|
금리 기조의 구조적 전환 가능성 평가 (II): 경제구조변화와 인플레이션- 2
아래 <표 Ⅳ-6>에는 인구구조를 노동가능인구 비중
및 고령인구 비중
으로 세분한 결과가 나타나 있다. 먼저, 미국과 마찬가지로 한국도 노동가능인구 비중이 감소할수록 추세 인플레이션이 상승하는 것을 알 수 있다. 미국과 다른 점은 고령인구 비중의 영향에 있다. 미국은 고령인구 비중이 증가하면 추세 인플레이션이 상승하였으나, 한국은 하락한 것으로 추정되었다. 따라서 한국과 미국에서 고령부양비가 추세 인플레이션에 미치는 영향이 반대 방향으로 나타난 것은 고령인구 비중의 추세 인플레이션에 대한 영향이 반대이기 때문으로 파악할 수 있다. 이상 본 연구에서 나타난 한미 인구구조 변수가 추세 인플레이션에 미친 영향을 비교해보면 <표 Ⅳ-7>과 같이 정리할 수 있다.
이상과 같이 한국은 미국과 달리 고령화(고령인구 비중 증가)가 구조적인 물가하락요인으로 나타났는데,105) 이는 한국 고령층의 특성에 기인한 것으로 추정된다.106) 먼저 <그림 Ⅳ-10>에 나타난 것처럼 한국의 경우 고령층(60세 이상)의 고용률이 꾸준한 증가 추세에 있는데, 동 현상이 Mojon & Ragot(2019)이 주장한 것과 같이 양의 노동 공급 충격으로 작용 중일 가능성이 있다. 다음으로 정화영(2022)에 따르면 2013년부터 2021년까지 한국 65세 이상 고령인구의 자산 중 80% 이상이 부동산자산으로 구성된다. 따라서 미국에 비해 한국 고령인구의 소비여력이 현저히 낮을 가능성이 존재한다. 다만, 후기 베이비 붐 세대(1964~1974년생)는 본 고의 실증분석에서 고령층으로 분류된 전기 베이비 붐 세대(1955~1963년생)에 비해 자산 보유 규모107)가 늘어나 은퇴 후 소비여력이 개선될 것으로 예상되는 만큼 후기 베이비 붐 세대의 은퇴가 추세 인플레이션 하락을 완화시킬 가능성이 있다.
이하에서는 한국 헤드라인 추세 인플레이션 결정요인의 역사적 분해를 살펴본다. 기간 구분은 미국과 유사하나, 한국의 경우 Ⅱ장에서 언급된 것처럼 2013년경을 기점으로 세계화와 인구구조에 중요한 변화가 발생한 만큼 동 시기를 전후해 추세 인플레이션 결정요인에 변화가 있었는지 살펴본다. <그림 Ⅳ-11>은 <표 Ⅳ-5>의 모형1(세계화 및 고령부양비) 추정 결과로부터 산출된 시기별 헤드라인 추세 인플레이션 결정요인을 보여준다. 주요 결과는 다음과 같다.
한국은 세계화가 전 기간에 걸쳐 추세 인플레이션 하락에 기여하였다. 특히 1992~2003년 추세 인플레이션 하락분(-2.0%p) 중 대부분이 세계화 효과(-1.7%p)에 기인한 것으로 나타났다. 한국은 미국과 달리 2008년 글로벌 금융위기 기간에도 세계화가 추세 인플레이션 상승을 유발하지 않았다. 이는 Ⅱ장에서 살펴본 것처럼 해당 기간에 미국은 세계화가 후퇴한 반면 한국은 확장세가 유지된 데 따른 차이로 이해할 수 있다. <그림 Ⅳ-12>는 인구구조 변수를 제외하고 세계화만 고려한 모형(<표 Ⅳ-6>의 모형5)의 분해결과를 보여주는데, <그림 Ⅳ-11>과 비교해보면 대체로 세계화가 인구구조 변수의 포함과 관계없이 유사한 수준으로 추세 인플레이션 하락에 기여한 것을 알 수 있다.
다음으로 <그림 Ⅳ-11>에서 고령부양비가 꾸준히 증가하면서 세계화보다 강도는 낮으나 인플레이션 하락요인으로 작용해왔음을 알 수 있다. 그런데 <표 Ⅳ-6>에서 알 수 있듯 한국은 미국과 달리 노동가능인구 비중과 고령인구 비중이 추세 인플레이션에 반대 방향의 영향을 미친다. 따라서 두 변수의 효과를 구분하여 분석할 필요가 있다. <그림 Ⅳ-13>은 노동가능인구 비중 및 고령인구 비중이 추세 인플레이션에 미친 영향을 분해한 결과를 보여준다. 2013년까지는 노동가능인구 비중 및 고령인구 비중이 동일하게 추세 인플레이션 하락요인으로 작용하였음을 알 수 있다. 이는 동 시기까지 노동가능인구 비중 및 고령인구 비중이 꾸준히 증가하였기 때문이다. 그러나 Ⅱ장에서 살펴본 바와 같이 한국은 2013년경을 기점으로 고령인구 비중은 증가세가 확대된 반면, 노동가능인구 비중은 감소세로 전환하였다. 이로 인해 <그림 Ⅳ-13>에서 2013~2020년에 고령인구 비중은 앞 시기와 마찬가지로 추세 인플레이션 하락을 유발하였으나, 노동가능인구는 비중이 감소함에 따라 추세 인플레이션 상승요인으로 전환하였다. 동 시기에 고령인구 비중 증가 효과가 노동가능인구 비중 감소 효과를 상회하여 두 효과를 합한 순효과(net effect)는 추세 인플레이션 하락으로 나타났다.
4. 한미 인플레이션 기조 변화 가능성 평가
본 장에서는 지금까지의 분석에 기초하여 향후 한미 인플레이션의 기조 변화 가능성을 평가해본다. 앞 장에서 살펴본 세계화 및 인구구조 변화가 한미 필립스곡선 평탄화 및 추세 인플레이션 하락에 미친 영향을 정리하면 아래 <그림 Ⅳ-14>와 같다. 첫째, 한미 모두 세계화가 필립스곡선 평탄화에 유의미하게 기여하였다. 이는 세계화로 인플레이션의 국내 경기민감도가 낮아졌음을 의미하며, 인플레이션이 안정세를 유지해 온 중요 배경이 되었다. 둘째, 한미 공통으로 세계화가 추세 인플레이션 하향 안정에 크게 기여하였다. 초세계화 시기에 특히 두드려졌던 추세 인플레이션 하락 중 상당 부분은 세계화 효과로 추정되었다. 셋째, 한미 모두 노동인구 비중이 감소하고 고령인구 비중이 증가하는 인구구조 변화를 겪고 있는데, 한미간에 양 인구구조 요인이 추세 인플레이션에 미치는 영향에 차이가 있다. 노동가능인구 비중 감소는 한미 공통으로 구조적 인플레이션 상승요인이다. 반면, 고령인구 비중 증가는 미국의 경우 추세 인플레이션 상승요인이었으나, 한국에서는 인플레이션 하락요인으로 작용하였다.
본 연구 Ⅱ장에서 논의된 것처럼 한미 모두 상당 기간 노동인구 비중이 감소하고 고령인구 비중이 증가하는 인구구조 변화를 겪을 전망이다. 특히 한국은 2017년부터 노동인구가 감소세로 전환하여 미국에 비해 경제에서 생산의 핵심을 담당하는 노동인구 비중이 급격히 하락할 것으로 예상된다. 세계화의 경우 본격적인 탈세계화 진입 여부에는 상당한 논란이 있으나, 세계화 효과(‘효율성’)가 작동하기 위한 중요 전제조건인 자유무역주의 및 지정학적 안정성이 크게 훼손되고 있다. 따라서 보수적인 관점에서 판단해도 세계화는 상당 부분 후회할 가능성이 있는 것으로 평가할 수 있다.
본 장의 실증분석 결과를 이러한 경제구조변화와 연결하여 향후 인플레이션의 기조 변화 가능성을 살펴보면 다음과 같다. 미국은 세계화 후퇴, 노동인구 비중 감소 및 고령인구 비중 증가로 추세 인플레이션이 상승하는 가운데, 인플레이션의 국내 경기 민감도가 복원되며 물가 불확실성이 구조적으로 상승할 가능성이 있다.
한국의 경우 세계화 후퇴로 인한 인플레이션의 구조 변화는 미국과 동일하게 필립스곡선이 가팔라지는 가운데 추세 인플레이션이 상승할 것으로 전망할 수 있다. 반면, 한국은 인구구조 변화가 추세 인플레이션에 미치는 영향에 불확실성이 있다. 여기서는 향후 인구구조 변화에 따른 추세 인플레이션의 상승 또는 하락 가능성을 평가하기 위해 앞에서 추정된 모형에 인구구조 전망치(통계청)를 적용해보았다. 우선 고령부양비가 꾸준히 증가할 것으로 전망되는데, 앞의 추정에서 고령부양비가 추세 인플레이션을 하락시키는 것으로 나타났기 때문에 고령부양비를 인구구조 변수로 선정하면 향후에도 추세 인플레이션의 하락세가 지속되는 것으로 전망치가 산출된다.
그런데, 앞 절의 분석에서 한국은 2013년 이후에 노동인구와 고령인구가 추세 인플레이션에 반대 방향의 영향을 미치기 시작했음을 살펴본 바 있다. 이는 2013년 이후에 고령인구 비중이 상승하는 가운데, 노동가능인구 비중이 하락세로 전환하였기 때문임을 지적한 바 있다. 통계청 인구추계에 따르면 이와 같은 인구구조 변화는 향후에도 장기간 지속될 전망이다.
한국의 경우 이처럼 노동가능인구 비중 감소 및 고령인구 비중 증가가 예상되는 조건에서는 고령부양비를 통해 인구구조가 추세 인플레이션에 미치는 영향을 평가하는 것이 적정하지 않을 수 있다는 점(misleading)에 유의할 필요가 있다. 이를 직관적으로 살펴보면, 앞의 <표 Ⅳ-7>의 한국 결과에서 노동가능인구 비중이 하락하면 추세 인플레이션이 상승하는 반면, 고령인구 비중이 증가하면 추세 인플레이션이 하락하는 효과가 발생한다. 따라서 두 반대 방향 효과의 상대적인 크기에 따라 추세 인플레이션이 상승할 수도 있고 하락할 수도 있다. 그런데 이와 같은 조건(노동인구 비중 감소, 고령인구 비중 증가)에서는 고령부양비가 증가하므로, 동 변수를 기준으로 하면 추세 인플레이션이 항상 하락하는 효과가 발생한다.108)
따라서 본 고에서는 고령부양비 대신 노동인구 비중 및 고령인구 비중을 통해 향후 인구구조 변화에 따른 한국 추세 인플레이션 변화를 평가한다. 구체적으로 <표 Ⅳ-6> 모형3(헤드라인 추세 인플레이션 결정요인식)의 추정치에 인구구조 전망치(통계청)를 적용해보았다. 아래 <그림 Ⅳ-15>는 2025년 및 2027년에 예상되는 노동인구 비중 감소 효과(인플레이션 상승)와 고령인구 비중 증가 효과(인플레이션 하락)를 보여준다.
