### Paired T-Test
> power.t.test(delta=2, sd=sqrt(2)*1.2, power=0.8)
Two-sample t test power calculation
n = 12.34069
delta = 2
sd = 1.697056
sig.level = 0.05
power = 0.8
alternative = two.sided
NOTE: n is number in *each* group
> power.t.test(delta=2,sd=sqrt(2)*1.2,power=0.9)
Two-sample t test power calculation
n = 16.15444
delta = 2
sd = 1.697056
sig.level = 0.05
power = 0.9
alternative = two.sided
NOTE: n is number in *each* group
> power.t.test(delta=2,sd=sqrt(2)*1.2,power=0.9,sig.level=0.01)
Two-sample t test power calculation
n = 23.14624
delta = 2
sd = 1.697056
sig.level = 0.01
power = 0.9
alternative = two.sided
NOTE: n is number in *each* group
> power.t.test(delta=2,sd=sqrt(2)*1.2,power=0.9,alter="one.sided")
Two-sample t test power calculation
n = 13.06832
delta = 2
sd = 1.697056
sig.level = 0.05
power = 0.9
alternative = one.sided
NOTE: n is number in *each* group
> power.t.test(n=13,delta=2,sd=sqrt(2)*1.2,alt="one.sided")
Two-sample t test power calculation
n = 13
delta = 2
sd = 1.697056
sig.level = 0.05
power = 0.8985622
alternative = one.sided
NOTE: n is number in *each* group
### Two-Sample T-Test
> power.t.test(delta=2,sd=1.2,power=0.8)
Two-sample t test power calculation
n = 6.76095
delta = 2
sd = 1.2
sig.level = 0.05
power = 0.8
alternative = two.sided
NOTE: n is number in *each* group
### One-Way ANOVA
> power.anova.test(groups=3, between.var=2, within.var=1.5, power=.8)
Balanced one-way analysis of variance power calculation
groups = 3
n = 4.767866
between.var = 2
within.var = 1.5
sig.level = 0.05
power = 0.8
NOTE: n is number in each group
# Between/Within-group variance
> out = lm(weight ~ group, data=PlantGrowth)
> anova(out)
Analysis of Variance Table
Response: weight
Df Sum Sq Mean Sq F value Pr(>F)
group 2 3.7663 1.8832 4.8461 0.01591 *
Residuals 27 10.4921 0.3886
### 두 비율의 차이 검정
> power.prop.test(p1=0.25, p2=0.5, power=0.7)
Two-sample comparison of proportions power calculation
n = 45.63026
p1 = 0.25
p2 = 0.5
sig.level = 0.05
power = 0.7
alternative = two.sided
NOTE: n is number in *each* group
첫댓글 잘 보고 갑니다.^^
설명은 책에 있어서 코드와 결과물만 올렸습니다^^ 근데 R에서 기본적으로 제공하는 함수로는 sample size계산 방법은 그리 다양하지 않더군요.
Fisher's exact test 예시는 없나요?