|
Intense exercise increases dopamine transporter and neuromelanin concentrations in the substantia nigra in Parkinson’s disease
npj Parkinson's Disease volume 10, Article number: 34 (2024) Cite this article
Abstract
Parkinson’s disease (PD) is characterized by a progressive loss of dopaminergic neurons. Exercise has been reported to slow the clinical progression of PD. We evaluated the dopaminergic system of patients with mild and early PD before and after a six-month program of intense exercise. Using 18F-FE-PE2I PET imaging, we measured dopamine transporter (DAT) availability in the striatum and substantia nigra. Using NM-MRI, we evaluated the neuromelanin content in the substantia nigra. Exercise reversed the expected decrease in DAT availability into a significant increase in both the substantia nigra and putamen. Exercise also reversed the expected decrease in neuromelanin concentration in the substantia nigra into a significant increase. These findings suggest improved functionality in the remaining dopaminergic neurons after exercise. Further research is needed to validate our findings and to pinpoint the source of any true neuromodulatory and neuroprotective effects of exercise in PD in large clinical trials.
파킨슨병(PD)은
도파민 신경세포가 점진적으로 손실되는 것이 특징입니다.
운동은
PD의 임상적 진행을 늦추는 것으로 보고되었습니다.
저희는
6개월간의 강도 높은 운동 프로그램 전후에
경증 및 초기 PD 환자의 도파민 시스템을 평가했습니다.
18F-FE-PE2IPET 영상을 사용하여 선
조체와 흑질에서 도파민 수송체(DAT)의 가용성을 측정했습니다.
NM-MRI를 사용하여 흑질 흑질의
뉴로멜라닌 함량을 평가했습니다.
고강도 운동은
흑질과 흑질핵 모두에서 DAT(도파민수송체) 가용성의 예상 감소를
유의미한 증가로 반전시켰습니다.
또한
운동은
흑질 흑질의 뉴로멜라닌 농도 감소를 예상했던 것을
유의미한 증가로 반전시켰습니다.
이러한 결과는
운동 후 남아있는 도파민 신경세포의 기능이 개선되었음을 시사합니다.
이번 연구 결과를 검증하고 대규모 임상시험에서
운동이 PD에 미치는 진정한 신경 조절 및
신경 보호 효과의 근원을 정확히 파악하기 위해서는
추가 연구가 필요합니다.
Similar content being viewed by others
Article Open access27 May 2024
Article Open access11 November 2022
Article Open access16 May 2022
Introduction
Parkinson’s disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra (SN)1. A growing literature has demonstrated the benefits of exercise programs for controlling motor symptoms of PD2,3,4,5. The reported benefits vary according to the type, intensity, and duration of the exercise. Moderate-to-high-intensity exercise multiple times per week for prolonged periods (e.g., 6 months) has been shown to ameliorate the motor severity of PD in clinical trials6,7,8.
Rodent models of PD have shown that exercise-induced improvements in motor performance were accompanied by neuroprotective effects on the dopaminergic neurons in the SN9,10,11,12,13,14,15,16. These neuroprotective effects of exercise are thought to be mediated through neurotrophic, anti-inflammatory, and angiogenic factors. It has been suggested that the interplay between these factors facilitates rescuing of the dopaminergic neurons and increased signaling capacity of healthy dopaminergic neurons17,18. In humans, indirect clinical evidence suggests that exercise may be neuroprotective. Exercise studies in patients with PD support the mediator role of neurotrophic and anti-inflammatory factors in clinical improvement19,20,21. Low pro-inflammatory microglial activation has been proposed as a pathway linking physical activity to brain health based on postmortem examination of older adults without PD but with varying degrees of physical activity22. Postmortem nigral volumes and white matter integrity have been found to be positively correlated with physical activity in older adults without PD23. A positron emission tomography (PET) study using [11C]-raclopride in people with PD demonstrated that a single bout of vigorous cycling by habitual exercisers released significantly more dopamine in the caudate nucleus than the same activity performed by those who were sedentary24. These findings suggest that the benefits of exercise may be due to neuromodulatory effects, such as the preservation of the dopaminergic reserves and enhanced dopamine transmission. However, these putative effects have not been directly investigated in humans with PD in vivo.
Multimodal neuroimaging enables the visualization and quantification of multiple aspects of the dopaminergic system and its functioning in vivo. Imaging of the dopaminergic system has been used to track disease progression in PD. A recent study using the radioligand 18F-FE-PE2I (selective for the presynaptic dopamine transporter (DAT) protein) demonstrated reduced DAT availability in the SN and striatum in subjects with early PD over the course of 2 years, whereas healthy age-matched controls showed no significant changes25. Neuromelanin (NM) is a cytosolic neuronal pigment and an autophagic product synthesized via oxidation and polymerization of catecholamines such as dopamine. It accumulates slowly in dopaminergic neurons with age26 and loss of NM is a hallmark of PD pathology. NM-sensitive magnetic resonance imaging (MRI) can assay NM in the dopaminergic neurons of the SN. A negative correlation between motor symptom severity and NM-MRI measurements in the SN has been demonstrated in PD27,28. In independent PD cohorts, the annual rates of decline in SN volumes were estimated using NM-MRI, suggesting a role for NM as a biomarker for disease progression in the brains of people with PD28. Lastly, using iron-sensitive MRI techniques such as Quantitative Susceptibility Mapping (QSM), increased ferromagnetic depositions in the SN have been demonstrated in people with PD29,30.
In this proof-of-concept study, we imaged the effects of 6 months of high-intensity interval training on the dopaminergic system in patients with PD. Our primary outcome was the change in DAT availability in the SN and striatum, as measured with 18F-FE-PE2I. Our secondary outcome was the change in NM concentration in the SN. We also used QSM to account for potentially confounding effects of ferromagnetic depositions on NM measurements.
