|
|
오실로스코프란 무엇인가, 이것을 이용하여 무엇을 할 수 있고 어떻게 동작하는가? 이러한 기본적인 것들에 대하여 알아보세요! |
오실로스코프는 쉽게 말해 전기적인 신호를 화면에 그려주는 장치로서 시간의 변화에 따라 신호들의 크기가 어떻게 변화하고 있는지를 나타내 줍니다. 수직축(Y축)은 전압의 변화, 수평축(X축)은 시간 변화를 나타내며 화면의 명암이나 밝기는 종종 Z축이라고 부르고 있습니다.(그림 1) 이러한 간단한 그래프로도 신호에 대한 많은 정보를 알 수 있습니다. 이 그래프에서 알 수 있는 몇가지 것들은: |
입력신호의 시간과 전압의 크기 |
발진 신호의 주파수 |
입력신호에 대한 회로상의 응답변화 |
기능이 저하된 요소가 신호를 왜곡시키는 것 |
직류신호와 교류신호의 양 |
신호중의 잡음과 그 신호상에서 시간에 따른 잡음의 변화 |
(그림1. 파형의 X, Y, Z 성분) |
오실로스코프는 화면상에 눈금이 그려져 있는 것과 제어기능들이 많다는 것을 제외하고는 작은 TV와 비슷합니다. 오실로스코프의 전면에는 일반적으로 수직부, 수평부, 동기부등의 조작부가 있으며 또 화면 표시부, 입력 연결단 등도 있습니다. 지금 사용하고 있는 오실로스코프에도 그림 2나 그림 3과 같이 전면판에 여러 가지 조작부가 있을 것입니다. |
1-1 오실로스코프의 용도 오실로스코프의 용도는 전자분야에만 국한되지 않으며 적당한 변환기를 사용하면 모든 종류의 현상들을 측정할 수 있습니다. 변환기는 소리, 기계적 마찰, 압력, 빛 온도등의 물리적 자극을 전기적 신호로 변환시키는 것입니다. 마이크로폰이 변환기의 좋은 예입니다. 자동차 엔지니어는 자동차 엔진의 진동을 관측하고 의학 연구가는 뇌파를 관측하는 등 오실로스코프의 이용가능성은 무한합니다. |
(그림4. 오실로스코프가 잡는 데이타) |
1-2 아날로그와 디지털 전자기기는 아날로그와 디지털 방식으로 나눌 수 있습니다. 아날로그 기기는 연속하여 변하는 전압으로 나타나는 반면, 디지털 기기는 전압을 샘플링한 이산 2진수로 나타냅니다. 예를 들어 턴테이블은 아날로그 장비이고 CD플레이어는 디지털장비입니다. 오실로스코프에도 아날로그와 디지털 방식이 있습니다. 아날로그 오실로스코프는 인가된 전압이 화면상의 전자빔을 움직여서 파형을 바로 나타낼 수 있습니다. 전압에 비례하여 빔을 위아래로 편향시켜 화면에 파형을 주사하기 때문에 곧바로 파형을 그리게 되는 것입니다. 그 반면에 디지털 오실로스코프는 파형을 샘플링한 후 아날로그-디지탈 컨버터를 써서 측정한 전압을 디지털로 변환시킵니다. 이 변환시킨 디지털 정보를 파형으로 재구성해서 화면에 나타내는 것입니다. |
(그림5. 디지털, 아날로그 오실로스코프가 그리는 파형) |
아날로그나 디지털 오실로스코프가 많은 응용분야에 쓰이지만 각각은 일부 독특한 특성을 가지고 있어서 작업의 특성에 따라 좀더 적합하거나 부적합할수도 있습니다. 사람들은 종종 실시간에서 빠른 변화가 있는 신호를 보고자 할때는 아날로그 오실로스코프를 선호합니다. 디지털 오실로스코프는 한번만 발생하는 단발 현상도 포착하여 보여줄 수 있으며 디지털화된 파형의 데이터값을 처리하거나 그 데이터값을 컴퓨터로 보내서 처리할 수도 있습니다. 또한 디지털화된 파형의 데이터값을 저장해서 프린트하거나 나중에 볼 수도 있습니다. |
1-3 오실로스코프의 동작원리 오실로스코프를 잘 조작하기 위해서는 오실로스코프가 동작되는 원리에 대해서 조금 이해할 필요가 있습니다. 아날로그 오실로스코프와 디지털 오실로스코프는 내부 시스템은 유사하지만 동작원리면에서 약간 다릅니다. 아날로그 오실로스코프가 개념면에서 간단하므로 우선 설명하고 디지털 오실로스코프는 뒤이어 설명하겠습니다. 입력된 신호는 정해놓은 수직축 크기(Volts/Division)에 따라서 감쇠기로 줄어지거나 증폭기로 증폭됩니다. 그런 다음 신호는 CRT의 수직 편향판에 전달됩니다. 이 편향판에 가해진 전압에 따라 화면의 밝은 점이 움직이게 되는데 (CRT내부의 형광물질을 때리는 전자빔이 밝은 점을 만듭니다.) 양전압은 점들을 윗쪽으로, 음전압은 아래쪽으로 이동시킵니다. 그리고 신호는 동기부로 들어가 수평축 스위프를 시키거나 동기를 시작합니다. 여기서 수평 스위프란 수평부의 동작으로 화면상의 밝은 점이 수평축 방향으로 이동하는 것을 말합니다. 수평축을 트리거링하는 것은 일정시간 간격으로 화면의 좌에서 우로 밝은 점이 움직이도록 수평축 타임베이스를 조정하는 시스템입니다. 스위프가 빠르게 연속적으로 많이 발생하면 밝은 점들은 직선을 만들며, 고속에서는 매초 500,000번 이상 화면에 스위프되기도 합니다. |
(그림 6. 아날로그 오실로스코프의 블록 다이어그램) |
수평 스위프와 수직편향이 합해져서 화면에 신호가 그려지게 되는데 이 때 동기는 계속되는 신호를 안정화시키는데 필요한 것입니다. (그림7)과 같이 반복되는 신호를 같은 점에서 스위프하면 화면상에 깨끗한 파형이 나타나게 되는 것입니다. |
(그림7. 반복되는 신호의 동기를 맞추는 트리거) |
(그림 8. 디지털 오실로스코프의 블록 다이어그램) |
결론적으로, 아날로그 오실로스코프를 사용할 때 입력신호를 조절하기 위하여 3가지의 기본적인 측정조건의 조정이 필요하다는 것을 알 수 있습니다.