<그림 Ⅳ-15>는 <표 Ⅳ-6> 모형3의 계수 추정치에 2027년까지의 인구전망치를 대입하여 얻은 결과이다. 분석에서 노동가능인구 비중 및 고령인구 비중은 2021년까지는 실제 자료를 사용하였으며, 이후에는 추계치를 적용하였다. GDP갭, 원자재 가격 및 원달러 환율은 2023년 2분기까지는 관측치를 적용하였으며, 2023년 3분기부터는 본 고 분석 기간(1990년 1분기~2020년 4분기)의 평균치를 사용하였다. 이와 같이 <그림 Ⅳ-15>의 추세 인플레이션 변화 전망치는 노동인구 비중 감소 및 고령인구 비중 증가 효과만 고려하여 산출되었다.
<그림 Ⅳ-15>의 추세 인플레이션 변화 전망치를 살펴보면, 당장 2025년에 노동인구 비중 감소로 인한 추세 인플레이션 상승 폭이 고령인구 비중 증가로 인한 추세 인플레이션 하락 폭을 상회할 것으로 전망된다. 2027년에는 차이가 더욱 확대되어 추세 인플레이션이 2020년 대비 1%p 넘게 상승할 수 있는 것으로 추정되었다. 2027년은 고령인구 비중 증가 속도가 최고치에 달하는 기간이다.109)
이상을 종합하면 한국 또한 미국과 마찬가지로 세계화가 후퇴하고 현재와 같은 인구구조 변화(노동인구 비중 감소‧고령인구 비중 증가)가 계속된다면 추세 인플레이션 상승과 함께 인플레이션의 국내 경기에 대한 민감도가 증가하여 물가 기조에 구조적 변화가 발생할 가능성이 있는 것으로 평가할 수 있다.
참고로 본 장의 분석 결과 중 세계화 측정에 대해 언급하고자 한다. 본 장의 결과는 <그림 Ⅱ-3>에서 살펴본 KOF 경제세계화지수를 세계화 변수로 선정하여 분석한 결과이다. 본 고에서 제시되지는 않았으나 세계화 변수로 KOF 무역세계화지수를 사용해도 대체로 유사한 결과가 도출되었다. 이는 분석 기간 중 양 변수가 유사한 행태를 보인 점에 기인하는 것으로 판단된다.
V. 결론 및 시사점
본 연구는 한미 금리의 기조 전환 가능성을 살펴보기 위해 경제구조변수가 인플레이션의 구조적 특징에 미친 영향을 분석하고, 경제구조변화로 인해 저물가 기조에 변화가 발생할 수 있는지 평가해 보았다. 본 연구의 제1편에서 살펴본 것처럼 한미 모두 저금리 고착화에 저물가 기조가 핵심적인 역할을 담당하였다. 따라서 저물가 기조가 종료될 경우 금리 기조에도 근본적인 변화가 발생할 가능성이 있다. 본 장에서는 본 고의 연구 결과를 정리하고 시사점을 논의한다.
본 고에서는 지난 40여 년간 관찰된 인플레이션의 구조적 특징, 즉 저물가 기조를 필립스곡선 평탄화 및 추세 인플레이션 하향 안정의 두 가지 관점에서 살펴보았다. 필립스곡선 평탄화는 인플레이션의 국내 경기에 대한 민감도가 둔화되었음을 나타내며, 추세 인플레이션의 하향 안정은 기조적 물가상승률, 즉 인플레이션의 장기 추세가 낮아졌음을 의미한다. 1980년대부터 코로나 팬데믹 이전까지 한미 인플레이션은 추세 인플레이션이 하향 안정화된 가운데, 필립스곡선 평탄화로 인플레이션의 경기순환적 특성이 약화되며 저물가 기조가 안정적으로 유지되어왔다.
본 연구는 이와 같은 인플레이션의 구조적 특징이 중앙은행의 성공적 물가 관리로 인한 장기 기대인플레이션 안정과 함께 세계화 및 인구구조 변화로 살펴본 경제의 구조적 변화에 기인한 것인지를 실증적으로 분석하였다. 본 고의 주요 분석 결과를 정리하면 다음과 같다.
첫째, 한미 모두 필립스곡선 평탄화에 세계화 진전이 중요한 역할을 한 것으로 확인되었다. 이러한 결과는 헤드라인 및 근원 인플레이션 모두에서 관찰되었다. 장기 기대인플레이션의 역할을 살펴볼 수 있었던 미국의 경우, 기대인플레이션 안정 또한 필립스곡선으로 포착된 인플레이션 동학에 중요한 역할을 하였다. 다만, 기대인플레이션이 인플레이션의 국내 경기 민감도 하락에 미친 영향은 근원 인플레이션에서 특히 강한 것으로 추정되었다. 이는 헤드라인 인플레이션의 경우 필립스곡선이 평탄화된 데에 기대인플레이션보다 세계화의 역할이 중요할 수 있음을 시사한다.110) 근원 인플레이션 중에는 재화 인플레이션에서 필립스곡선 평탄화에 세계화가 지배적인 역할을 하였으며, 근원 서비스 인플레이션의 경우에는 세계화와 기대인플레이션 모두 필립스곡선 평탄화에 기여하였다.
둘째, 세계화는 한미 추세 인플레이션의 하향 안정에도 크게 기여한 것으로 분석되었다. 양국의 추세 인플레이션은 1990년대를 중심으로 한 초세계화 기간에 큰 폭으로 하락한 후 팬데믹 이전까지 안정세를 유지하였는데, 초세계화 기간에 발생한 추세 인플레이션의 하락은 대부분 세계화로부터 유발된 것으로 추정되었다. 이는 기존문헌에서 논의된 바와 같이 세계화 진전으로 비용효율성이 향상되고 기업 간 경쟁이 심화된 결과로 파악할 수 있다. 세계화가 추세 인플레이션에 미친 영향은 미국은 2008년경, 한국은 2013년경부터 현저히 낮아졌는데, 이는 양국이 각 시기부터 세계화가 정체 국면에 진입하였기 때문이다. 선행연구에서 세계화 효과가 재화 인플레이션에 집중된 것으로 언급되어 왔는데, 본 고의 분석에서도 서비스보다 재화인플레이션이 세계화의 혜택을 많이 받은 것으로 나타났다. 다만, 서비스 추세 인플레이션 또한 강도 측면에서는 재화 추세 인플레이션에 미치지 못하나, 세계화 효과가 통계적‧경제적으로 유의미하였다.
본 고 분석에 따르면 중앙은행이 관리하는 기대인플레이션의 안정세 또한 추세 인플레이션 하락에 기여하였는데, 그 영향은 주로 1980년대 초중반에 집중된 것으로 확인되었다. 미국 분석을 토대로 할 때, 기대인플레이션은 재화 및 서비스 추세 인플레이션 모두에 영향을 미쳤다. 본 고의 결과는 세계화 효과에도 불구하고 기대인플레이션이 안정되지 않으면 추세 인플레이션 또한 안정될 수 없음을 의미한다.
다음으로 인구구조가 추세 인플레이션에 미친 영향에 대해 흥미로운 결과가 관찰되었다. 본 연구에서는 고령부양비(고령인구/노동가능인구), 전체 인구 대비 노동가능인구 및 고령인구 비중을 통해 인구구조의 역할을 살펴보았다. 고령부양비를 노동가능인구 및 고령인구로 나누어 분석함으로써 인구구조가 추세 인플레이션에 미치는 영향에 대한 이해도를 제고할 수 있었다.
한미 모두 노동가능인구 비중이 감소할수록 추세 인플레이션이 상승하였다. 이는 경제내 노동공급 감소가 물가상승을 유발한 탓으로 파악할 수 있다. 반면 고령인구 비중의 경우, 동 비중이 증가할수록 미국은 추세 인플레이션이 상승하였으나, 한국은 하락하였다. 이로 인해 미국은 고령부양비가 추세 인플레이션 상승을 유발한 반면, 한국은 하락요인으로 작용하였다. 미국은 고령인구가 생산보다 소비가 많은 순소비 집단으로서의 역할을 담당한 것으로 해석할 수 있다. 한국의 고령층은 생산 활동 참여가 꾸준히 증가하였으며, 소비여력이 현저히 낮은 탓에 미국과 달리 인플레이션 상승요인으로 작용하지 못한 것으로 추정된다.111)
인구구조가 추세 인플레이션에 미친 영향은 각국에서 베이비 붐 세대의 은퇴가 시작된 시기(미국 2008년경, 한국 2013년경)를 기준으로 구분할 필요가 있다. 한미 모두 동 시기부터 노동가능인구 비중이 빠르게 감소하고 고령인구 비중의 증가세가 확대되었다. 미국은 2008년 이전까지 인구구조가 추세 인플레이션에 미친 영향이 통계적으로는 유의하였으나, 경제적으로는 그 효과가 매우 제한되었다. 미국은 동 시기까지 세계화 영향이 인구구조 효과를 크게 상회하였다. 이는 인구구조가 추세 인플레이션에 미친 영향을 강조하는 기존문헌에 비춰볼 때 예상에서 다소 벗어난 것으로 이해될 수 있으나, 인구구조 변화가 인플레이션의 구조적 특징에 미친 영향이 세계화 진전(노동시장 세계화)과 맞물려 발생했을 수 있다는 Goodhart & Pradhan의 통찰에 부합하는 결과로 파악할 필요가 있다. 한국은 2013년 이전까지 노동가능인구 및 고령인구 비중이 모두 증가한 가운데, 고령인구 비중 증가 속도가 더 컸던 관계로 고령부양비가 증가하여 추세 인플레이션 하락을 유발하였다. 다만, 한국 또한 2013년까지 인구구조보다 세계화가 추세 인플레이션 하락에 더 크게 기여하였다.
하지만 한미 모두 베이비 붐 세대의 고령인구 편입이 시작되면서 인구구조가 추세 인플레이션에 미친 영향이 크게 확대되었다. 미국은 1980년 이후 고령인구 비중이 일부 기간(1990년대 중후반)을 제외하고 꾸준히 증가하여 인플레이션 상승으로 작용해온 가운데, 2008년경을 기점으로 노동가능인구 비중이 감소세로 전환하며 인플레이션 상승압력이 추가되었다. 그 결과 2008년 이후에는 인구구조가 유의미한 물가상승요인으로 자리 잡았다.