소개
파킨슨병(PD)은 흑질(SN)의 도파민 신경세포가 소실되는 것을 특징으로 하는 신경 퇴행성질환입니다1. 파킨슨병의 운동 증상을 조절하는 운동 프로그램의 이점이 입증된 문헌2,3,4,5이 점점 더 많아지고 있습니다. 운동의 유형, 강도 및 기간에 따라 보고된 이점은 다양합니다.
중등도에서 고강도의 운동을 장기간(예: 6개월) 하면
파킨슨병의 운동 중증도가 개선되는 것으로 나타났습니다.
설치류 PD 모델에서 운동으로 인한 운동 능력의 개선은 SN9,10,11,12,13,14,15,16의 도파민성 뉴런에 대한 신경 보호 효과를 동반하는 것으로 나타났습니다. 운동의 이러한 신경 보호 효과는 신경 영양, 항염증 및 혈관 형성 인자를 통해 매개되는 것으로 생각됩니다. 이러한 요인들 간의 상호 작용이 도파민성 뉴런의 구조와 건강한 도파민성 뉴런의 신호 전달 능력 증가를 촉진한다고 제안되었습니다17,18.
인간의 경우,
간접적인 임상 증거에 따르면
운동이 신경을 보호할 수 있다고 합니다.
파킨슨병 환자를 대상으로 한 운동 연구는
임상적 개선에서 신경 영양 및 항염증 인자의 매개체 역할을 뒷받침합니다19,20,21.
PD는 없지만 신체 활동의 정도가 다양한 노인을 대상으로 한 사후 검사에서 신체 활동과 뇌 건강을 연결하는 경로로 낮은 전 염증성 미세아교세포 활성화가 제안되었습니다22.
사후 흑질 용적과 백질 무결성은 PD가 없는 노인의 신체 활동과 양의 상관관계가 있는 것으로 밝혀졌습니다23. 파킨슨병 환자를 대상으로 [11C]-라클로프라이드 양전자 방출 단층촬영(PET)을 사용한 연구에 따르면 습관적으로 자전거를 타는 사람이 한 번 격렬한 운동을 하면 앉아서 하는 같은 활동보다 꼬리핵에서 훨씬 더 많은 도파민이 방출되는 것으로 나타났습니다24. 이러한 연구 결과는 운동의 이점이 도파민 비축량 보존 및 도파민 전달 강화와 같은 신경 조절 효과 때문일 수 있음을 시사합니다. 그러나 이러한 추정 효과는 생체 내 PD를 가진 사람에서 직접적으로 조사되지 않았습니다.
다중 모드 신경 영상은
도파민 시스템의 여러 측면과
생체 내 기능의 시각화 및 정량화를 가능하게 합니다.
도파민 시스템의 이미징은
파킨슨병의 질병 진행을 추적하는 데 사용되어 왔습니다.
방사성 리간드 18F-FE-PE2I(시냅스 전 도파민 수송체(DAT) 단백질에 선택적)를 사용한 최근 연구에 따르면 2년 동안 초기 PD 환자의 SN과 선조체에서 DAT 가용성이 감소한 반면, 연령이 일치하는 건강한 대조군은 큰 변화가 없는 것으로 나타났습니다25.
뉴로멜라닌(NM)은
세포질 신경 색소이자
도파민과 같은 카테콜아민의 산화 및 중합을 통해 합성되는 자가포식 산물입니다.
26세가 되면
도파민성 뉴런에 천천히 축적되며,
NM의 손실은 PD 병리의 특징입니다.
NM에 민감한 자기공명영상(MRI)은
SN의 도파민성 뉴런에서
NM을 분석할 수 있습니다.
PD27,28에서는 운동 증상 중증도와 SN의 NM-MRI 측정치 사이에 음의 상관관계가 있음이 입증되었습니다. 독립적인 PD 코호트에서 NM-MRI를 사용하여 SN 용적의 연간 감소율을 추정한 결과, PD 환자의 뇌에서 질병 진행에 대한 바이오마커로서 NM의 역할을 시사28하는 것으로 나타났습니다.
마지막으로, 정량적 감수성 매핑(QSM)과 같은 철에 민감한 MRI 기술을 사용하여 PD29,30 환자에서 SN의 강자성 침착이 증가하는 것이 입증되었습니다.
이 개념 증명 연구에서는 PD 환자의 도파민 시스템에 대한 6개월간의 고강도 인터벌 트레이닝의 효과를 영상화했습니다. 주요 결과는 18F-FE-PE2I로 측정한 SN과 선조체에서 DAT 가용성의 변화였습니다. 2차 결과는 SN의 NM 농도 변화였습니다. 또한 강자성 침착이 NM 측정에 미칠 수 있는 잠재적인 혼란 효과를 설명하기 위해 QSM을 사용했습니다.
Results
Subjects
Thirteen subjects were enrolled in the “Beat Parkinson’s Today” high-intensity interval training program. After the initial exercise trial period, two subjects dropped out, one due to scheduling conflicts and the other due to incomplete healing after a foot surgery. One additional subject was excluded from the NM-MRI analysis due to imaging artifacts and from the PET analysis due to inability to schedule the scan within the time window of the study and the inability of the subject to continue with exercise beyond the 6-month period for reasons unrelated to the study. The demographic and clinical data (n = 10), exercise data, and pre- and post-exercise motor function test results are summarized in Tables 1, 2, and 3, respectively.