|
1-3-2 디지털 오실로스코프 디지털 오실로스코프를 구성하는 시스템들은 대부분 아날로그 오실로스코프와 같지만, 데이터 처리 시스템이 추가되어 있습니다.(그림 8)디지탈 오실로스코프는 이 DPS에서 전체 파형의 데이터를 모아서 화면에 나타내줍니다. 디지털 오실로스코프의 프로브를 회로에 연결했을 때, 수직 시스템은 아날로그 오실로스코프에서처럼 신호의 크기를 조절합니다. 그리고 획득시스템에 있는 아날로그-디지털 변환기에서 이산적인 점들로 신호를 샘플한 후, 이 디지털 값들을 전압으로 변환시키는 것입니다. 이때 이런 디지털 값들을 샘플점이라 하며, 수평시스템에 있는 샘플 클럭은 ADC가 샘플을 취하는 빈도를 나타냅니다. 그리고 클럭에 의해 발생하는 샘플비를 샘플율이라 하며 sample/second로 표시합니다. ADC로부터 얻어진 샘플점들은 메모리에 파형점으로 저장되고, 이점은 한 개 이상의 샘플점들로 구성됩니다. 또 이런 파형점들이 모여서 한 개의 파형 레코드를 구성합니다. 일반적으로 파형 레코드를 구성하는 파형점들의 수를 레코드 길이라고 합니다. 동기 시스템은 이 레코드의 시작과 끝의 점을 결정하는 것이며, 레코드 점들은 메모리에 저장된 후에 화면에 나타나는 것입니다. 오실로스코프의 성능에 따라 샘플점의 추가적인 처리를 할 수 있으며, 이런 처리과정을 통해 화면상의 파형을 더 선명히 볼 수 있습니다. 또한 프리 동기 기능을 이용하여 동기점보다 앞서 일어난 현상을 볼 수도 있습니다. 기본적으로 디지털 오실로스코프도 아날로그 오실로스코프에서와 같이 부직부, 수평부, 동기세팅부를 조정해야 합니다. 1-3-3 샘플링 방법 샘플링 방법이란 디지털 오실로스코프에서 샘플점을 얻는 방법을 말합니다. 디지털 오실로스코프에서 느리게 변화하는 신호는 정확하게 화면을 구성할 수 있을 만큼 충분한 샘플점을 쉽게 잡을 수 있지만, 빠른 신호들은(오실로스코프의 최대 샘플 레이트에 비해서 어느 정도 빠른가 하는 정도) 그 만큼 충분한 샘플을 잡기가 불가능합니다. 그러므로 디지털 오실로스코프는 두가지의 샘플링 방법을 사용합니다.
|
(그림9. 실시간 샘플링) |
디지털 오실로스코프는 신호가 빠를 경우, 한 번에 단지 몇 개의 샘플만을 잡기 때문에 보간법을 사용해서 파형을 나타내 줍니다. 보간법은 간단히 말해 점들을 연결하는 방법입니다. 선형보간법은 샘플점들을 직선으로 연결하며, 정현 보간법은 곡선으로 연결합니다.(그림10참조)(SIN x)/x 보간법은 컴팩트 디스크 플레이어에 사용되는 오버샘플링과 유사한 수학처리 과정이며, 정현 보간법을 수행하면서, 실제 획득한 샘플들 사이에 계산에 따라 점들을 추가하는 것입니다. 이러한 처리를 통해서 매 사이클마다 잡는 몇 개의 샘플로도 신호를 정확하게 화면에 나타낼 수 있습니다. |
(그림10. 선형, 사인 보간법) |
1-3-5 등가 시간 샘플링
|
(그림11. 등가 시간 샘플링) |
|