한국은 1980년 이후 고령인구 비중이 꾸준히 상승하여 인플레이션 하락요인으로 작용해온 가운데, 2013년경을 기점으로 노동가능인구 비중이 하락세에 접어들며 인플레이션 상승요인으로 전환되었다. 본 고의 실증분석 기간인 2020년까지는 고령인구 비중 증가로 인한 인플레이션 하락압력이 노동가능인구 비중 감소로 인한 인플레이션 상승압력보다 높았다. 하지만 통계청 장래인구 추계치를 적용하여 살펴본 결과, 당장 2025년부터 노동가능인구 비중 감소로 인한 추세 인플레이션 상승효과가 고령인구 비중 증가가 유발하는 추세 인플레이션 하락 효과를 상회하는 것으로 추정되었다. 이는 한국 또한 향후 인구구조가 구조적인 인플레이션 상승요인으로 작용할 가능성이 있음을 시사한다.
인구구조의 추세 인플레이션에 대한 영향은 인구구조와 실질중립금리 간 관계 및 이에 대한 통화정책 대응 관점에서도 살펴볼 수 있다. 본 연구보고서 제1편에서 살펴본 바와 같이 고령화(노동인구 감소 및 고령인구 증가)가 진행될수록 실질중립금리가 하락하게 된다.112) 이와 같이 인구구조 변화로 실질중립금리가 하락하는 상황에서 중앙은행이 실질중립금리의 변동을 늦게 반영하여 지나치게 완화적이거나 긴축적인 통화정책이 유지될 경우 추세 인플레이션이 상승하거나 하락하는 결과가 나타날 수 있다.113)
본 고에서 살펴본 바와 같이 기존문헌에서는 세계화 및 인구구조가 인플레이션의 구조적 특징에 미친 영향에 대해 다양한 결과가 제시되어왔다. 본 연구가 한미 인플레이션만을 분석 대상으로 한정하였으며, 이론적 관점에서 경제구조변수와 인플레이션 간 인과관계를 분석하지 못하였다는 점 등을 고려할 때 확대 해석에 주의를 기울여야 하겠으나, 다음과 같은 시사점을 찾아볼 수 있다.
우선 40년간 저물가 기조를 이끈 핵심 동인이 소멸 중으로, 한미 모두 저물가 기조가 종료되고 물가 변동성이 구조적으로 확대될 가능성이 있다. 먼저 인구구조 측면에서 한미 모두 상당 기간 노동인구 비중이 감소하고 고령인구 비중이 증가하는 인구구조 변화를 겪을 것으로 전망된다. 다음으로 본격적인 탈세계화 진입 여부에는 상당한 논란이 있으나, 세계화 효과(효율성 및 경쟁 심화)가 작동하기 위한 핵심 전제조건인 자유무역주의 및 지정학적 안정성이 크게 훼손되고 있다. 이로 인해 보수적인 관점에서 판단해도 세계화는 상당 부분 후회할 가능성이 높은 것으로 평가할 수 있다.
이와 같은 경제구조변화에 본 고의 실증분석 결과를 적용해 보면, 세계화 후퇴로 필립스곡선이 가팔라지며 인플레이션의 경기 민감도가 복원될 가능성이 있다. 이 경우 인플레이션의 변동성이 과거보다 구조적으로 확대되는 결과가 나타날 수 있다. 또한 세계화 후퇴로 추세 인플레이션이 상승세를 보일 것으로 전망할 수 있다. 특히 동 효과는 지난 40년간 추세 인플레이션의 안정을 이끈 재화 추세 인플레이션에서 먼저 관찰될 수 있다. 서비스 추세 인플레이션 또한 그동안 세계화로 인한 효익이 있었던 만큼 세계화가 후퇴하면 과거보다 높은 수준으로 상승할 개연성이 있는 것으로 판단된다. 미국은 이미 글로벌 금융위기 이후부터 인구구조 변화(노동인구 비중 감소‧고령인구 비중 증가)가 추세 인플레이션 상승요인으로 자리잡았고, 한국도 현재와 같은 인구구조 변화 추세가 유지된다면 세계화 후퇴에 더해 구조적인 인플레이션 상승요인으로 고착될 가능성이 있다. 이상을 종합하여 향후 한미 인플레이션의 구조 변화 가능성을 도식화하면 아래 <그림 Ⅴ-1>과 같다.
본 고에서 살펴본 인플레이션의 구조적 변화 가능성은 한미 금리의 장기 추세 결정에 중요한 영향을 미칠 것으로 전망된다. 본 보고서 제1편에 따르면 추세 인플레이션과 함께 실질중립금리가 추세금리를 결정하는 핵심 요인이다. 동 연구에서 향후 미국의 실질중립금리는 점진적인 상승세가 예상되었으며, 한국은 횡보할 것으로 전망되었다. 따라서 추세 인플레이션이 상승할 경우 한미 모두 추세금리가 상승할 가능성이 큰 것으로 평가할 수 있다.
본 연구는 세계화 후퇴 및 인구구조 변화와 함께 인플레이션의 구조적 특징에 영향을 미칠 가능성이 있는 경제구조변수인 기후변화에 대해 살펴보지 않았다. 동 분야의 연구는 아직 초기 단계에 있으나, 기후변화가 인플레이션에 미칠 수 있는 영향에는 상당한 불확실성이 있는 것으로 파악되고 있다. 기후변화가 가속화 되고 있는 만큼 인플레이션에 대한 영향을 이해하기 위한 노력이 필요한 것으로 판단된다.114)
1) WSJ(2021. 12. 5)은 탈세계화로 비용 상승 충격이 발생하여 장기적인 인플레이션 상승으로 이어질 수 있다는 견해를 밝혔다. 반면, FT(2022. 5. 26)는 세계화가 저물가 기조에 기여한 바가 크지 않은 만큼 탈세계화로 인한 인플레이션의 기조적 상승위험이 과장된 것으로 평가하고, 세계화가 아닌 인구구조 변화가 인플레이션의 구조적 상승을 유발할 가능성이 높다는 의견을 제시하였다.
2) 뉴케인지언 필립스곡선 이론에서 필립스곡선 평탄화는 기업의 가격결정(price-setting)이 공급압력(한계비용)에 덜 민감해지는 현상을 의미한다(Del Negro et al., 2020).
3) 연간 헤드라인 CPI 인플레이션 변화
를 전년도 GDP갭에 대해 회귀분석하여 얻어진 인플레이션의 국내 GDP갭에 대한 민감도 추정치를 의미한다. 즉, 필립스곡선 기울기 값이 y일 경우 이는 전년도 GDP 갭이 1%p 상승했을 때 금년 인플레이션이 y%p 상승한다는 것을 의미한다. 회귀식에서 연간 인플레이션
은
로 정의되며,
는 연도별로 분기 물가지수의 평균치이다. 회귀분석은 <표 Ⅱ-1>에 기술된 기간별로 시행하였다. Powell(2018), Stock & Watson(2021) 및 Hazell et al.(2022)도 본 고와 유사한 방법을 통해 미국 필립스곡선 평탄화를 분석하였다.
4) 필립스곡선 평탄화를 다룬 기존문헌에 따르면 추정방법에 따라 다소 차이는 있으나, 선진국의 필립스곡선 기울기는 1960년대 이후 시기별로 증가 또는 감소하였으며, 1980년대 중반부터는 지속적으로 완만해진 것으로 파악된다.
다만, 코로나 팬데믹 이후에는 미국 등 주요국의 필립스곡선 기울기가 증가세로 전환하였다는 결과가 보고되고 있다(Hajdini, 2023; Hobijn et al., 2023).
5) 다음 장의 기존문헌 고찰에서 언급되는 바와 같이 기대인플레이션이 안정되지 않으면 일시적인 인플레이션 충격이 기업의 가격 결정에 영향을 미칠 수 있으며, 이 경우 일시적인 충격이 추세적인 인플레이션으로 연결될 수 있다.
6) 다만, 추세 인플레이션 정의 시 고려하는 순환적(일시적) 요인이 경기순환성을 의미하지는 않는다. 본 연구 Ⅲ장의 기존문헌 및 Ⅳ장의 실증분석에서 논의되는 바와 같이 추세 인플레이션은 GDP갭의 영향을 받는 것으로 파악된다.
7) 추세 인플레이션은 다양한 방법을 통해 추정할 수 있다. 본 연구에서는 계량적 모형을 통해 추세 인플레이션을 추정하고자 한다. Stock & Watson(2007)방법은 추세 인플레이션 산출에 많이 활용되는 대표적 모형이다.
8) 미국의 추세 인플레이션을 살펴본 대부분의 연구에서도 <그림 Ⅱ-1>과 유사한 특징이 관찰된 바 있다. Coglely & Sbordone(2008), Mertens(2016), Stock & Watson(2007, 2016), Ascari & Fosso(2021), Eo et al.(2023) 등을 참고하기 바란다.
9) 실제 인플레이션=추세 인플레이션+인플레이션갭(=실제 인플레이션–추세 인플레이션)의 관계가 성립함을 의미한다.
10) Goodhart & Pradhan(2020a, 2020b, 2020c), Lagarde(2022, 2023), Schnabel(2022) 및 Daly(2023) 등을 종합하면 향후 인플레이션의 구조적 동학에 변화를 유발할 것으로 기대되는 변수로 세계화 후퇴, 인구구조 변화 및 탈탄소화를 고려할 수 있다. 탈탄소화는 과거 데이터를 이용한 실증분석이 용이하지 않은 측면이 있으므로 본 연구에서는 분석에 포함하지 않기로 한다.
11) 다음 장(기존연구)에 정리된 바와 같이, Attinasi & Balatti(2021), ECB(2021a, 2021b), Koester et al.(2021), Kohlscheen & Moessner(2022) 및 Friedrich & Selcuk(2022) 등은 다양한 KOF 세계화지수를 사용하여 인플레이션과 세계화의 관계를 분석하였다.
12) 세계화 전반에 대한 내용은 매우 방대하므로 본 고에서는 1980년대 이후부터 코로나 팬데믹 이전까지의 진전 상황만 간략하게 언급한다. 세계화에 대한 상세한 내용은 James(2023)를 참고하기 바란다.
13) 본 고 <그림 Ⅱ-2>와 <그림 Ⅱ-4>에서 한미 모두 2022년에 무역개방도가 팬데믹 이전 수준을 회복하였다.
14) 미국의 대중국 수입 비중 변화는 <그림 Ⅱ-2>를 참고하기 바란다.
