|
Review
Dietary roles of phytate and phytase in human nutrition: A review
Author links open overlay panelVikas Kumar a, Amit K. Sinha b, Harinder P.S. Makkar a, Klaus Becker a
Show more
Add to Mendeley
Share
Cite
https://doi.org/10.1016/j.foodchem.2009.11.052Get rights and content
Abstract
Phytate is the primary storage form of both phosphate and inositol in plant seeds. It forms complexes with dietary minerals, especially iron and zinc, and causes mineral-related deficiency in humans. It also negatively impacts protein and lipid utilisation. It is of major concern for individuals who depend mainly on plant derivative foods. Processing techniques, such as soaking, germination, malting and fermentation, reduce phytate content by increasing activity of naturally present phytase. Supplementation of phytase in diets results in increase in mineral absorption. Apart from negative effects, its consumption provides protection against a variety of cancers mediated through antioxidation properties, interruption of cellular signal transduction, cell cycle inhibition and enhancement of natural killer (NK) cells activity. It has therapeutic use against diabetes mellitus, atherosclerosis and coronary heart disease and reduces kidney stone formation, HIV-1 and heavy metal toxicity; however, information on the dosage for humans for eliciting beneficial effects is limited.
피테이트는
식물 종자에서 인산염과 이노시톨의 주요 저장 형태입니다.
식이 미네랄,
특히 철분과 아연과 복합체를 형성하여
인간에게 미네랄 관련 결핍을 유발합니다.
또한 단백질과 지질 활용에 부정적인 영향을 미칩니다.
식물성 식품에 주로 의존하는 사람들에게는
큰 문제입니다.
담그기, 발아, 맥아 제조, 발효와 같은 가공 기술은
자연적으로 존재하는 피타제의 활성을 증가시켜
피테이트 함량을 감소시킵니다.
식단에 피타제를 보충하면
미네랄 흡수가 증가합니다.
부정적인 영향 외에도,
피타제의 섭취는
항산화 특성, 세포 신호 전달 중단, 세포주기 억제, 자연살해(NK) 세포 활동 강화 등을 통해
다양한 암을 예방할 수 있습니다.
또한,
당뇨병, 죽상동맥경화증, 관상동맥 심장질환에 대한 치료적 용도로 사용되며,
신장 결석 형성, HIV-1, 중금속 독성을 감소시킵니다.
그러나,
유익한 효과를 얻기 위한 인간에 대한 투여량에 대한 정보는 제한적입니다.
Introduction
Plant-based food products are the main staple food for human beings in many parts of the world. They constitute an important source of carbohydrates, protein, dietary fibre, vitamins and non-nutrients (Katina et al., 2005). Among all the antinutritional components, phytic acid is of prime concern for human nutrition and health management. The chemical description for phytic acid is myoinositol (1,2,3,4,5,6) hexakisphosphoric acid. The unique structure of phytic acid offers it the ability to strongly chelate with cations such as calcium, magnesium, zinc, copper, iron and potassium to form insoluble salts. It therefore adversely affects the absorption and digestion of these minerals by animals (Raboy, 2001). Salts of phytic acid are designated as phytates (myo-inositol-1,2,3,4,5,6-hexakisphosphates) which are mostly present as salts of the mono- and divalent cations K+, Mg2+ and Ca2+. Phytate accumulates in the seeds during the ripening period and is the main storage form of both phosphate and inositol in plant seeds and grains (Loewus, 2002). Phosphorus, in this form, is not utilised by human beings, dogs, pigs, birds or agastric animals because they lack the intestinal digestive enzyme phytase (Holm, Kristiansen, & Pedersen, 2002). Phytate works in a broad pH-region as a highly negatively charged ion and therefore its presence in the diet has a negative impact on the bioavailability of divalent and trivalent mineral ions such as Zn2+, Fe2+/3+, Ca2+, Mg2+, Mn2+ and Cu2+ (Fredlund et al., 2006, Lopez et al., 2002, Lönnerdal, 2002). Besides, phytate has also been reported to form complexes with proteins at both low and high pH values. These complex formations alter the protein