대상자
13명의 피험자가 "오늘 파킨슨병 이겨내기" 고강도 인터벌 트레이닝 프로그램에 등록했습니다. 초기 운동 시험 기간 후 두 명의 피험자가 중도 탈락했는데, 한 명은 스케줄 충돌로, 다른 한 명은 발 수술 후 불완전한 치유로 인해 중도 탈락했습니다. 추가로 한 명의 피험자는 영상 아티팩트로 인해 NM-MRI 분석에서 제외되었고, PET 분석에서는 연구 기간 내에 스캔 일정을 잡을 수 없었고 연구와 무관한 이유로 6개월 이후에도 운동을 계속할 수 없었기 때문에 제외되었습니다. 인구통계 및 임상 데이터(n= 10), 운동 데이터, 운동 전후 운동 기능 검사 결과는 각각 표 1, 2, 3에 요약되어 있습니다.
Table 1 Demographic and clinical data.
Table 2 Exercise data.
Table 3 Motor function tests.
On average, our PD cohort had mild bilateral disease, intact global cognition; and no significant anxiety, depression, apathy, or fatigue compared with the normative population data (see supplementary data). One subject was not taking any PD medication, and only six subjects were on L-dopa. Subjects fulfilled the class attendance requirements and reported high levels of motivation to exercise and high satisfaction with the program. Subjects reported only mild and transient side effects of exercise such as muscle soreness and fatigue. In about two-thirds of all classes, the target HR was achieved (i.e., 80% of the maximum HR), however, 90% of classes were rated as very intense by the subjects. Motor function tests showed similar or slightly improved scores from pre- to post-exercise.
Six subjects continued the exercise program beyond the six months period. Their average annual motor exam score (collected at 12.6 ± 2.3 months after the start of exercise in the “off” medication state) was 23.7 ± 6.6, improved from the baseline (26.7 ± 7.2) and unchanged from the 6-month (23.8 ± 7.9) scores.
평균적으로 PD 코호트는
경미한 양측성 질환을 앓고 있었고,
전반적인 인지 능력은 온전했으며,
일반 인구 데이터에 비해 심각한 불안, 우울, 무관심 또는 피로가 없었습니다(보충 데이터 참조).
한 명의 피험자는
PD 약물을 복용하지 않았고,
6명의 피험자만이 L-도파를 복용하고 있었습니다.
피험자들은 수업 출석 요건을 충족했으며, 운동에 대한 높은 동기 부여와 프로그램에 대한 높은 만족도를 보고했습니다. 피험자들은 근육통과 피로와 같은 경미하고 일시적인 운동 부작용만 보고했습니다.
전체 수업의 약 3분의 2에서
목표 HR(최대 HR의 80%)을 달성했지만,
90%의 수업은 피험자들이 매우 강도가 높다고 평가했습니다.
운동 기능 테스트 결과
운동 전과 운동 후의 점수가 비슷하거나
약간 향상된 것으로 나타났습니다.
6명의 피험자는 6개월이 지난 후에도 운동 프로그램을 계속했습니다. 이들의 평균 연간 운동 검사 점수('약물 복용 중단' 상태에서 운동 시작 후 12.6±2.3개월에 수집)는 23.7±6.6점으로 기준점(26.7±7.2점)보다 향상되었고 6개월(23.8±7.9점)과는 차이가 없었으며, 운동 시작 전과 운동 후의 점수는 동일했습니다.
Imaging
After the last exercise class, there was a period of 4.9 ± 3.0 days until the MRI scan and 10.1 ± 3.1 days until the PET scan.
PET
The pre- and post-exercise 18F-FE-PE2I BPND values were: Caudate: 0.93 ± 0.11 and 0.95 ± 0.09, putamen: 1.51 ± 0.18 and 1.61 ± 0.27, and SN: 0.43 ± 0.03 and 0.50 ± 0.03 (Fig. 1A).
Fig. 1: Dopamine Transporter Levels Pre- and Post-Exercise.
A Average 18F-FE-PE2I DAT BPND images before and after six months of exercise. The red box including the midbrain and SN is enlarged. Note: The left side of the color bar (0.0–3.0) corresponds to the DAT BPND in the striatum and the right side (0.0–1.0) to the DAT BPND in the SN shown in the inset images. BPND is unitless. Orientation is axial.
B 18F-FE-PE2I BPND in the SN pre- and post-exercise by study participant. Individual lines are red if an increase was observed, blue if a decrease was observed. The solid black line represents the mean of our cohort, the dashed black line represents the expected decrease from the pre-exercise average in the absence of intervention25.
운동 6개월 전과 후의 평균 18F-FE-PE2I DAT BPND 이미지.
중뇌와 SN을 포함한 빨간색 상자가 확대되어 있습니다.
참고: 컬러 바의 왼쪽(0.0-3.0)은 선조체의 DAT BPND에 해당하고 오른쪽(0.0-1.0)은 삽입된 이미지에 표시된 SN의 DAT BPND에 해당합니다. BPND는 단위가 없습니다. 방향은 축 방향입니다.
연구 참여자별 운동 전 및 운동 후 SN의 18F-FE-PE2I BPND. 개별 선은 증가가 관찰된 경우 빨간색, 감소가 관찰된 경우 파란색입니다. 검은색 실선은 코호트 평균을 나타내고, 검은색 점선은 개입이 없을 경우 운동 전 평균에서 예상되는 감소를 나타냅니다25.
For the caudate, the observed average of the individual change was a 20.16% increase (90% CI: −21.3–61.6%) was higher than the reported 3.90% decrease in BPND per six months for a similar PD cohort but did not reach significance (p = 0.160). For the putamen, the observed 4.32% increase (90% CI: −4.6–13.3%) was significantly higher than the reported 5.35% decrease in BPND per six months (p = 0.004). For the SN, the observed 19.95% increase (90% CI: 5.7–34.2%) was significantly higher than the reported 2.25% decrease in BPND per six months (p = 0.010) (Fig. 1B).