15) Goldberg & Reed(2023)에 따르면 미국은 프렌드쇼어링도 현실화 중인 것으로 평가된다. 2022년 기준, 미국 국민이 우호국(friend)으로 믿는 국가일수록 수입 비중(해당 국가로부터의 수입액/전체 미국 수입액)이 통계적으로 유의하게 증가하는 것으로 나타났다.
16) 미국은 노동가능인구 비중이 2007년에 67.23%로 정점을 기록하였으며, 한국은 2012년 및 2014년에 73.42%로 최고치를 기록하였다.
17) 미국과 한국은 각각 2012년 및 1998년에 물가안정목표제를 공식 도입하였다. 다만, 미국은 그린스펀 전 총재의 적극적 물가 관리에 힘입어 1990년대 중반에 저물가에 대한 신뢰가 확립된 것으로 평가된다(Goodfriend, 2002).
18) Ball(2006)은 세계화가 인플레이션 동학의 구조적 특징에 어떤 영향도 미치지 않았다는 견해를 제시하기도 하였다.
Koester et al.(2021)에 따르면 세계화가 물가에 미치는 영향이 영구적인 효과(permanent effect)가 될지는 통화정책이 결정한다.
19) Carney(2015, 2017) 및 Friedrich & Selcuk(2022) 등은 두 경로를 각각 필립스곡선 기울기(slope) 및 필립스곡선의 평행이동(position)으로 지칭하였다.
20) IMF(2006), Yellen(2006), Bernanke(2007), Borio(2017a, 2017b), Carney(2015, 2017), Forbes(2019a, 2019b), Attinasi & Balatti(2021), ECB(2021a), Koester et al.(2021) 등을 참고하기 바란다.
21) Bernanke(2007), Carney(2015, 2017) 등에 따르면 세계화는 필립스곡선 평탄화 및 추세 인플레이션 경로 외에 국내 생산여력에 영향을 미침으로써 국내 인플레이션에 영향을 미칠 수 있다. 즉, 국내 수요가 일정하더라도 국내 제품에 대한 해외 수요가 증가하면 해당 수출품목에 대한 국내 생산여력이 낮아지는 결과가 발생한다. 이 경우 국내 인플레이션은 <그림 Ⅲ-1>에서 회색실선을 따라 이동하게 된다. 다만, 이와 같은 수출 경로는 세계화가 국내 인플레이션의 구조적 특징에 미치는 영향으로 보기 힘든 측면이 있다. 이에 본 연구에서는 동 경로에 대해서 살펴보지 않기로 한다.
22) 이는 GVC 대상 국가 및 생산요소 수입국의 유휴생산능력이 국내 기업의 비용에 미치는 영향이 증가하게 됨을 의미한다(Ascari & Fosso, 2021).
23) 물론, 노동자의 협상력 저하에는 세계화 외에 다양한 구조적 요인이 영향을 미쳤다. 이에 대해서는 IMF(2006)을 참고하기 바란다.
24) Amiti et al.(2019)이 벨기에 제조업체를 대상으로 추정한 결과, 기업이 가격을 결정할 때 자사의 한계비용 및 해외 경쟁기업의 가격에 대한 민감도가 각각 0.6과 0.4로 나타났다. 해외 기업의 가격에 대한 민감도는 국내 기업이 대기업일수록 높아지는 것으로 나타났다.
25) 세계화로 경쟁이 심화되면 기업의 마크업이 구조적으로 감소할 수 있다. 이에 대해서는 다음 절(세계화와 추세 인플레이션)의 기존연구 고찰을 참고하기 바란다.
26) Sbordone(2007)의 모형에서도 Amiti et al.(2019)과 같이 전략적 상호보완성이 강화되는 결과가 나타나기도 한다.
결과적으로 Sbordone(2007) 모형에서는 세계화로 필립스곡선의 기울기가 증가하거나 감소할 수 있다. Carney(2015) 또한 세계화로 인한 기업의 가격 결정이 필립스곡선 기울기를 평탄하게 만들 수도 있는 동시에 가파르게 유도할 수 있는 양방향 경로가 가능하다는 직관을 제시한 바 있다.
27) 아래 문장은 ECB(2021a)에 정리된 내용을 수정하여 인용하였다.
28) 세계화와 필립스곡선 평탄화 간 관계에 대한 기존문헌은 방대하다. 본 연구에서 살펴본 기존연구 중에서는 세계화가 필립스곡선 평탄화를 유발했다는 연구로 Gamber & Hung(2001), IMF(2006), Pain et al.(2006), Borio & Filardo (2007), Razin & Binyamini(2007), Wynne & Kersting(2007), Bianchi & Civelli(2015), Ahmad & Civelli(2016), Auer et al.(2017), Jasova et al.(2018), Forbes(2019a, 2019b), Lombardi et al.(2020), Ascari & Fosso(2021), Friedrich & Selcuk(2022), Heise et al.(2022), Kohlscheen & Moessner(2022), Ari et al.(2023), Kochugovindan & Lawson(2023) 등이 있다. 반면 세계화가 필립스곡선 기울기에 통계적으로 유의한 영향을 미치지 않았거나, 통계적으로는 유의하더라도 경제적 효과가 크지 않다는 결과를 보고한 연구에는 Tootell(1998), Temple(2002), Daniels et al.(2005), Ball(2006), Calza(2009), Cecchetti & Debelle(2006), Gnan & Valderrama(2006), Mody & Ohnsorge(2007), Groen & Mumtaz(2008), Mishkin(2009), Castelnuovo(2010), Ihrig et al.(2010), Milani(2012), Mikolajun & Lodge(2016), Attinasi & Balatti(2021), ECB(2021a) 등이 있다.
29) 기존연구에서 해외 유휴생산력은 주로 분석 대상 국가의 주요 무역상대국 GDP갭에 다양한 방식의 가중치(무역비중, 수입비중, GDP비중 등)를 적용하여 산출된다. 때로는 교역상대국에 제한하지 않고, 전 세계의 GDP갭(글로벌갭)을 분석에 포함하기도 한다.
30) 세계화가 중장기 국내 인플레이션에 미치는 영향에 대해 회의적인 시각을 견지한 Bernanke(2007)는 글로벌갭이 세계화된 경제환경에서 전반적인 대외요인의 영향을 반영할 수 있다는 점에서 글로벌갭의 역할이 세계화와 국내 인플레이션 간 관계 중 유일하게 개연성이 있는 경로로 지적한 바 있다.
31) Bernanke(2007)가 언급한 것처럼 글로벌 유휴생산력은 측정에 어려움이 있다. 더욱이, Dreger et al.(2015)이 지적한 바와 같이 주요국의 경우 글로벌 경기변동과 국내 경기변동이 동조화되는 경향이 있어 국내갭과 글로벌갭의 독립적 식별에 어려움이 있다. 한국과 미국에 대해 다양한 방법의 글로벌갭을 적용할 때의 잠재적인 문제에 대해서는 장근혁‧백인석(2022)의 <부록 1>을 참고하기 바란다.
32) Forbes(2019a, 2019b)에서는 43개국(31개 선진국‧12개 이머징 국가, 1996년 1분기~2017년 4분기)의 다양한 인플레이션(CPI, 근원CPI, 임금)의 국내 경기여건에 대한 민감도 하락이 대부분 글로벌갭에 의해 유발된 것으로 분석되었다.
33) Andrews et al.(2018)에 따르면 GVC 참여가 확대되며 글로벌 생산자물가상승률이 하락한 가운데 국가 간 동조화도 심화된 것으로 분석되었다.
34) Ahmad & Civelli(2016)에 따르면 무역 및 금융개방도가 일정 수준(threshold)을 넘을 경우 국내 인플레이션이 국내 경제여건보다 글로벌갭에 의해 포착된 해외 경제여건의 영향을 더 많이 받는 것으로 나타났다.
35) IMF(2006), Pain et al.(2008), Kohlscheen & Moessner(2022) 등은 필립스곡선에서 각 세계화 변수와 국내 GDP갭의 교차항(interaction term, GDP갭×세계화)의 계수를 추정하여 세계화가 필립스곡선 평탄화에 미친 영향을 분석하였다. 동 연구들에서 교차항의 계수가 유의한 음의 값을 가지는 것으로 추정되었다. 반면, Auer et al.(2017) 및 Friedrich & Selcuk(2022) 등은 필립스곡선의 기울기를 먼저 추정하고, 동 기울기가 세계화 변수로 설명되는지 분석하였다. 동 연구들에서는 세계화 변수가 필립스곡선 기울기에 유의한 음의 영향을 미친 것으로 나타났다.
36) Eijffinger & Qian(2016)은 1977년부터 2007년까지 11개 OECD 국가 인플레이션을 분석하였다. 동 연구들은 국가별 필립스곡선에서 무역 및 금융 개방도와 국내갭의 교차항을 살펴보았다. 분석 국가 중 캐나다와 미국은 교차항 추정계수가 유의한 음의 값을 가져 필립스곡선 평탄화에 영향을 미친 것으로 나타났다. 반면 이탈리아는 교차항이 유의한 양의 값으로 분석되었다. 여타 국가는 계수가 유의하지 않은 것으로 나타났다(호주: -, 일본‧네덜란드‧영국: +).
37) Bems et al.(2018)이 2004년부터 2018년까지 18개 이머징 국가의 근원 인플레이션을 분석한 결과 장기 기대인플레이션 안정이 인플레이션의 순환적 변동(경기민감도)에 중요한 역할을 하는 것으로 나타났다. 반면, 글로벌갭의 영향은 미미한 것으로 확인되었다.
38) 예를 들어, Hazell et al.(2022)은 1990년부터 2000년까지 미국의 필립스곡선 평탄화가 대부분 장기 기대인플레이션이 안정에 기인하는 것으로 분석하였다.
39) Borio(2017b)에 따르면 전 세계 노동가능인구에서 선진국이 차지하는 비중이 1990년 41%에서 2015년에는 18%로 크게 감소하였다.
40) 인플레이션이 기업의 기대인플레이션 및 한계비용에 의해 결정되는 것으로 파악하는 Gali & Gertler(2000) 등의 전통적 단일국가 NKPC에서는 기업이 독점적 경쟁 및 고정된 대체소비탄력도에 직면하며, 마크업(제품 가격과 한계비용 비율)도 상수로 가정한다. Guerrieri et al.(2010) 등 개방경제 NKPC에서는 국내 기업과 해외 기업 간 경쟁을 이론에 도입하고, 기업이 소비자의 국내 및 해외 제품 간 대체탄력성 변화에 직면한 것으로 가정한다. 개방경제 NKPC 연구에 따르면 대체로 국내 기업 제품에 대한 수요 변화(소비탄력도)는 해외 제품과 국내 제품 간 상대가격의 영향을 받는다. 따라서 해외 기업이 제품가격을 낮추면 해외 기업과의 경쟁에 직면한 국내 기업은 시장점유율을 유지하기 위해 적정(desired) 마크업을 낮추게 되며, 결과적으로 국내 인플레이션이 하락하게 된다.
