Y. SARS-CoV-2, the Autoimmune Virus. Autoimmun. Rev. 2020;19:102695. doi: 10.1016/j.autrev.2020.102695. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
81. Ehrenfeld M., Tincani A., Andreoli L., Cattalini M., Greenbaum A., Kanduc D., Alijotas-Reig J., Zinserling V., Semenova N., Amital H., et al. Covid-19 and Autoimmunity. Autoimmun. Rev. 2020;19:102597. doi: 10.1016/j.autrev.2020.102597. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
82. Woodruff M.C., Ramonell R.P., Lee F.E.H., Sanz I. Clinically Identifiable Autoreactivity Is Common in Severe SARS-CoV-2 Infection. medRxiv. 2020 doi: 10.1101/2020.10.21.20216192.2020.10.21.20216192 [CrossRef] [Google Scholar]
83. Lyons-Weiler J. Pathogenic Priming Likely Contributes to Serious and Critical Illness and Mortality in COVID-19 via Autoimmunity. J. Transl. Autoimmun. 2020;3:100051. doi: 10.1016/j.jtauto.2020.100051. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
84. Vojdani A., Vojdani E., Kharrazian D. Reaction of Human Monoclonal Antibodies to SARS-CoV-2 Proteins With Tissue Antigens: Implications for Autoimmune Diseases. Front. Immunol. 2021;11:3679. doi: 10.3389/fimmu.2020.617089. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
85. Vojdani A., Vojdani E. Amyloid-Beta 1-42 Cross-Reactive Antibody Prevalent in Human Sera May Contribute to Intraneuronal Deposition of A-Beta-P-42. Int. J. Alzheimers. Dis. 2018;2018:1672568. doi: 10.1155/2018/1672568. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
86. Vojdani A., Vojdani E., Cooper E. Antibodies to Myelin Basic Protein, Myelin Oligodendrocytes Peptides, α-β-Crystallin, Lymphocyte Activation and Cytokine Production in Patients with Multiple Sclerosis. J. Intern. Med. 2003;254:363–374. doi: 10.1046/j.1365-2796.2003.01203.x. [PubMed] [CrossRef] [Google Scholar]
87. Helmich R.C., Bloem B.R. The Impact of the COVID-19 Pandemic on Parkinson’s Disease: Hidden Sorrows and Emerging Opportunities. J. Parkinsons Dis. 2020;10:351–354. doi: 10.3233/JPD-202038. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
88. Brown E.E., Kumar S., Rajji T.K., Pollock B.G., Mulsant B.H. Anticipating and Mitigating the Impact of the COVID-19 Pandemic on Alzheimer’s Disease and Related Dementias. Am. J. Geriatr. Psychiatry. 2020;28:712–721. doi: 10.1016/j.jagp.2020.04.010. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
89. Jiménez-González V., Ogalla-García E., García-Quintanilla M., García-Quintanilla A. Deciphering GRINA/Lifeguard1: Nuclear Location, Ca2+ Homeostasis and Vesicle Transport. Int. J. Mol. Sci. 2019;20:4005. doi: 10.3390/ijms20164005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
90. Čiháková D., Eaton W.W., Talor M.V., Harkus U.H., Demyanovich H., Rodriguez K., Feldman S., Kelly D.L. Gut Permeability and Mimicry of the Glutamate Ionotropic Receptor NMDA Type Subunit Associated with Protein 1 (GRINA) as Potential Mechanisms Related to a Subgroup of People with Schizophrenia with Elevated Antigliadin Antibodies (AGA IgG) Schizophr. Res. 2019;208:414–419. doi: 10.1016/j.schres.2019.01.007. [PubMed] [CrossRef] [Google Scholar]
91. Mirza F.J., Zahid S. The Role of Synapsins in Neurological Disorders. Neurosci. Bull. 2018;34:349–358. doi: 10.1007/s12264-017-0201-7. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
92. Sæther S.G., Vaaler A., Evjenth A., Aune T., Höltje M., Ruprecht K., Schou M. Subtle Phenotype Differences in Psychiatric Patients With and Without Serum Immunoglobulin G Antibodies to Synapsin. Front. Psychiatry. 2019;10:401. doi: 10.3389/fpsyt.2019.00401. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