꼬리뼈의 경우, 관찰된 개별 변화의 평균은 20.16% 증가(90% CI: -21.3-61.6%)로 유사한 PD 코호트에서 보고된 6개월당 BPND 감소율 3.90%보다 높았지만 유의미한 수준에는 도달하지 못했습니다(p= 0.160).
푸타멘의 경우, 관찰된 4.32% 증가(90% CI: -4.6-13.3%)는 보고된 6개월당 BPND 감소율 5.35%보다 훨씬 높았습니다(p= 0.004). SN의 경우, 관찰된 19.95% 증가(90% CI: 5.7-34.2%)는 보고된 6개월당 BPND 감소율 2.25%(p= 0.010)보다 유의하게 높았습니다(그림 1B).
NM-MRI and QSM
The pre- and post-exercise CR values of the SNc were 18.46 ± 0.65 and 19.33 ± 0.71, respectively (Fig. 2A).
Fig. 2: Neuromelanin Levels Pre- and Post-Exercise.
A Average NM-MRI pre- and post-exercise. Axial image on the left shows the acquired NM image and the red box locates the cut-out sections shown. Top row shows the raw T1-weighted NM image (T1w NM), the bottom row shows the corresponding CR values. B CR in the SNc pre- and post-exercise by study participant. Individual lines are red if an increase was observed, blue if a decrease was observed. The solid black line represents the mean of our cohort, the dashed black line represents the baseline average multiplied by the expected decrease without intervention31.
The observed 5.3% increase (90% CI: −5.1–34.0) in the SNc is significantly greater (p = 0.008) than the 3.15% decrease reported for a CR in a similar PD cohort over six months (Fig. 2B). The participant with lower DAT availability in the SN after exercise (blue line, Fig. 1B) is also one of the participants with lower CR post-exercise. No significant difference in the QSM value in SNc was observed (pre-exercise = 131.5, post-exercise = 126.0, paired t-test, p = 0.59), suggesting that the observed increases in NM were not confounded by the change in iron deposits.
Discussion
Six months of high-intensity exercise induced brain changes in patients with early and mild PD. We observed a consistent increase in available DAT sites in the SN. A more variable increase was observed in available DAT sites in the putamen. Using NM-MRI, we observed an increase in the NM signal in the SNc. These apparent increases in DAT and NM in the SN were significantly different from previously observed natural declines in comparable PD populations25,31.
The DAT protein is critical in maintaining intracellular dopamine storage32. Regulation of the DAT protein homeostasis is particularly complex in PD. In early disease stages, dopamine turnover has been found to be increased. Significantly lower levels of DAT mRNA expression in SN neurons have been found in post-mortem brain tissue in people with PD compared to controls33,34. Yet, higher levels of DAT mRNA expression have also been observed in the remaining SN dopaminergic neurons in PD. These changes in DAT homeostasis have been attributed to neuronal dysfunction or compensatory changes in dopaminergic signaling in the remaining neurons. Recently, more than 44% annual reductions in DAT availability in the SN were observed with 18F-FE-PE2I by Delva et al. in a comparable cohort with early and mild PD25. We found that six months of intense exercise induced a significant increase in DAT availability in the SN in 90% of our participants. Given that there were no signs of motor disease progression (i.e., no worsening of MDS-UPDRS-III scores) and no change in the total levodopa daily dose, the increase in DAT availability likely reflects improved functionality in the remaining dopaminergic neurons post-exercise. These findings are also in line with the neuroprotective effects of aerobic exercise on the SN dopaminergic neurons in rodent models of PD9,10,11,12,13,14,15,16.
We found smaller and less consistent increases in DAT availability in the putamen and caudate than in the SN. Post-mortem studies have demonstrated a near total loss of nigrostriatal terminals in the dorsal putamen at 4 years post-diagnosis35. Our cohort, restricted to patients with less than 4 years of disease, was followed during a period in which a considerable loss of nigrostriatal terminals would have been expected25. The absence of a clear decrease in the striatal DAT availability in our cohort may be seen as evidence of a protective effect of exercise on the nigrostriatal terminals, especially in the putamen.
Neuromelanin accumulates linearly with age in dopaminergic neurons36 but decreases up to 60% in the first years of PD37. Neuromelanin is thought to play a dual role: (1) when confined to the intracellular space, it can protect the cell against free radicals; (2) when released from dying dopaminergic neurons, it can cause more toxicity by inducing neuroinflammation28,36. We observed an increase in NM signal in the SNc which was a significant reversal of the expected decrease in six months reported by Xing et al. in a comparable cohort, but with a longer disease duration (4.9 ± 1.8 years in Xing et al. versus 2.0 ± 0.8 years in our cohort)31. Considering that the fastest decline in the nigral NM concentration takes place early in the disease course, we think that the NM signal increase in our cohort is striking. NM-MRI cannot differentiate whether the observed increase in NM concentration in the SNc is intra- or extracellular, but given our clinical and PET findings, the increase in NM signal can reasonably be seen as reflecting greater metabolic/synthetic activity in the remaining dopaminergic neurons.