41) 다만, Cote & de Resende(2008)에 따르면 2000년 이후부터 중국 수입 효과가 증가하였으며, 핵심 경로는 국내 기업과의 경쟁 경로인 것으로 지적된다.
42) Chen et al.(2004, 2009)에 따르면 마크업 감소는 지속성이 낮은 것으로 분석되었다.
43) Forbes(2019a, 2019b)에 따르면, 예를 들어 GVC는 CPI 상승률에는 유의한 영향을 미쳤으나, 근원 CPI에 대해서는 설명력이 유의하지 않은 것으로 나타났다. 이로 인해 Forbes(2019b)는 세계화가 인플레이션 하향 추세를 설명하는데 한계가 있는 것으로 지적하였다. 한편, Forbes(2019b)의 축약형 필립스곡선에서 기대인플레이션은 비교적 일관되게 인플레이션 수준 변화를 설명하는 것으로 나타났다.
44) 다만, Kohlscheen & Moessner(2022)에서 인플레이션 측정 시기가 증가할 경우(2‧4‧6분기 물가상승률), 세계화 유의성이 증가하는 것으로 나타났다.
45) Forbes(2019b)는 Stock & Watson(2007) 및 Chan(2013)의 방법을 일부 수정한 ARUC(Autoregressive Unobserved Components) 모형을 이용하여 43개 국가의 추세 인플레이션을 추정하였다.
46) Forbes(2019b)는 추세 인플레이션 및 세계화 변수의 차분값을 실증분석(회귀분석)에 사용하였다.
47) Kamber & Wong(2020)은 다변량 BN(Beveridge and Nelson) 분해를 통해 추세 인플레이션을 추정하였다.
48) 호주, 캐나다, 유로지역, 일본, 영국, 미국
49) Attinasi & Balatti(2021), ECB(2021a) 및 Koester et al.(2021) 등은 세계화 변수로 통상적인 무역개방도 및 수입의존도를 사용하지 않고 KOF 세계화 지수를 사용하였다.
50) Attinasi & Balatti(2021)은 계량모형을 사용하지 않고 전년동기비 인플레이션의 12분기 평균을 추세 인플레이션 대용치로 사용하였다.
51) Attinasi & Balatti(2021) 및 ECB(2021a)는 세계화가 진전될수록 서비스 추세 인플레이션이 상승하는 원인을 모색하지는 않았으나, 기존연구들에서 포착된 세계화와 추세 인플레이션 간 관계가 유의미하지 않은 점에 대한 원인을 제시했다는 점에서 의미가 있다.
52) 1990년대 중반부터 2011년까지 글로벌 공급요인이 추세 인플레이션과 장기 기대인플레이션과의 괴리를 설명함을 의미한다. Ascari & Fosso(2021)는 동 기간의 글로벌 공급 충격이 주로 중국의 세계 경제 편입에 따른 GVC 활성화에 기인하는 것으로 지적하였다.
53) 이는 본 연구의 <그림 Ⅳ-6>에서도 확인할 수 있다.
54) 인구구조와 인플레이션 간 관계에 대한 선행연구 고찰은 강환구(2017) 및 안병권 외(2017)에도 잘 정리되어 있다.
55) <그림 Ⅲ-4> 및 <그림 Ⅲ-5>는 인용된 연구에 제시된 실증분석 결과를 대략적으로 나타낸 것이다. 구체적인 수준은 부정확하므로 정성적인 특성만 살펴보기 바란다.
56) Aksoy et al.(2019)에서 분석된 인구구조 코호트별 인플레이션에 대한 영향은 0.70(20세 미만), -0.75(20~60세), 0.05(60세 초과)로 추정되었다.
57) 강현주(2022)는 Aksoy et al.(2019)을 바탕으로 분석 대상 국가(OECD 21개국)를 일부 변경하고, 분석 기간을 확장(1980~2020년)하여 인구 코호트가 장기 인플레이션에 미치는 영향을 살펴보았다. 동 연구에서도 Aksoy et al.(2019)과 같이 유년층(0~19세) 및 고령층(65세 이상) 비율이 증가할수록 (연간) 인플레이션이 상승하였으며, 노동가능인구(20~60세) 비율은 인플레이션 하락요인으로 분석되었다.
58 Braun & Ikeda(2022)에서 유동자산에 대한 초과수요(liquid asset demand glut)는 전통적인 secular stagnation 이론의 과잉저축(savings glut) 현상으로 해석할 수 있다.
59) UN 통계에 따르면 일본은 1995년부터 노동가능인구(15세~64세)가 감소하기 시작하였다. 그 결과 일본의 고령인구부양비율(old-age dependency ratio)은 1985년에는 G7국가 중 가장 낮은 수준이었으나, 2005년에는 가장 높은 순위로 상승하였다(Braun & Ikeda, 2022).
60) Gajewski(2015)에서 유년부양 비율(15~64세 또는 20~64세 인구 대비 15세 이하 또는 20세 이하 인구 비율)이 증가할수록 인플레이션이 높아지는 것으로 나타났는데, 이는 앞서 살펴본 Juselius & Takatz 및 Aksoy et al.(2019) 등의 결과와 일치한다.
61) Lis et al.(2020) 및 Bodnar & Nerlich(2022)의 논의는 <그림 Ⅲ-4>에서 수요-공급 간 양적 차이 외에 소비 패턴 변화와 같은 요인들이 고려될 필요가 있음을 시사한다.
62) 식(1)과 같이 현재 인플레이션
결정요인으로 인플레이션의 지속성(persistence)을 포착하는 과거 인플레이션
및 향후 인플레이션에 대한 기대(기대인플레이션)를 동시에 포함하는 필립스곡선을 혼합형(hybrid) 필립스곡선으로 지칭한다. 과거 인플레이션만 고려하는 실증 필립스곡선은 backward-looking이 되며, 기대인플레이션만 포함하면 forward-looking 필립스곡선이 된다. 다만, 식(1)과 같은 축약형 필립스곡선은 구조모형(균형이론 모형)인 NKPC와 구분될 필요가 있다. 일정한 조건을 만족하면 NKPC 모형은 축약형 필립스곡선으로 나타낼 수 있으며, 통상 실증분석의 용이성 및 인플레이션 적합도 향상 측면에서 다양한 축약형 모형이 고려된다. 이런 관점에서 축약형 모형을 실증적(empirical) 필립스곡선으로 지칭하기도 한다. 자세한 내용은 Gali & Gertler(2000), Kuttner & Robinson(2008) 및 Forbes(2019a, 2019b) 등을 참고하기 바란다.
63) 다만, 식(1)은 추세 인플레이션을 분석 대상으로 하지 않으므로
계수를 통해 포착된 인플레이션 수준 변화를 장기적 관점의 추세 인플레이션 변화로 단정할 수 없다.
64) 다음 절에 제시된 본 연구의 자료에서 기대인플레이션과 세계화 변수 간에 높은 음의 상관관계(-0.85)가 존재하여 이를 교정할 필요가 있다. <부록 2>의 기대인플레이션 및 세계화를 동시에 포함한 모형에서는 기대인플레이션 대신 ‘조정 기대인플레이션’을 사용하였다. 조정 기대인플레이션은 본 연구에서 실시하는 추세 인플레이션 결정요인 분석에서 매우 중요한 역할을 담당하므로 본 장 ‘3. 분석 결과 : 세계화 및 인구구조 변화와 추세 인플레이션’에서 기술하기로 한다.
65) 아울러, 한국은 미국과 달리 근원 재화 및 서비스 인플레이션이 별도로 집계되지 않으며, 공개된 자료를 통해서 근원 인플레이션을 재화 및 서비스 인플레이션으로 구분하여 산출할 수 없다.
66) 한미 필립스곡선 회귀식에서 세계화 변수가 비정상성(non-stationarity)을 가지는 것으로 확인되었다. 이 경우 다음 절(추세인플레이션 결정요인 분석)에 기술된 바와 같이 필립스곡선 회귀식에 가성관계(spurious)가 존재할 수 있다. 이에 자기회귀시차분포(Autoregressive Distributed Lag Model: ARDL) 모형을 통해 회귀식의 유효성을 검정하였다. 동 결과는 <부록 3>의 마지막에 제시되어 있다. ARDL 추정 및 결과 해석에 대해서는 다음 절(추세인플레이션 결정요인 분석) 및 <부록 3>을 참고하기 바란다.
67)
계수 추정치가 유의한 양의 값을 가지면 기대인플레이션이 낮을수록 인플레이션의 GDP갭에 대한 민감도가 낮아지는 효과가 발생한다.
68) 다만, Ⅲ장에서 살펴본 기존연구들은 본 고 <부록 2>에 제시된 확장모형2-1을 검정하지 않았다. 아울러, 대부분의 기존연구는 여러 국가의 패널자료를 이용하였으며, 세계화 변수도 무역개방도 등 무역 통계를 사용했다는 점에서 본 고와 차이가 있다. 따라서 본 연구의 결과를 기존연구와 직접 비교하는 데에는 주의가 필요하다.
69) <표 Ⅳ-2> 및 <부록 2>에 제시된 추가 모형들에서 원자재 가격(GSCI)은 전체 근원 및 근원 재화‧서비스 인플레이션에 유의한 영향을 미치지 않는다. 이는 근원 인플레이션의 특성에 기인한 것으로 판단된다.
70) <표 부록-5> 확장모형2-2(근원 인플레이션)에서 (조정) 기대인플레이션과 GDP갭의 교차항
계수가 유의한 양의 값으로 추정되었다. 반면, 확장모형2-1(헤드라인 인플레이션)의 교차항 계수는 부호는 양이나 유의하지 않았다.
71) <표 Ⅳ-2>에서
계수 추정치가 재화 인플레이션은 1.283(기본모형-3), 서비스 인플레이션은 1.680(기본모형-4)이다. 유사하게 <표 부록-4>의 확장모형1-3 및 확장모형1-4, <표 부록-5>의 확장모형2-3 및 확장모형2-4의
를 비교해도 기대인플레이션은 재화 인플레이션보다 서비스 인플레이션에 영향을 크게 미치는 것으로 나타났다.
72) <표 부록-4>의 확장모형1-3 및 1-4, <표 부록-5>의 확장모형2-3 및 2-4의
계수 추정치를 비교해보면 크기 및 유의성이 모두 유사한 것을 알 수 있다.
73) <표 Ⅳ-2>, <표 부록-4> 및 <표 부록-5>에서
계수 추정치가 모두 유의한 음의 값을 가진다.
