코시
파리 출생. 높은 교양을 지닌 아버지에게 교육을 받고 16세 때 에콜 폴리테크니크에 입학하여 수석으로 졸업하였다. 그 후에 토목기사가 되어 셰르부르의 축항 공사에 종사하면서 수학을 연구하였다. 1815년 수학상의 업적이 인정되어 에콜 폴리테크니크의 교수가 되었고, 이듬해에 과학아카데미 회원이 되었다. 종교적으로는 가톨릭이며, 정치적으로는 발자크와 같은 정통 왕당파(王黨派)였으며, 왕당원으로서의 지조를 지켜 나갔다. 왕당파로서의 지조 때문에 1830년의 7월혁명으로 왕위에 오른 루이 필립에게 충성을 맹세하지 않았다. 이로 말미암아 프랑스 내에서는 일체의 공직 취임이 불가능하게 되었고, 이탈리아의 토리노로 피신하였으며, 여기서 그를 위해 창설된 새로운 강좌를 맡아 강의하기도 하였다. 그 후 5년간을 프라하에서 지내다가 1838년 파리로 돌아왔다.
1848년 나폴레옹 3세가 즉위한 뒤에야 공직에의 취임이 허용되어 소르본대학 교수가 되어 평생 이 교수직에 있었다. 주요업적으로 복소변수함수론(複素變數函數論)과 해석학에서의 엄밀성을 주장한 것을 들 수 있다. 18세기에 발견된 미적분학(微積分學)은 달랑베르 시대로부터 코시와 같은 시대 사람인 가우스, 아벨, 볼차노에 의해 대표되는 새로운 엄밀성의 시대로 바뀌고 있었다. 이것의 대표적 예를, 적분의 존재를 증명한 ‘존재증명’에서 볼 수 있다.
복소변수함수론은 코시에 의해 유체역학과 공기역학에서의 유용한 도구로부터 수학연구의 독립된 분야가 되었다. 1814년 이후로는 끊임없이 함수론에 관하여 논문을 썼으며, 1825년 유수(留數)를 지니고 있는 코시의 적분정리를 발표하였다. 파리의 과학아카데미가 학회지 《Comptes Rendus》에 보내오는 그의 논문의 길이를 제한해야 할 정도로 그의 연구는 다방면에 걸쳐 대단히 많았다고 한다. 그의 연구에서, 빛의 이론과 역학에 대한 공헌도 있으며, 탄성(彈性)의 수학적 이론을 L.M.H.나비에와 함께 기초작업을 이루어 놓은 점 또한 중요한 것이다.
《해석학 교정》에서는 현재 교과서에서 쓰이고 있는 미적분의 기초를 남겼으며, 1838년에는 미분방정식의 풀이에 관하여 최초의 존재증명을 하였다. 이 밖에 그의 모든 연구는 《œuvres compltes d’Augustin Cauchy》(27권, 1882∼1901)에 수록되어 있다.