Our cohort included high-functioning patients with mild PD who were motivated to exercise and to comply with the program. Subjects reached HRs of 70% of their maximum and higher in more than 85% of classes, which is consistent with their rating 90% of their classes as very intense. This suggests that subjects exercised at more than moderate-intensity level (typically, 60–65% of the maximum HR) in most classes. Participants reached the target HR of 80% of their theoretical maximum in two-thirds of classes. The discrepancy between the ratings and HR data may be due to mechanisms such as cardiac sympathetic denervation which is common in PD38 and would restrict increases in HR in response to an exercise challenge. Importantly, we did not find any significant motor progression or increase in levodopa equivalent daily dose. Together, these points suggest that our exercise program resulted in clinical benefit despite not always exceeding the prescribed HR threshold. Finally, the 1-year MDS-UPDRS-III scores of a subset of subjects who continued the program were comparable to their 6-month scores suggesting sustained clinical benefit. Similar delays in motor progression have been reported in randomized controlled trials of 6-months of high intensity exercise6,7. Our results suggest extension of this benefit over 1 year.
Two main limitations exist in our study. The first is the absence of a control group. A matched PD control group in a mild exercise program would have controlled for the potential confound of positive feedback received by participation in any group activity. It would have allowed for direct measurement of the natural disease progression at hand. Moreover, we only enrolled patients with mild and early PD and tried to minimize attrition by including an exercise trial period before enrollment. While these measures limit the generalizability of our results and may have introduced a selection bias, we think that they were necessary measures to ensure post-exercise signal detection in the brain in this proof-of-concept study. The second limitation is the small sample size. Smaller samples can lead to over- and underestimation of true effects due to the risk of relatively high proportion of extreme cases. But an increase of DAT availability in SN in 9/10 participants is unlikely to have occurred by chance. Related to the small sample size issue, we did not include sex or side of symptom onset as covariates in our analyses. An additional point of concern might be the scheduled break of 1-2 weeks between the end of the exercise sessions and imaging sessions. We included this break as a wash-out period, during which the known acute increase in dopamine concentration after exercise would be expected to disappear and only the longer lasting changes would remain. While we cannot be certain that this break was of appropriate duration, we think that any potential carryover or withdrawal effect from exercise on the imaging data was balanced out because the break duration between the exercise and imaging sessions was approximately the same at baseline and 6 months.
In summary, this proof-of-concept study provides in vivo evidence that sustained periods of intense exercise can induce brain changes in individuals with mild and early PD. Two different biomarkers for the health of the dopamine system were increased in the SN following six months of exercise demonstrating the neuromodulatory effects of exercise on the dopaminergic system. Moreover, the increases were both significantly different from, and reversals of, the expected natural decline. These same markers did not decline in the striatum as would also have been expected during the natural course of disease progression. Our results not only support the inclusion of high-intensity exercise early in the treatment plans of PD patients, but also suggest a role for exercise as an effective non-invasive neuromodulatory therapy. Future randomized controlled trials will be needed to optimize exercise regimens. Our observations could also have far-reaching implications for neuroprotective effects of exercise in PD, but further work is needed to validate them and elucidate the underlying mechanisms.
토론
6개월간의 고강도 운동은
초기 및 경증 파킨슨병 환자에서
뇌 변화를 유도했습니다.
우리는
SN에서 사용 가능한 DAT 부위가
일관되게 증가하는 것을 관찰했습니다.
뇌간에서
가용 DAT 부위가
더 다양하게 증가하는 것이 관찰되었습니다.
NM-MRI를 사용하여
SNc에서 NM 신호의 증가를 관찰했습니다.
SN에서
DAT와 NM의 이러한 명백한 증가는
이전에 유사한 PD 집단에서 관찰된 자연 감소와 크게 달랐습니다25,31.
DAT 단백질은
세포 내 도파민 저장을 유지하는 데 매우 중요합니다32.
DAT 단백질 항상성 조절은 PD에서 특히 복잡합니다. 초기 질병 단계에서는 도파민 회전율이 증가하는 것으로 밝혀졌습니다. 대조군에 비해 PD 환자의 사후 뇌 조직에서 SN 뉴런에서 현저히 낮은 수준의 DAT mRNA 발현이 발견되었습니다33,34. 그러나, PD의 나머지 SN 도파민성 뉴런에서도 더 높은 수준의 DAT mRNA 발현이 관찰되었습니다. 이러한 DAT 항상성의 변화는 신경 기능 장애 또는 나머지 뉴런에서 도파민 신호의 보상적 변화에 기인합니다. 최근 Delva 등은 초기 및 경증 PD25를 가진 비슷한 코호트에서 18F-FE-PE2I를 사용하여 SN에서 DAT 가용성이 연간 44% 이상 감소하는 것을 관찰했습니다. 6개월간의 강도 높은 운동이 참가자의 90%에서 SN의 DAT 가용성을 크게 증가시킨다는 사실을 발견했습니다. 운동 질환 진행의 징후가 없었고(즉, MDS-UPDRS-III 점수가 악화되지 않았으며) 총 레보도파 일일 복용량에는 변화가 없었다는 점을 고려할 때, DAT 가용성의 증가는 운동 후 남은 도파민성 뉴런의 기능 개선을 반영할 가능성이 높습니다. 이러한 결과는 설치류 모델인 PD9,10,11,12,13,14,15,16에서 유산소 운동이 SN 도파민성 뉴런에 미치는 신경 보호 효과와도 일치합니다.
우리는 SN보다 배와 꼬리에서 DAT 가용성이 더 작고 덜 일관되게 증가하는 것을 발견했습니다. 사후 연구에 따르면 진단 후 4년이 지난 시점에 등쪽 등막에서 흑질 말단이 거의 완전히 소실된 것으로 나타났습니다35. 유병 기간이 4년 미만인 환자로 제한한 저희 코호트는 흑질 말단의 상당한 손실이 예상되는 기간 동안 추적 관찰되었습니다25. 우리 코호트에서 선조체 DAT 가용성이 뚜렷하게 감소하지 않은 것은 운동이 흑질 말단, 특히 퍼타멘에 대한 보호 효과의 증거로 볼 수 있습니다.