74) <표 부록-5>의 확장모형2-3 및 2-4에서
계수 추정치
가 재화 인플레이션의 경우 유의하지 않은 음의 값으로 추정된 반면, 서비스 인플레이션은 유의한 양의 값으로 나타났다.
75) <표 부록-6>에서
계수 추정치가 유의한 음의 값으로 추정되었다.
76) Ⅱ장에서 언급된 바와 같이 Kiley(2015) 방법은 연간 헤드라인 CPI 인플레이션 변화
를 전년도 GDP갭에 대해 회귀분석하여 인플레이션의 국내 GDP갭에 대한 민감도를 추정한다. <그림 Ⅳ-2>와 <그림 Ⅳ-3>은 과거 15년 자료를 이용한 이동(rolling) 회귀분석
에서 얻어진 계수 추정치의 시계열을 보여준다.
77) 다만 벤치마크 모형은 비교 용도로만 고려하고자 한다.
78) 앞 절에서 언급된 것처럼 한국은 근원 인플레이션 중 재화 및 서비스 인플레이션이 별도로 집계되지 않으므로 미국과 같이 섹터별 추세 인플레이션을 분석할 수 없다.
79) Eo et al.(2023)의 두 섹터 UCSV모형은 섹터별 인플레이션 간 상관관계를 고려한다. 따라서 근원 재화 및 근원 서비스 인플레이션에 대해 각각 Stock & Watson(2007)의 단일 섹터 UCSV모형을 적용하여 추정한 추세 인플레이션과 차이가 있다.
80) Stock & Watson(2007) 추세 인플레이션은 여타 모형의 벤치마크로도 자주 사용된다. 이에 대해서는 Banbura & Bobeica(2020) 및 Forbes(2019b) 등을 참고하기 바란다.
81) 추세 인플레이션 결정요인으로 고려한 기타 요인은 정상시계열(I(0))로 확인되었다.
82) 즉, ARDL은 종속변수가 비정상시계열(I(1))이며, 독립변수에 정상시계열(I(0)) 및 비정상시계열(I(1))이 혼재해있는 일반적인 경우에 적용할 수 있는 방법이다(Kripfganz & Schneider, 2023).
83) Fiorenti et al.(2018) 및 Borio et al.(2022)은 ARDL방법을 적용하여 실질중립금리 결정요인을 실증분석하였다. ARDL 방법은 경제 및 재무 분야에서 광범위하게 사용된다. ARDL 방법의 소개 및 적용 사례에 대해서는 Kripfganz & Schneider(2023)를 참고하기 바란다.
84) 이 점에 대해서는 본 장의 ‘4. 한미 인플레이션 기조 변화 가능성 평가’에서 살펴본다.
85) Attinasi & Balatti(2021), Koester et al.(2021), Kohlscheen & Moessner(2022) 등도 다양한 방법을 통해 연간 KOF 세계화지수를 분기 데이터로 변환하여 분석에 사용하였다. Mikolajun & Lodge(2016), Jasova et al.(2018), Banbura & Bobeica(2020) 등은 연간 GDP갭 자료를 분기로 전환하였으며, Forbes(2019a, 2019b)는 연간 GVC 데이터를 분기로 변환하여 실증분석에 사용하였다.
86) 대부분의 기존연구는 다수 국가의 패널 자료를 이용하므로 본 고와 같이 기대인플레이션과 세계화 변수 간에 높은 상관관계가 존재하는지 단정할 수 없다.
87) NKPC 이론에서 기대인플레이션은 기업의 한계비용에 대한 기대를 반영하는 것으로 생각할 수 있다. Albagli et al.(2022)은 글로벌 공급망에서 획득할 수 있는 생산투입요소 가격 변화가 기업의 기대인플레이션 형성에 중요한 역할을 담당할 수 있다는 이론적‧실증적 근거를 제시하였다. Rogoff(2004) 및 Gnan & Valderrama(2006) 등은 세계화가 기대인플레이션의 추세적 하락에 영향을 미쳤을 수 있다는 추론을 제기하였다.
88) 바꿔 말하면 기대인플레이션이 추세 인플레이션에 미치는 영향 중 일부는 세계화 효과를 반영한 것으로 볼 수 있다.
89) 조정 기대인플레이션은 기대인플레이션을 KOF 세계화지수에 대해 회귀분석하여 산출된 잔차항이다.
90) 조정 기대인플레이션에 대해 ADF(Augmented Dickey Fuller)검정을 실시한 결과, 유의수준 1%에서 안정적(stationary)인 시계열로 확인되었다.
91) 미국의 재화 및 서비스 추세 인플레이션은 Eo et al.(2023), 선진 12개국의 재화 및 서비스 추세 인플레이션은 Attinasi & Balatti(2021) 및 Koester et al.(2021)을 참고할 수 있는데, <그림 Ⅳ-6>과 유사한 특징을 보여준다.
92) 모형1, 모형2, 모형5, 모형6, 모형9, 모형10의
및
계수 추정치가 모두 유의한 양의 값이다.
93) 모형1, 모형2, 모형5, 모형6, 모형9, 모형10의
계수 추정치가 모두 유의한 음의 값으로 추정되었다.
94) Forbes(2019b)의 분석에서는 세계화 변수가 추세 인플레이션에 유의한 영향을 미치지 못하는 것으로 나타났다. Attinasi & Balatti(2021) 및 ECB(2021a)는 다양한 세계화 변수(무역개방도, GVC 참여도, KOF 정보세계화지수) 중 일부(무역개방도, GVC 참여도)가 추세 인플레이션에 유의한 음의 영향을 미친 것으로 확인되었다. 다만, Attinasi & Balatti(2021) 및 ECB(2021a)는 세계화가 추세 인플레이션에 미친 영향이 통계적으로는 유의하지만 경제적으로는 영향도가 제한적임을 지적하였다.
95) 본 고에서 결과를 제시하지는 않지만, 본 연구에서 조정 기대인플레이션 대신 기대인플레이션을 사용하면 세계화 효과의 유의성이 크게 낮아진다. 앞에서 기술된 것처럼 세계화가 기대인플레이션 형성에 영향을 미칠 경우, 기대인플레이션이 추세 인플레이션에 미치는 영향 중 일부는 세계화 효과로 파악할 필요가 있는 것으로 판단된다.
96) Ⅲ장에서 살펴본 바와 같이 Friedrich & Selcuk(2022)의 분석에서는 세계화(KOF 세계화지수)가 필립스곡선의 하향 이동(추세 인플레이션 하락)을 유의하게 설명하였다. 다만, 동 연구는 추세 인플레이션 결정요인으로 기대인플레이션을 포함하지 않았다.
97) 모형3, 모형4, 모형7, 모형8, 모형11, 모형12의
계수 추정치가 모두 유의한 양의 값으로 추정되었다.
98) 모형3, 모형4, 모형7, 모형8, 모형11, 모형12에서
계수 추정치를 비교하면, 서비스 인플레이션은 모두 유의한 양의 값을 가진 반면, 재화 인플레이션은 유의하지 않았다.
99) <표 Ⅳ-3>과 <표 부록-13>의 차이를 알아보면 다음과 같다. 본 연구의 변수 정의상
이 성립한다. 따라서 <표 Ⅳ-3>은 <표 부록-13>에 제약
을 추가한 형태(restricted version)로 파악할 수 있다.
100) 역사적 분해방법의 세부적인 내용은 <부록 5>에 정리하였다.
101) 헤드라인 및 근원 추세 인플레이션 결정요인 분해에서 차이는 헤드라인의 경우 원자재 가격의 영향이 근원에 비해 다소 유의미하게 산출된다는 점이다. 근원 추세 인플레이션의 경우 원자재 가격의 영향이 매우 미미하다. 이 점을 제외하면 헤드라인 및 근원 추세 인플레이션 결정요인 분해에서 주목할 만한 차이가 확인되지 않았다.
102) 아래 표에 정리된 것처럼 기대인플레이션 및 세계화의 기간별 추세 인플레이션 변화에 대한 기여분은 다양한 모형 간에 유사한 수준으로 추정되었다.
103) 미국은 1986년부터 1996년까지 노동가능인구 비중이 감소하였으며, 동 기간 동안 추세 인플레이션 상승요인으로 작용하였다.
104) <그림 Ⅳ-7>, <그림 Ⅳ-8> 및 <그림 Ⅳ-9>의 (패널 B)에서 1990~2003년 중 추세 인플레이션의 전체 하락 폭 중 세계화 기여도가 각각 70%, 56% 및 70%로 나타났다.
105) 이러한 점은 대체로 일본 사례를 살펴본 Shirakawa(2012) 및 Braun & Ikeda(2022)의 결과와 일맥상통한다.
106) 다만, 본 고에서는 한국의 고령화가 구조적인 인플레이션 하락요인으로 작용한 원인에 대해 상세한 분석을 실시하지 않는다.
107) 가계금융복지조사 결과 2022년 기준 50대의 실질 보유 순자산액(중간값 기준)은 2012년 기준 50대보다 40.1%(1.9억 원→2.7억 원) 더 많은 것으로 나타났다.
108) 본문의 내용을 좀 더 상세히 설명하면 다음과 같다. 본 연구에서 인구구조 변수는 모두 원자료의 로그값이므로 아래 식이 성립한다.
(로그 고령부양비 = 로그 고령인구 비중 - 로그 노동가능인구 비중)
노동인구 비중 감소 및 고령인구 증가는 동일하게 고령부양비 상승을 의미한다. 그런데, 만약 노동인구 비중 감소는 추세 인플레이션 상승을 촉발(‘효과1’)하는 반면 고령인구 비중 증가가 추세 인플레이션 하락을 유발(‘효과2’)할 경우에는 두 가지의 상반된 효과를 단일변수인 고령부양비를 통해 측정하는데 한계가 있다. 고령부양비는 동일하게 상승하더라도, ‘효과1’ 및 ‘효과2’의 상대 크기에 따라 추세 인플레이션이 상승할 수도 있고 하락할 수도 있기 때문이다.
109) <그림 Ⅳ-15>의 추세 인플레이션 추정치는 인구구조 외 경제 여건이나 인구구조가 여타 경제 여건에 미치는 영향을 반영하지 못하므로 장기 시계의 추정치는 신뢰도가 높지 않지만, 2027년 이후에는 추세 인플레이션 상승 폭이 더 확대된다.
110) 한국은 자료의 제약으로 기대인플레이션이 필립스곡선 평탄화에 미친 영향을 세계화 효과와 비교하지 못하였다.
111) 아울러, 한국은 고령인구 비중 증가 속도가 매우 가파르다는 측면에서, 과거 일본 사례와 같이 고령화가 경제 전체의 소비 감소를 유발중일 가능성도 존재하는 것으로 파악된다.