structure, which may result in decreased protein solubility, enzymatic activity and proteolytic digestibility. Hitherto, massive investigations have been carried out on the negative aspects of phytate that have offered overwhelming evidence that dietary phytate is an antinutrient component. As a solution, the phytate-degrading enzyme, phytase, is in vogue for degradating phytate during food processing and in the gastrointestinal tract. Major efforts have been made to reduce the amount of phytate in foods by different processes and/or the addition of exogenous enzymes. In spite of many negative aspects on human health, the consumption of phytate, however, has been reported to have some favourable effects. The outcome of surveillance of populations consuming vegetarian-type diets has shown lower incidence of cancer, which suggests that phytate has an anticarcinogen effect (Shamsuddin, 2002, Vucenik and Shamsuddin, 2003). The metal binding characteristics of phytate endow it an anti-oxidant function, inhibiting the production of hydroxyl radicals that normalise cell homeostasis (Minihane & Rimbach, 2002) and it also acts as a natural food anti-oxidant (Raboy, 2003). Dietary phytate may have health benefits for diabetes patients because it lowers the blood glucose response by reducing the rate of starch digestion and slowing gastric emptying (Thompson, 1993). Likewise, phytate has also been shown to regulate insulin secretion (Barker & Berggren, 1999). It is believed that phytate reduces blood clots, cholesterol and triglycerides and thus prevents heart diseases (Jariwalla et al., 1990, Onomi et al., 2004). It is also suggested that it prevents renal stone development (Grases et al., 2000a, Grases et al., 2000b, Selvam, 2002). It is used as a complexing agent for removal of traces of heavy metal ions (Wise, 1982). In vitro studies have indicated that phytic acid incubated with HIV-1 infected T cells inhibits the replication of HIV-1 (Otake et al., 1999, Otake et al., 1989). Hitherto, many literature reviews, primarily focussing on the antinutritional aspects of phytate, have been published but information on the beneficial effect of phytate is still very scarce and scattered. The purpose of this review is to discuss both negative and prophylactic and therapeutic effects of phytate and the mechanisms responsible for these effects.
소개
식물성 식품은
세계 여러 지역에서 인간의 주요 주식입니다.
식물성 식품은
탄수화물, 단백질, 식이섬유, 비타민, 비영양성분(Katina et al., 2005)의 중요한 공급원입니다.
모든 영양성분 중에서
피틴산은
인간의 영양과 건강 관리에 있어 가장 중요한 영양성분입니다.
피트산의 화학명은
myoinositol (1,2,3,4,5,6) hexakisphosphoric acid입니다.
피트산의 독특한 구조는
칼슘, 마그네슘, 아연, 구리, 철, 칼륨과 같은 양이온과 강하게 킬레이트화되어
불용성 염을 형성하는 능력을 제공합니다.
따라서
이러한 미네랄의 흡수와 소화에 악영향을 미칩니다(Raboy, 2001).
피트산염은
피테이트(myo-inositol-1,2,3,4,5,6-hexakisphosphates)로 지정되며,
주로 1가 및 2가 양이온 K+, Mg2+, Ca2+의 염으로 존재합니다.
피테이트는
숙성 기간 동안 씨앗에 축적되며,
식물 씨앗과 곡물에서 인산염과 이노시톨의 주요 저장 형태입니다(Loewus, 2002).
이러한 형태의 인은
인간, 개, 돼지, 새 또는 위가 없는 동물에게는
소화 효소인 피타제(phytase)가 부족하기 때문에 활용되지 않습니다(Holm, Kristiansen, & Pedersen, 2002).
피테이트는
음전하가 강한 이온으로서
넓은 pH 범위에서 작용하기 때문에 식단에 포함될 경우,
Zn2+, Fe2+/3+, Ca2+, Mg2+, Mn2+, Cu2+와 같은
2가 및 3가 무기 이온의 생체 이용률에 부정적인 영향을 미칩니다
(Fredlund 외, 2006, Lopez 외, 2002, Lönnerdal, 2002).
게다가,
피테이트는
낮은 pH 값과 높은 pH 값 모두에서
단백질과 복합체를 형성하는 것으로 보고되었습니다.
이러한 복합체 형성은
단백질 구조를 변화시켜
단백질 용해성, 효소 활성 및 단백질 분해 소화율을 감소시킬 수 있습니다.
지금까지,
식이성 피테이트가 항영양소 성분이라는 압도적인 증거를 제공하는
피테이트의 부정적인 측면에 대한 대규모 연구가 수행되었습니다.
해결책으로,
식품 가공 과정과 위장관에서 피테이트를 분해하는
피타제 효소가 각광을 받고 있습니다.
다양한 공정과 외인성 효소의 첨가를 통해
식품의 피테이트 양을 줄이기 위한 노력이 이루어지고 있습니다.
그러나,
피테이트가 인체 건강에 부정적인 영향을 미칠 수 있음에도 불구하고,
피테이트 섭취가 긍정적인 영향을 미친다는 보고가 있습니다.