뉴로멜라닌은
도파민성 뉴런에서 나이에 따라 선형적으로 축적되지만36,
PD의 첫 해에는 최대 60%까지 감소합니다37.
뉴로멜라닌은
(1) 세포 내 공간에 국한되면 활성산소로부터 세포를 보호하고
(2) 죽어가는 도파민 신경세포에서 방출되면
신경 염증을 유발하여 독성을 증가시킬 수 있는
이중 역할을 하는 것으로 생각됩니다28,36.
우리는
SNc에서 NM 신호의 증가를 관찰했는데,
이는 비슷한 코호트에서 Xing 등이 보고한 6개월 동안의 예상 감소를
크게 반전시킨 것이지만
질병 기간이 더 길었습니다(Xing 등은 4.9 ± 1.8년, 우리 코호트에서는 2.0 ± 0.8년)31.
흑질 NM 농도의 가장 빠른 감소가 질병 진행 초기에 발생한다는 점을 고려할 때, 우
리 코호트에서 NM 신호 증가가 두드러진 것으로 생각됩니다.
NM-MRI는 SNc에서 관찰된 NM 농도의 증가가 세포 내인지 세포 외인지 구분할 수 없지만, 임상 및 PET 결과를 고려할 때 NM 신호의 증가는 나머지 도파민성 뉴런의 대사/합성 활동이 더 활발해진 것으로 합리적으로 볼 수 있습니다.
저희 코호트에는
운동에 대한 동기가 있고
프로그램을 준수할 의지가 있는
경증 PD 환자들이 포함되었습니다.
피험자들은
85% 이상의 수업에서
최대 HR의 70% 이상에 도달했으며,
이는 수업의 90%를 매우 강렬하다고 평가한 것과 일치합니다.
이는 대부분의 수업에서 피험자들이
중간 강도 이상의 수준(일반적으로 최대 HR의 60~65%)으로
운동했음을 시사합니다.
참가자들은
수업의 3분의 2에서
이론적 최대치의 80%인 목표 HR에 도달했습니다.
등급과 HR 데이터 사이의 불일치는 PD38에서 흔히 볼 수 있는 심장 교감신경 저하와 같은 메커니즘으로 인해 운동 도전에 대한 반응으로 HR이 증가하는 것을 제한하기 때문일 수 있습니다.
중요한 것은 레보도파 등가 일일 투여량에서 유의미한 운동 진행이나 증가를 발견하지 못했다는 점입니다. 이러한 점들을 종합해 볼 때, 운동 프로그램이 규정된 HR 임계치를 항상 초과하지는 않았음에도 불구하고 임상적 이점을 가져왔다는 것을 알 수 있습니다.
마지막으로,
프로그램을 지속한 일부 피험자의 1년 MDS-UPDRS-III 점수는
6개월 점수와 비슷하여
지속적인 임상적 이점을 시사합니다.
6개월간의 고강도 운동에 대한
유사한 운동 진행 지연이 보고된 바 있습니다.
이번 연구 결과는
이러한 혜택이 1년 이상 지속될 수 있음을 시사합니다.
이 연구에는 두 가지 주요 한계가 있습니다.
첫 번째는 대조군이 없다는 것입니다. 가벼운 운동 프로그램에서 일치하는 PD 대조군이 있었다면 그룹 활동 참여로 인한 긍정적 피드백의 잠재적 혼선을 통제할 수 있었을 것입니다. 대조군이 있었다면 자연스러운 질병 진행을 직접 측정할 수 있었을 것입니다. 또한 경증 및 초기 파킨슨병 환자만 등록했고, 등록 전 운동 시험 기간을 포함시켜 탈락을 최소화하려고 노력했습니다. 이러한 조치는 결과의 일반화 가능성을 제한하고 선택 편향을 도입했을 수 있지만, 이 개념 증명 연구에서 운동 후 뇌의 신호 감지를 보장하기 위해 필요한 조치였다고 생각합니다.
두 번째 한계는 표본 크기가 작다는 점입니다. 표본이 작으면 극단적인 사례의 비율이 상대적으로 높을 위험이 있기 때문에 실제 효과가 과대 또는 과소 평가될 수 있습니다. 하지만 참가자 9/10명에서 SN의 DAT 가용성이 증가한 것은 우연히 발생했을 가능성은 낮습니다. 표본 크기가 작은 문제와 관련하여 성별이나 증상 발병 측면은 분석에 공변수로 포함하지 않았습니다. 또 한 가지 우려되는 점은 운동 세션이 끝나고 영상 촬영 세션 사이에 1~2주의 휴식 시간이 예정되어 있다는 점입니다. 이 휴식 기간은 운동 후 도파민 농도의 급성 증가가 사라지고 더 오래 지속되는 변화만 남는 것으로 예상되는 워시 아웃 기간으로 포함시켰습니다. 이 휴식 기간이 적절한 기간인지 확신할 수는 없지만, 운동과 영상 촬영 세션 사이의 휴식 기간이 베이스라인과 6개월에서 거의 동일했기 때문에 영상 데이터에 대한 운동의 잠재적인 이월 또는 금단 효과가 균형을 이루었다고 생각합니다.
요약하자면,
이 개념 증명 연구는
경증 및 초기 파킨슨병 환자의 뇌에
지속적인 강도 높은 운동이
뇌 변화를 유도할 수 있다는 생체 내 증거를 제공합니다.
--> 흑질 뇌부위가 재생되더라는 뜻!!