112) 인구구조가 고령화되는 경우 생산가능인구 감소로 자금수요가 줄어드는 한편, 고령층의 초과저축으로 자금공급이 확대됨에 따라 실질중립금리가 하락하게 된다. 즉, 생산가능인구가 줄어들 경우 일인당 자본장비율이 높아져 자본의 한계생산이 저하됨에 따라 투자가 축소되어 자금 수요가 줄어든다. 또한, 생애주기모형에서 금융자산이 고령층에 편중된 가운데 고령층의 비중이 확대됨에 따라 고령층이 보유한 초과 저축이 경제 전체의 자금공급 요인으로 작용하게 된다.
113) 이와 같은 경로는 Lis et al.(2020) 및 Koester et al.(2021) 등에서 제시된 바 있다. 동 연구들에서는 중앙은행이 고령화로 인한 실질중립금리 변화를 통화정책에 충분히 반영하지 못하는 구체적인 이유는 제시하지 않았으나, 예를 들면 노동가능인구 감소로 실질임금이 상승하지만, 실업률은 낮게 유지되고, 이는 명목임금 및 기대인플레이션의 상승으로 연결되나, 가계/정부부채가 누적된 상황에서 이들의 이자상환부담을 고려하여 중앙은행이 충분한 수준의 금리인상을 하지 못할 가능성 등을 고려할 수 있다. 이 점을 지적해주신 익명의 심사자께 감사드린다.
114) 기후변화가 인플레이션에 미치는 영향에 대한 논의는 ECB(2021b), Schnabel(2022), Cevik & Jalles(2023) 등을 참고하기 바란다.
115) 조정 기대인플레이션은 기대인플레이션을 세계화지수에 대해 회귀분석하여 산출된 잔차항이다. 동 방법의 이론적 근거 등에 대해서는 ‘Ⅳ.3.나’에 기술하였다.
116) 보수적으로 bound test에 I(1) 변수들에 대한 임계값(critical value)들을 적용하여 p-value를 산출하였다. Pesaran et al.(2001)에서는 F 및 t 검정통계량을 동시에 고려한다.
117) 인구구조 변수로 노동가능인구 비중, 고령인구 비중을 사용한 경우에 대한 각각의 결과도 비슷하며, 세계화 및 인구구조에 대한 장기, 단기 계수 모두 유의하다.
118) ADF 검정을 실시한 결과 세계화 변수와 함께 연간 CPI 및 (미국) 기대물가 또한 단위근이 존재하고 1차 차분 시계열은 I(0) 과정으로 확인되었다.
119) Yellen(2015)을 참고하였다.
120) 장기평균은 이다.
참고문헌
강현주, 2022, 인구구조 변화가 장기 거시경제 추세에 미치는 영향, 자본시장연구원 이슈보고서 22-26.
강환구, 2017, 고령화와 인플레이션, 『인구구조 고령화의 영향과 정책과제』, 한국은행.
안병권‧김기호‧육승환, 2017, 고령화와 경제성장, 『인구구조 고령화의 영향과 정책과제』, 한국은행.
장근혁‧백인석, 2022, 국내 인플레이션 결정요인 및 시사점, 자본시장연구원 이슈보고서 22-19.
정화영, 2022, 부동산가격 상승이 가계의 자산‧부채에 미치는 영향과 시사점, 자본시장연구원 이슈보고서 22-27.
Abdih, Y., Balakrishnan, R., Shang, B., 2016, What is keeping U.S. core inflation low: Insights from a bottom-up approach, IMF Working Paper WP/16.24.
Ahmad, S., Civelli, A., 2016, Globalization and inflation: A threshold investigation, Jouranl of Macroeconomics 48, 283-304.
Aksoy, Y., Basso, H., Smith, R.P., Grasl, T., 2019, Demographic structure and macroeconomic trends, American Economic Journal: Macroeconomics 11(1), 193-222.
Albagli, E., Grigoli, F., Luttini, E., 2022, Inflation Expectations and the Supply Chain, IMF Working Paper No.161.
Amiti, M., Dai, M., Feenstra, R.C., Romalis, J., 2020, How did China’s WTO entry affect U.S. prices, Journal of International Economics 126, 1-24.
Amiti, M., Itskhoki, O., Konings, J., 2019, International shocks, variable markups and domestic prices, Review of Economic Studies 866(311), 2356-2402.
Andrews, D., Gal, P., Witheridge, W., 2018, A genie in a bottle? Globalisation, competition and inflation, OECD ECO/WKP(2018)10.
Ari, A., Garcia-Macia, D., Mishra, S., 2023, Has the Phillips curve become steeper?, IMF Working Paper WP/23/100.
Ascari, G., Fosso, L., 2021, Inflation rate disconnect puzzle: On the international component of trend inflation and the flattening of the Phillips curve, DNB Working Paper No.733.
Attinasi, M.G., Balatti, M., 2021, Globalisation and its implications for inflation in advanced economies, ECB Economic Bulletin, Issue 4.
Auer, R.A., Fischer, A.M., 2010, The effect of low-wage import competition on U.S. inflationary pressure, Journal of Monetary Economics 57(4), 491-503.
Auer, R.A., Borio, C., Filardo, A., 2017, The globalisation of inflation: The growing importance of global value chains, BIS Working Papers No.602.
Auer, R.A., Degen, K., Fischer, A.M., 2013, Low-wage import competition, inflationary pressure, and industry dynamics in Europe, European Economic Review 59, 141-166.
Auer, R.A., Levchenko, A.A., Saure, P., 2019, International inflation spillovers through input linkages, Review of Economics and Statistics 101(3), 507-521.
Autor, D.H., Dorn, D., Katz, L.F., Patterson, C., Reenen, J. Van, 2020, The Fall of the Labor Share and the Rise of Superstar Firms, Quarterly Journal of Economics 35(2), 645-709.
Badinger, H., 2009, Globalization, the ouput-inflation tradeoff and inflation, European Economic Review 53, 888-907.
Ball, L. M., 2006, Has globalization changed inflation?, National Bureau of Economic Research working paper No.12687.
Banbura, M., Bobeica, E., 2020, Does the Phillips curve help to forecast euro area inflation, ECB, Working Paper No.2471.
Barnichon, R., Mesters, G., 2021, The Phillips multiplier, Journal of Monetary Economics 117, 689-705.
Bems, R., Caselli, F., Grigoli, F., Gruss, B.M., Lian, W., 2018, Is inflation domestic or global? Evidence from emerging markets, IMF Working Paper wp/18/241.
Benigno, P., Faia, E., 2016, Globalization, Pass-Through, and Inflation Dynamics, International Journal of Central Banking 12(4), 263-306.
Bernanke, B.S., 2007, Globalization and Monetary Policy, Speech at the Fourth Economic Summit, Stanford Institute for Economic Policy Research, Stanford, CA.
Bianchi, F., Civelli, A., 2015, Globalization and inflation: Evidence from a time-varying VAR, Review of Economic Dynamics 18(2), 406-433.
BIS, 2017, Monetary policy: Inching towards normalisation, BIS 87th annual report Chapter IV.
Blanchard, O., Cerutti, E., Summers, L., 2015, Inflation and Activity – Two Explorations and their Monetary Policy Implications, NBER Working Paper No.21762.
Bobeica, E., Lis, E., Nickel, C., Sun, Y., 2017, Demographics and inflation, ECB, Working Paper No.2006.
Bodnar, K., Nerlich, C., 2022, The macroeconomic and fiscal impact of population ageing, ECB, Occasional Paper No.296.
Borio, C., 2017a, Through the looking glass, Lecture by Claudio Borio, OMFIF City Lecture, 22 September 2017, London.
Borio, C., 2017b, How much do we really know about inflation? Presentation on the BIS Annual Report by Mr Claudio Borio, Head of the Monetary and Economic Department of the BIS, on the occasion of the Bank's Annual General Meeting, Basel, 25 June 2017.
Borio, C., 2021, Is inflation dead or hilbernating?, SUERF Policy Briefs No.41.
Borio, C., Filardo, A., 2007, Globalisation and Inflation: New Cross-Country evidence on the global determinants of domestic inflation, Working Paper No.227, BIS.
Borio, C., Disyatat, P., Juselius, M., Rungcharoenkitkul, P., 2022, Why so low for so long? A long-term view of real interest rates, International Journal of Central Banking 18(3), 48-87.
Branstetter, L., Lardy, N., 2006, China’s embrace of globalization, NBER Working Paper 12373.
Braun, R.A., Ikeda, D., 2022, Why aging induces deflation and secular stagnation, unpublished Working Paper.
Broniatowska, P., 2019, Population ageing and inflation, Population Ageing 12, 179-193.
Calza, A., 2009, Globalization, domestic inflation and global output gaps: Evidence from the Euro Area, International Finance 12(3), 301-320.
Carlstrom, C. T., Fuerst, T. S., 2009, Central Bank Independence and Inflation: A Note, Economic Inquiry 47(1), 182-186.
Carney, M., 2015, Inflation in a globalised world Remarks by Mr Mark Carney, Governor of the Bank of England and Chairman of the Financial Stability Board, at the Federal Reserve Bank of Kansas City Economic Symposium, Jackson Hole, Wyoming, 29 August 2015.
Carney, M., 2017, [De]Globalisation and inflation, Speech given by Mark Carney, Governor of the Bank of England, IMF Michel zamdessus Central Banking Lecture, 18 September 2017.
Carstens, A., 2022, The return of inflation, BIS.
Castelnuovo, E., 2010, Tracking U.S. inflation expectations with domestic and global indicators, Journal of International Money and Finance 29, 1340-1356.
Cecchetti, S.G., Debelle, G., 2006, Has the Inflation Process Changed?, Economic Policy 21(46), 311-352.
Celasun, O., Hansen, N.-J., Mineshima, A., Spector, M., Zhou, J., 2022, Supply bottlenecks: Where, why, how much, and what next?, IMF WP/22/31.
Cevik, S., Jalles, J.T., 2023, Eye of the storm: The impact of climate shocks on inflation and growth, IMF Working Paper 23/87.
Chan, J.C.C., 2013, Moving average stochastic volatility models with application to inflation forecast, Journal of Econometrics 176, 162-172.
Chen, N., Imbs, J., Scott, A., 2004, Competition, globalization and the decline of inflation, London Business School Working Paper.
Chen, N., Imbs, J., Scott, A., 2009, Dynamics of trade and competition, Journal of International Economics 77, 50-62.
Ciccarelli, M., Mojon, B., 2010, Global inflation, Review of Economics and Statistics 92(3), 524-535.
Cieslak, A., Povola, P., 2015, Expected returns in treasury bonds, Review of Financial Studies 28(10), 2859-2902.
Cogley, T., Sbordone, A.M., 2008, Trend inflation, indexation, and inflation persistence in the New Keynesian Phillips curve, American Economic Review 98(5), 2101-2126.