채식주의 식단을 섭취하는 집단을 대상으로 한 연구 결과에 따르면,
식물성 인산염이 발암 물질에 대한 항암 효과가 있는 것으로 나타났습니다
(Shamsuddin, 2002, Vucenik and Shamsuddin, 2003).
피테이트의 금속 결합 특성은 항산화 기능을 부여하여
세포 항상성을 정상화하는 하이드록실 라디칼의 생성을 억제합니다(Minihane & Rimbach, 2002).
또한 천연 식품 항산화제 역할을 합니다(Raboy, 2003).
식이성 피테이트는
전분 소화의 속도를 줄이고 위 배출을 늦춤으로써
혈당 반응을 낮추기 때문에
당뇨병 환자에게 건강상의 이점을 제공할 수 있습니다(Thompson, 1993).
마찬가지로,
피테이트는 인슐린 분비를 조절하는 것으로 나타났습니다(Barker & Berggren, 1999).
피테이트는
혈전, 콜레스테롤, 트리글리세리드를 감소시켜 심장병을 예방한다고 알려져 있습니다
(Jariwalla et al., 1990, Onomi et al., 2004).
또한, 신장 결석 발생을 예방한다고 합니다(Grases et al., 2000a, Grases et al., 2000b, Selvam, 2002).
그것은 중금속 이온의 흔적을 제거하기 위한 착화제로 사용됩니다(Wise, 1982).
체외 연구에 따르면, HIV-1에 감염된 T 세포와 함께 배양된 피트산은 HIV-1의 복제를 억제하는 것으로 나타났습니다(Otake et al., 1999, Otake et al., 1989).
지금까지 피테이트의 영양학적 측면에 초점을 맞춘 많은 문헌 연구가 발표되었지만,
피테이트의 유익한 효과에 대한 정보는
여전히 매우 부족하고 산재되어 있습니다.
이 연구의 목적은 피테이트의 부정적 효과와 예방적 및 치료적 효과, 그리고 이러한 효과의 원인이 되는 메커니즘에 대해 논의하는 것입니다.
Access through your organization
Check access to the full text by signing in through your organization.
Access through your organization
Section snippetsPhytate
Phytic acid is the hexaphosphoric ester of the hexahydric cyclic alcohol meso-inositol (Fig. 1). Phytic acid (known as inositol hexakisphosphate (IP6), or phytate when in salt form) is the principal storage form of phosphorus in many plant tissues. Inositol penta- (IP5), tetra- (IP4) and triphosphate (IP3) are also called phytates. Molecular formula: C6H18O24P6 and molecular mass: 660.04 g mol−1.
Phytate is formed during maturation of the plant seed and in dormant seeds it represents 60–90% of the
Negative aspects of phytate
Table 2 presents an overview of the negative interactions of phytate with nutrients and the mode of actions for the negative effects of phytate.
Chemical interaction of phytate in gastrointestinal (GI) tract
The interaction of phytate with minerals and other dietary nutrients is pH-dependent (Reddy, 2002). In the human body, food digesta pass from low pH in the stomach to neutral pH, prevailing in the upper small intestine. During digesta movement, dietary phytate-mineral complexes may dissociate and may form other complexes through the gastrointestinal tract. In the upper part of the small intestine, which is characterised by maximum mineral absorption, the insoluble complexes are highly unlikely
Degradation of phytate
The dephosphorylation of phytate is a prerequisite for improving nutritional value because removal of phosphate groups from the inositol ring decreases the mineral binding strength of phytate. This results in increased bioavailability of essential dietary minerals (Sandberg et al., 1999). Various food processing and preparation techniques, along with the addition of exogenous enzymes, are the major efforts made to reduce the amount of phytate in foods. Hydrolysis of phytate during food
Phytate as anti-oxidant in food products
Oxidation of food is a destructive process, causing substantial loss of nutritional value. Foods with high contents of unsaturated fatty acid and iron are more prone to undergo oxidation in the presence of oxygen. Even at very low percentages of oxygen (as low as 1%), the oxidation reaction can proceed and produce undesirable flavour changes, discoloration, nutritional losses and microbiological spoilage. The oxidation reaction can be minimised through the addition of anti-oxidant. In this
Therapeutic uses of phytate
Table 3 presents various therapeutic effects of phytate.
Conclusion
In the past few decades, scientists and entrepreneurs working in the field of human nutrition, human health and environmental protection have been focusing their attention on phytate and phytase. Dietary phytate has received much investigative attention as an antinutrient. We chose not to review this area of research extensively. The interactions of phytate and dietary minerals and beneficial health effects of phytate have been the subject of this review. The interactions of phytate and
|