93. Mccarty M.F., Dinicolantonio J.J., Lerner A. A Fundamental Role for Oxidants and Intracellular Calcium Signals in Alzheimer’s Pathogenesis—And How a Comprehensive Antioxidant Strategy May Aid Prevention of This Disorder. Int. J. Mol. Sci. 2021;22:2140. doi: 10.3390/ijms22042140. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
94. McCarty M.F., Lerner A. Nutraceuticals Targeting Generation and Oxidant Activity of Peroxynitrite May Aid Prevention and Control of Parkinson’s Disease. Int. J. Mol. Sci. 2020;21:3624. doi: 10.3390/ijms21103624. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
95. Morgan A.R., Turic D., Jehu L., Hamilton G., Hollingworth P., Moskvina V., Jones L., Lovestone S., Brayne C., Rubinsztein D.C., et al. Association Studies of 23 Positional/Functional Candidate Genes on Chromosome 10 in Late-Onset Alzheimer’s Disease. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2007;144:762–770. doi: 10.1002/ajmg.b.30509. [PubMed] [CrossRef] [Google Scholar]
96. Zhang X., Gao F., Wang D., Li C., Fu Y., He W., Zhang J. Tau Pathology in Parkinson’s Disease. Front. Neurol. 2018;9:809. doi: 10.3389/fneur.2018.00809. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
97. Ma R.H., Zhang Y., Hong X.Y., Zhang J.F., Wang J.Z., Liu G.P. Role of Microtubule-Associated Protein Tau Phosphorylation in Alzheimer’s Disease. J. Huazhong Univ. Sci. Technol. Med. Sci. 2017;37:307–312. doi: 10.1007/s11596-017-1732-x. [PubMed] [CrossRef] [Google Scholar]
98. Pavelek Z., Vyšata O., Tambor V., Pimková K., Vu D.L., Kuča K., Šťourač P., Vališ M. Proteomic Analysis of Cerebrospinal Fluid for Relapsing-Remitting Multiple Sclerosis and Clinically Isolated Syndrome. Biomed. Rep. 2016;5:35–40. doi: 10.3892/br.2016.668. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
99. Mantere O., Saarela M., Kieseppä T., Raij T., Mäntylä T., Lindgren M., Rikandi E., Stoecker W., Teegen B., Suvisaari J. Anti-Neuronal Anti-Bodies in Patients with Early Psychosis. Schizophr. Res. 2018;192:404–407. doi: 10.1016/j.schres.2017.04.027. [PubMed] [CrossRef] [Google Scholar]
100. Kimura A., Sakurai T., Koumura A., Yamada M., Hayashi Y., Tanaka Y., Hozumi I., Tanaka R., Takemura M., Seishima M., et al. High Prevalence of Autoantibodies against Phosphoglycerate Mutase 1 in Patients with Autoimmune Central Nervous System Diseases. J. Neuroimmunol. 2010;219:105–108. doi: 10.1016/j.jneuroim.2009.11.014. [PubMed] [CrossRef] [Google Scholar]
101. Prabakaran S., Swatton J.E., Ryan M.M., Huffaker S.J., Huang J.T.J., Griffin J.L., Wayland M., Freeman T., Dudbridge F., Lilley K.S., et al. Mitochondrial Dysfunction in Schizophrenia: Evidence for Compromised Brain Metabolism and Oxidative Stress. Mol. Psychiatry. 2004;9:684–697. doi: 10.1038/sj.mp.4001511. [PubMed] [CrossRef] [Google Scholar]
102. Przybylska-Feluś M., Piatek-Guziewicz A., Dynowski W., Zwolińska-Wcisło M., Rozpondek P., Mach T. Antibodies against Alfa-Enolase as an Indication of Inflammatory Process in Patients with Celiac Disease--Preliminary Results. Przegla̧d Lek. 2014;71:254–257. [PubMed] [Google Scholar]
103. Hecker M., Fitzner B., Wendt M., Lorenz P., Flechtner K., Steinbeck F., Schröder I., Thiesen H.J., Zettl U.K. High-Density Peptide Microarray Analysis of IgG Autoantibody Reactivities in Serum and Cerebrospinal Fluid of Multiple Sclerosis Patients. Mol. Cell. Proteom. 2016;15:1360–1380. doi: 10.1074/mcp.M115.051664. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
104. Hansen N., Lipp M., Vogelgsang J., Vukovich R., Zindler T., Luedecke D., Gingele S., Malchow B., Frieling H., Kühn S., et al. Autoantibody-Associated Psychiatric Symptoms and Syndromes in Adults: A Narrative Review and Proposed Diagnostic Approach. BrainBehav. Immun. Heal. 2020;9:100154. doi: 10.1016/j.bbih.2020.100154. [CrossRef] [Google Scholar]