도파민 시스템의 건강을 나타내는
두 가지 바이오마커가
6개월간 운동한 후 SN(흑질)에서 증가하여
운동이 도파민 시스템에 미치는 신경 조절 효과를 입증했습니다.
또한, 이러한 증가는
자연적으로 감소할 것으로 예상되는 수치와
크게 다르거나 반전된 수치였습니다.
이러한 동일한 마커는
질병이 자연적으로 진행되는 동안에도 예상했던 것처럼
선조체에서 감소하지 않았습니다.
이 연구 결과는 파킨슨병 환자의 치료 계획 초기에 고강도 운동을 포함시키는 것을 뒷받침할 뿐만 아니라 효과적인 비침습적 신경조절 치료로서 운동의 역할을 제시합니다. 운동 요법을 최적화하기 위해서는 향후 무작위 대조 임상시험이 필요할 것입니다. 우리의 관찰은 파킨슨병에서 운동의 신경 보호 효과에 대한 광범위한 영향을 미칠 수 있지만, 이를 검증하고 근본적인 메커니즘을 밝히기 위해서는 추가 연구가 필요합니다.
Methods
Subjects
This study was designed as a within-subject proof-of-concept. We recruited subjects with mild PD defined according to the Movement Disorders Society (MDS) diagnostic criteria39 through the Yale Movement Disorders Clinic and via ‘Beat Parkinson’s Today’ gyms that cater to PD exercisers. Subjects were excluded if they had: Hoehn & Yahr disease stage >240, who were >4 years after diagnosis35, had a neurological or psychiatric disorder (other than PD and comorbid depression or anxiety), a medical condition that might affect the central nervous system, history of alcohol or illicit drug abuse, head injury resulting in loss of consciousness, dementia (Montreal Cognitive Assessment (MoCA) score <21)41, contraindications for MRI or PET, or high baseline exercise levels (i.e., baseline exercise equals or exceeds the Beat Parkinson’s Today intensity and frequency).
Eligible subjects participated in 5-6 exercise classes for a 2-week trial period. Subjects who could perform the exercises and were committed to continue were enrolled in the 6-month program by giving written informed consent in accordance with the procedures approved by the Yale Human Investigation Committee.
Clinical evaluations
At the start of the exercise period, clinical evaluations were performed including the Community Healthy Activities Model Program for Seniors (CHAMPS) questionnaire42 to determine baseline moderate-intensity physical activity levels, neurological and movement exams using the MDS-Unified PD Rating Scale (MDS-UPDRS)43, motor function tests, cognitive evaluation using the MoCA test41, and self-evaluation surveys for anxiety44, depression45, apathy46, fatigue47, and quality of life48. All assessments except CHAMPS were repeated at a post-exercise clinical visit. The motor exams were performed in the medication “off” state (i.e., 12-h washout after the last dose) and videotaped for scoring by a masked movement disorders neurologist (A.P.) (except for rigidity, which was scored by a movement disorders neurologist (S.T.) during the exam). We also performed a motor exam in a subset of subjects after one year. The motor function tests of gross movement speed included the two-minute endurance walking, timed up-and-go, five times sit-to-stand, 360° turning, and climbing one flight of stairs.
During the 6-month exercise period, weekly surveys were filled out by subjects reporting their experience with the program and by trainers reporting their observations about subjects during each class. The trainers and research team addressed issues regarding the subjects and logistics (exercise performance, protocol adherence, injuries, proper use of chest straps, etc.) at monthly meetings.
‘Beat Parkinson’s Today’ exercise program
The Beat Parkinson’s Today exercise program was developed for people with PD mirroring the ParkFit exercise program49. Beat Parkinson’s Today offers high-intensity interval training and boxing, both of which have been shown to benefit people with PD50,51. The high-intensity interval training circuits are designed to improve aerobic capacity, muscle strength and endurance, gait and balance, physical function, and flexibility. Every workout is adjusted to an individual’s needs and ability (e.g., using chairs if kneeling down is difficult). The exercises are performed in small groups in a supportive environment fostering a community bond and compliance. A typical workout includes warm-up (5 min), exercise (30 min) with two consecutive circuits (composed of strength, cardio, and power exercises) each performed twice with 30 s rest periods between rounds, boxing (15 min), and cool-down (10 min). Trainers provided individual feedback to participants and logged class attendance to verify that each subject completed the required number of classes (72 in total). Due to the Covid-19 pandemic, subjects participated in live online Beat Parkinson’s Today classes in the period between January 2021 to August 2022. The online classes were taught by Beat Parkinson’s Today trainers in small groups (5–8 attendees). Trainers monitored the participants in real-time for safety and compliance and provided immediate feedback. From here on, for simplicity, we refer to the Beat Parkinson’s Today exercise regimen as “exercise”.
Heart-rate chest-strap
Participants wore chest straps with a Polar H7 heart rate (HR) monitor (Polar Electro Oy, Kempele, Finland) starting five minutes before, and continuing throughout every exercise session. The target HR for each participant was defined as 80% of his/her maximum HR. Maximum HR was determined according to the formula: Maximum HR = 220-age. Beat-to-beat interval data were collected with the EliteHRV app and filtered using a Butterworth filter to minimize high frequency artifacts. Average HRs during the 20 min containing the highest mean HR during the exercise session were analyzed to confirm that participants had achieved and maintained their HR within the targeted range (Supplementary Fig. 1).
Fitbit
Participants were also outfitted with a Fitbit Charge 4 (Fitbit, San Francisco, USA) wristwatch, which collected data for the duration of the study. Fitbit’s proprietary algorithm was used to estimate participants’ resting HR. Reported resting HRs were taken from the first 7 days of study participation.