105. Hoffmann C., Zong S., Mané-Damas M., Stevens J., Malyavantham K., Küçükali C.İ., Tüzün E., De Hert M., van Beveren N.J.M., González-Vioque E., et al. The Search for an Autoimmune Origin of Psychotic Disorders: Prevalence of Autoantibodies against Hippocampus Antigens, Glutamic Acid Decarboxylase and Nuclear Antigens. Schizophr. Res. 2021;228:462–471. doi: 10.1016/j.schres.2020.12.038. [PubMed] [CrossRef] [Google Scholar]
106. Campora M., Francesconi V., Schenone S., Tasso B., Tonelli M. Journey on Naphthoquinone and Anthraquinone Derivatives: New Insights in Alzheimer’s Disease. Pharmaceuticals. 2021;14:33. doi: 10.3390/ph14010033. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
107. Huang H., Tang S., Ji M., Tang Z., Shimada M., Liu X., Qi S., Locasale J.W., Roeder R.G., Zhao Y., et al. EP300-Mediated Lysine 2-Hydroxyisobutyrylation Regulates Glycolysis. Mol. Cell. 2018;70:663–678.e6. doi: 10.1016/j.molcel.2018.04.011. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
108. Sugahara T., Nakajima H., Shirahata S., Murakami H. Purification and Characterization of Immunoglobulin Production Stimulating Factor-IIβ Derived from Namalwa Cells. Cytotechnology. 1992;10:137–146. doi: 10.1007/BF00570890. [PubMed] [CrossRef] [Google Scholar]
109. De Virgilio A., Greco A., Fabbrini G., Inghilleri M., Rizzo M.I., Gallo A., Conte M., Rosato C., Ciniglio Appiani M., de Vincentiis M. Parkinson’s Disease: Autoimmunity and Neuroinflammation. Autoimmun. Rev. 2016;15:1005–1011. doi: 10.1016/j.autrev.2016.07.022. [PubMed] [CrossRef] [Google Scholar]
110. Garretti F., Agalliu D., Arlehamn C.S.L., Sette A., Sulzer D. Autoimmmunity in Parkinson’s Disease: The Role of α:-Synuclein-Specific T Cells. Front. Immunol. 2019;10:303. doi: 10.3389/fimmu.2019.00303. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
111. Fahmy A.M., Boulais J., Desjardins M., Matheoud D. Mitochondrial Antigen Presentation: A Mechanism Linking Parkinson’s Disease to Autoimmunity. Curr. Opin. Immunol. 2019;58:31–37. doi: 10.1016/j.coi.2019.02.004. [PubMed] [CrossRef] [Google Scholar]
112. D’Andrea M.R. Add Alzheimer’s Disease to the List of Autoimmune Diseases. Med. Hypotheses. 2005;64:458–463. doi: 10.1016/j.mehy.2004.08.024. [PubMed] [CrossRef] [Google Scholar]
113. Sim K.Y., Im K.C., Park S.G. The Functional Roles and Applications of Immunoglobulins in Neurodegenerative Disease. Int. J. Mol. Sci. 2020;21:5295. doi: 10.3390/ijms21155295. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
114. Lim B., Tsolaki M., Batruch I., Anastasiou A., Frontistis A., Prassas I., Diamandis E.P. Putative Autoantibodies in the Cerebrospinal Fluid of Alzheimer’s Disease Patients. F1000Research. 2019;8:1900. doi: 10.12688/f1000research.21140.1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
115. Mori F., Piao Y.S., Hayashi S., Fujiwara H., Hasegawa M., Yoshimoto M., Iwatsubo T., Takahashi H., Wakabayashi K. α-Synuclein Accumulates in Purkinje Cells in Lewy Body Disease but Not in Multiple System Atrophy. J. Neuropathol. Exp. Neurol. 2003;62:812–819. doi: 10.1093/jnen/62.8.812. [PubMed] [CrossRef] [Google Scholar]
116. Hemmings W.A. The Entry into the Brain of Large Molecules Derived from Dietary Protein. Proc. R. Soc. Lond. Biol. Sci. 1978;200:175–192. doi: 10.1098/rspb.1978.0014. [PubMed] [CrossRef] [Google Scholar]
117. Genuis S.J., Lobo R.A. Gluten Sensitivity Presenting as a Neuropsychiatric Disorder. Gastroenterol. Res. Pract. 2014;2014:293206. doi: 10.1155/2014/293206. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
118. Yelland G.W. Gluten-Induced Cognitive Impairment (“Brain Fog”) in Coeliac Disease. J. Gastroenterol. Hepatol. 2017;32:90–93. doi: 10.1111/jgh.13706. [PubMed] [CrossRef] [Google Scholar]
119. Lerner A., Matthias T. The Yin and Yang of Dietary Gluten Transgressions in Real-Life Scenarios of Celiac Patients. BMC Med. 2020;18:1–3. doi: 10.1186/s12916-020-01535-8. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
120. Morreale F., Agnoli C., Roncoroni L., Sieri S., Lombardo V., Mazzeo T., Elli L., Bardella M.T., Agostoni C., Doneda L., et al. Are the Dietary Habits of Treated Individuals with Celiac Disease Adherent to a Mediterranean Diet? Nutr. Metab. Cardiovasc. Dis. 2018;28:1148–1154. doi: 10.1016/j.numecd.2018.06.021. [PubMed] [CrossRef] [Google Scholar]
121. Metcalfe-Roach A., Yu A.C., Golz E., Cirstea M., Sundvick K., Kliger D., Foulger L.H., Mackenzie M., Finlay B.B., Appel-Cresswell S. MIND and Mediterranean Diets Associated with Later Onset of Parkinson’s Disease. Mov. Disord. 2021 doi: 10.1002/mds.28464. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
122. Chander A.M., Yadav H., Jain S., Bhadada S.K., Dhawan D.K. Cross-Talk between Gluten, Intestinal Microbiota and Intestinal Mucosa in Celiac Disease: Recent Advances and Basis of Autoimmunity. Front. Microbiol. 2018;9:2597. doi: 10.3389/fmicb.2018.02597. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
123. Cornell H.J., Stelmasiak T., Lerner A. Enzyme Therapy for Patients with Celiac Disease-An Update. Int. J. Celiac Dis. 2021;9:28–34. doi: 10.12691/ijcd-9-1-1. [CrossRef] [Google Scholar]
124. McCarty M.F., Lerner A. Low Risk of Parkinson’s Disease in Quasi-Vegan Cultures May Reflect GCN2-Mediated Upregulation of Parkin. Adv. Nutr. 2020;11:nmaa112. doi: 10.1093/advances/nmaa112. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
125. Gatta N.G., Cammarota G., Gentile V. Possible Roles of Transglutaminases in Molecular Mechanisms Responsible for Human Neurodegenerative Diseases. AIMS Biophys. 2016;3:529–545. doi: 10.3934/biophy.2016.4.529. [CrossRef] [Google Scholar]
126. Wilhelmus M.M.M., De Jager M., Bakker E.N.T.P., Drukarch B. Tissue Transglutaminase in Alzheimer’s Disease: Involvement in Pathogenesis and Its Potential as a Therapeutic Target. J. Alzheimers Dis. 2014;42:S289–S303. doi: 10.3233/JAD-132492. [PubMed] [CrossRef] [Google Scholar]
127. Wilhelmus M.M.M., De Jager M., Smit A.B., Van Der Loo R.J., Drukarch B. Catalytically Active Tissue Transglutaminase Colocalises with Aβ Pathology in Alzheimer’s Disease Mouse Models. Sci. Rep. 2016;6:1–12. doi: 10.1038/srep20569. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
128. Junn E., Ronchetti R.D., Quezado M.M., Kim S.Y., Mouradian M.M. Tissue Transglutaminase-Induced Aggregation of α-Synuclein: Implications for Lewy Body Formation in Parkinson’s Disease and Dementia with Lewy Bodies. Proc. Natl. Acad. Sci. USA. 2003;100:2047–2052. doi: 10.1073/pnas.0438021100. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
129. Martínez Leo E.E., Segura Campos M.R. Effect of Ultra-Processed Diet on Gut Microbiota and Thus Its Role in Neurodegenerative Diseases. Nutrition. 2020;71:110609. doi: 10.1016/j.nut.2019.110609. [PubMed] [CrossRef] [Google Scholar]
130. Lerner A., Jeremias P., Neidhöfer S., Matthias T. Comparison of the Reliability of 17 Celiac Disease Associated Bio-Markers to Reflect Intestinal Damage. J. Clin. Cell Immunol. 2017;8:486. doi: 10.4172/2155-9899.1000486. [CrossRef] [Google Scholar]
131. Agardh D., Matthias T., Wusterhausen P., Neidhöfer S., Heller A., Lerner A. Antibodies against Neo-Epitope of Microbial and Human Transglutaminase Complexes as Biomarkers of Childhood Celiac Disease. Clin. Exp. Immunol. 2020;199:294–302. doi: 10.1111/cei.13394. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
|