Imaging
MRI and 18F-FE-PE2I PET scans were collected on separate days at baseline and after six months of exercise in the medication “off” state. Subjects were instructed to pause the exercise classes 1-2 weeks before the baseline and post-exercise PET scans to ensure that the measurements were not confounded by immediate exercise effects.
PET
Dynamic PET scans were acquired on the High Resolution Research Tomograph scanner (Siemens/CTI, Knoxville, TN, USA) for 60 min starting with [18F]-FE-PE2I bolus injection over 1 min. After reconstruction and motion correction52, individual images were registered to MNI space by registering the PET image to the high-resolution MPRAGE image of the same subject and visit using SPM1253. The MPRAGE images were spatially normalized to MNI space54 and the estimated warping parameters were subsequently applied to the corresponding PET images. The registration and normalization quality of the MPRAGE and PET scans was checked visually. Three bilateral regions of interest were identified in each PET image; the putamen and caudate from the AAL template in the MNI space55, and a hand-drawn SN mask which was used in our previous studies56,57,58. For every region, a time-activity curve was extracted and modeled using the simplified reference tissue model (SRTM) with the cerebellum as reference region to estimate the regional binding potential (BPND) and relative input parameter (R1). A voxel-level approach, still using the cerebellum curve as reference, was applied to normalized images to create parametric BPND maps59.
MRI
Scans were collected in a 3.0 Tesla Siemens Prisma scanner using a 32-channel head coil. The following were collected: (1) high-resolution T1-weighted MPRAGE images (176 slices, voxel size: 1 mm3, FoV: 250 mm, matrix: 256 ×256, TR: 1900 ms, TE: 2.52 ms, TI: 900 ms, flip angle: 9°, scan time: 4 min 32 s), (2) 6-7 NM scans (magnetization transfer gradient echo sequences, FOV: 220 mm, 11 slices without gap aligned to the AC-PC line and the top slice 3 mm above the roof of the midbrain, voxel size: 0.4 ×0.4 ×2.5 mm, TR: 468 ms, TE: 3.7 ms, flip angle: 40°, scan time per scan: 2 min 53 s), and (3) high-resolution gradient echo sequences for QSM (FOV: 256 mm, aligned to the AC-PC line, voxel size: 0.5 ×0.5 ×1 mm, TR: 47 ms, TE1/∆TE: 6.10/4.02 ms, flip angle: 15°, scan time: 4 min 38 s).
The NM data were processed using an automated voxel-wise analysis pipeline that has been shown to be reliable and reproducible60. The FMRIB Software Library 6.0 (FSL)61 was used for motion correction and averaging, SPM12 was used for registration of the NM scans with the high-resolution MPRAGE anatomical scans53, and Advanced Normalization Tools (ANTS) for the spatial normalization of the MPRAGE scans to the standard MNI brain template62. The estimated warping parameters were then applied to the NM scans. The quality of the normalization of the NM scans to the MNI template for each subject was checked visually using SPM12. The SN pars compacta (SNc) mask in the MNI space defined by Pauli et al.63 was used as the region of interest. A hand-drawn in-house crus cerebri mask in the MNI space was used as the reference region. Voxel-level contrast ratio (CR) was calculated at voxel j according to Eq. (1):
CRj=IntensitySNcj−median(Intensitycruscerebri)median(Intensitycruscerebri)∗100
(1)
The CR for the entire SNc was calculated as the median value over all voxels.
For QSM scans, we followed the same motion correction, registration, and spatial normalization steps as for the NM scans. We used the same SNc template to extract the QSM values63. We used the automated QSM processing pipeline as described in Spincemaille et al.64. The total field was computed from the phase images by least-squares fitting, followed by background field removal using the projection onto dipole fields method to obtain the tissue field65. An R2* map was computed from the magnitude images using ARLO algorithm66, from which a ventricular cerebrospinal fluid (CSF) mask was created by thresholding. Finally, the morphology-enabled dipole inversion with automatic uniform CSF zero referencing (MEDI + 0) algorithm was used to reconstruct the susceptibility maps (in ppb) from the tissue field67,68. The QSM values were extracted from the SNc mask.
Statistical analysis
The sample size was chosen based on reported annual decline in NM and reported positive effect sizes after exercise in PET69,70,71. Based on these reported estimates, a sample of 11 subjects would provide 80% power to detect a 5.6% increase in NM and a 10% increase in PET. Data analyses were conducted using JMP pro 16 (SAS Institute, Cary, USA). PET and NM-MRI data were analyzed using non-inferiority tests which compared the average of the observed individual change, defined as (post–pre)/pre * 100, to the reported percentage decreases in comparable PD cohorts. The observed change in DAT BPND over 6 months was compared to half the annual decline reported in Delva et al.25 (n = 27, age = 60.4 ± 9.7 years, H&Y = 2.0 ± 0.0, disease duration in years = 3.1 ± 1.0) and the observed change in NM CR over 6 months was compared to half the annual decline reported in Xing et al.31 (n = 46, age = 67.3 ± 8.7 years, H&Y = 2.0 ± 0.7, disease duration in years = 4.9 ± 1.8) (see supplementary material for details). Exploratory correlations between outcomes and demographics are in the supplementary material. Demographics are reported as median (range). Statistical outcomes are reported with their standard error and significance is defined as p < 0.05.
Reporting summary
Further information on research design is available in the Nature Research Reporting Summary linked to this article.
Data availability
The data that support the findings of this study are available from the corresponding author request.
References
|
첫댓글 고강도 운동 프로그램을
하교해 주십시오. 간곡히
감사합니다.