Coibin, O., Gorodnichenko, Y., 2015, Is the Phillips curve alive and well after all? Inflation expectations and the missing disinflations, American Economic Journal 7(1), 197-232.
Cote, D., de Resende, C., 2008, Globalization and inflation-The role of China, Bank of Canada, Working Paper 2008-35.
Daly, M.C., 2023, Forward-looking policy in a real-time world, FRB Sanfran Cisco, Economic Letter 2023-08.
Daniels, J.P., Nourzad, F., Vanhoose, D.D., 2005, Openness, Central Bank Independence, and the Sacrifice Ratio, Journal of Money, Credit and Banking 37(2), 371-379.
Del Negro, M., Lenza, M., Primiceri, G.E., Tambalotti, A., 2020, What’s up with the Phillips curve?, Brookings Papers on Economic Activity, Spring 2000, 301-373.
De Soyres, F., Franco, S., 2019, Inflation dynamics and global value chains, World Bank, Policy Research Working Paper Series, No.9090.
Di Sano, M., Gunnella, V., Lebastard, L., 2023, Deglobalisation: Risk or reality?, ECB Blog.
Dreger, C., Rieth, M., Pothier, D., 2015, Is globalization reduce the ability of central banks to control inflation?, European Parliament.
ECB, 2017, Domestic and global drivers of inflation in the euro area, ECB Economic Bulletin, Issue 4/2017.
ECB, 2021a, Implications of globalization for the ECB monetary policy strategy, ECB, Occasional Paper No.263.
ECB, 2021b, Climate change and monetary policy in the euro area, ECB, Occasional Paper No.271.
Eijffinger, S.C.W., Qian, Z., 2016, Trade openness and the Phillips curve: The neglected heterogeneity and robustness of empirical evidence, International Review of Economics and Finance 44, 13-18.
Eo, Y., Uzeda, L., Wong, B., 2023, Understanding trend inflation through the lens of the goods and services sectors, Journal of Applied Econometrics 38(5), 751-766.
Financial Times (FT), 2022. 5. 26, The death of globalisation has been greatly exaggerated.
Fisher, R.W., 2006, Coping with Globalization’s Impact on Monetary Policy, remarks for the National Association for Business Economics Panel Discussion at the 2006 Allied Social Science.
Forbes, K.J., 2019a, Has globalization changed the inflation process?, BIS Working Papers No.791.
Forbes, K.J., 2019b, Inflation dynamics: Dead, dormant or determined abroad?, Brookings Papers on Economic Activity, Fall 2019, 257-319.
Freeman R., 2007, The Great Doubling: The Challenge of the New Global Labor Market. In: Ending Poverty In America: How to Restore the American Dream. NY: The New Press ; 2007. pp. Chapter 4.
Friedrich, C., Selcuk, P., 2022, Impact of globalization and digitalization on the Phillips curve, Bank of Canada, Working Paper 22.
Gaiotti, E., 2010, Has Globalization Changed the Philips Curve? Firm-Level Evidence on the Effect of Activity on Prices. International Journal of Central Banking 6 (4), 51-84.
Gali, J., Gertler, M., 2000, Inflation dynamics: A structural econometrial analysis, NBER Working Paper No.7551.
Gajewski, P., 2015, Is ageing deflationary? some evidence from OECD countries, Applied Economic Letters 22(11), 916-918.
Gamber, E.N., Hung, J.H., 2001, Has the Rise in Globalisation Reduced US Inflation in the 1990s?, Economic Inquiry 39, 58-73.
Garnier, C., Mertens, E., Nelson, E., 2015, Trend inflation in advanced economies, International Journal of Central Banking 11(1), 65-136.
Gnan E., Valderrama, T., 2006, Globalisation, Inflation and Monetary Policy, Oesterreichische Nationalbank(Austrian Central Bank), Monetary Policy and the Economy 4, 37-54.
Goldberg, P.K., Reed, T., 2023, Is the global economy deglobalizing? And if so, why? and what is next?, NBER Working Paper No.31115.
Goodfriend, M., 2002, The phase of U.S. monetary policy: 1987 to 2001, FRB Richmond, Economic Quarterly 88(4), 1-17.
Goodhart, C.A.E., Pradhan, M., 2017, Demographics will reverse three multi-decade global trends, BIS Working Papers No.656.
Goodhart, C.A.E., Pradhan, M., 2020a, The demographic reversal: Ageing societies, waning inequality and an inflation revival, Palgrave MacMillan.
Goodhart, C.A.E., Pradhan, M., 2020b, Great demographic reversal: Ageing societies, waning inequality and inflation revival, SUERF Policy Note Issue No.197.
Goodhart, C.A.E., Pradhan, M., 2020c, The demographic reversal: Ageing societies, waning inequality and an inflation revival, SUERF Policy Note No.1973.
Gordon, R., Stock, J., 1998, Foundations of the goldilocks economy-suupply shocks and the time-varying NAIRU, Brookings Papers on Economic Activity 2, 297-333.
Grabner, C., Heimberger, P., Kapeller, J., Springholz, F., 2018, Measuring Economic Openness, wiiw Working Paper, No. 157.
Greenspan, A., 2005, Globalization, Remarks by Mr Alan Greenspan, Chairman of the Board of Governors of the US Federal Reserve System, at the Council on Foreign Relations, New York, 10 March 2005.
Groen, J.J.J., Mumtaz, H., 2008, Investigating the structural stability of the Phillips curve relationship, Bank of England, Working Paper No.350.
Guerrieri, L., Gust, C., Lopez-Salido, J.D., 2010, International competition and inflation: A New Keynesian Perspective, American Economic Journal: Macroeconomics 2(4), 247-280.
Guilloux-Nefussi, S., 2020, Globalization, market structure and inflation dynamics, Journal of International Economics 123, 1-23.
Gygli, S., Haelg, F., Potrafke, N., Sturnm, J.-E., 2019, The KOF globalization index-Revisited, Review of International Organizations 14, 543-574.
Hajdini, I., 2023, Trend inflation and implications for the Phillips curve, FRB Cleveland, Economic Commentary 2023-07.
Hazell, J., Herreno, J., Nakamura, E., Steinsson, J., 2022, The slope of the Phillips curve: Evidence from U.S. States, Quarterly Journal of Economics 137(3), 1299-1344.
Heise, S., Karahan, F., ahin, A., 2022, The missing inflation puzzle: The role of the Wage‐Price Pass‐Through, Journal of Money, Credit and Banking 54(1), 7–51.
Hobijn, B., Miles, R., Royal, J., Zhang, J., 2023, The recent steepening of Phillips curves, FRB Chicago, Chicago Fed Letter, No.475.
Hukkinen, J., Viren, M., 2022, Was globalization just a little thing in the process of inflation? SUEFR Policy Brief No.419.
Ihrig, J., Kamin, S.B., Lindner, D., Marquez, J., 2010, Some simple tests of the globalization and inflation hypothesis, International Finance 13(3), 343-75.
IMF, 2006, How has globalization affected inflation?, Chapter III, World Economic Outlook.
IMF, 2023, Globalization’s peak: Trade plateaus and restrictions rise, marking a new era for globalization, IMF Finance & Development 60(2).
Irwin, D.A., 2020, The pandemic adds momentum to the degobalization trend, PIIE(Perterson Institute for Internatoinal Economics).
Javorcik, B.S., 2020, Global supply chains will not be the same in the post-COVID-19 world, in COVID-19 and Trade Policy: Why Turning Inward Won’t Work, R. Baldwin and S. Evenett, eds., 2020.
James, H., 2023, Inflation and globalisation: The Tawney lecture 2022, Economic History Review 76(2), 391-412.
Janssen, R., 2018, Do demographics explain structural inflation? Invesco.
Jasova, M., Moessner, R., Takats, E., 2018, Domestic and global output gaps as inflation drivers: what does the Phillips curve tell?, BIS Wokring Papers No. 748.
Javorcik, B.S., 2020, Global supply chains will not be the same in the post-COVID-19 world, in COVID-19 and Trade Policy: Why Turning Inward Won’t Work, R. Baldwin and S. Evenett, eds., 2020.
Jorda, O., Marti, C., Nechio, F., Tallman, E., 2019a, Inflation: Stress-testing the Phillips curve, FRB San Francisco, Economic Letter 2019-05.
Jorda, O., Marti, C., Nechio, F., Tallman, E., 2019b, Why is inflation low globally? FRB Sanfran Cisco, Economic Letter 2019-19.
Juselius, M., Takats, E., 2015, Can demography affect inflation and monetary policy?, BIS Working Paper No.485.
Juselius, M., Takats, E., 2016, The age-structure-inflation puzzle, Bank of Finland Discussion Paper.
Juselius, M., Takats, E., 2018, The enduring link between demography and inflation, BIS Working Paper No.722.
Juselius, M., Takats, E., 2021, Inflation and demography through time, Journal of Economic Dynamics & Control 128, 1-15.
Kamber, G., Wong, B., 2020, Global factors and trend inflation, Journal of International Economics 122, 1-14.
Kamin, S.B., Marazzi, M., Schindler, J.W., 2006, The impact of Chinese exports on globla import prices, Review of International Economics 14(2), 179-201.
Kearney, 2023, America is ready for reshoring. Are you?, KEARNEY.
Kiley, M.T., 2015, Low inflation in the United States: A summary of recent research, FEDS Notes.
Kochugovindan, S., Lawson, J., 2023, Post pandemic Phillips curves: Cyclical and structural drivers in the great policy trade off, CEPR Discussion Paper No.17974.
Koester, G., Lis, E., Nickelo, C., Osbat, C., Smets, F., 2021, Understanding low inflation in the euro area from 2013 to 2019: Cyclical and structural drivers, ECB, Occasional Paper No.280.
Kohlscheen, E., Moessner, R., 2022, Globalisation and the slope of the phillips curve, Economic Letters 216, 1-4.
Kripfganz, S., Schneider, D.C., 2023, ARDL: Estimating autoregrssive distributed lag and equilibrium correction model, Forthcoming in Stata Journal.
Kuttner, K., Robinson, T., 2008, Investigating the structural stability of the Phillips Curve relationship, Reserve Bank of Australia, Research Discussion Paper 2008-05.
Lagarde, C., 2022, A new global map: European resilience in a changing world, ECB.
Lagarde, C., 2023, Policymaking in an age of shifts and breaks, ECB.
Lane, P.R., 2020, International inflation co-movements, ECB.
Lee, R., 2016, Macroeconomics, aging and growth, NBER Working Paper 22310.
Lis, E., Nickel, C., Papetti, A., 2020, Demographics and inflation in the euro area: a two-sector new Keynesian perspective, ECB, Working Paper No.2383.
Lodge, D., Mikolajun, I., 2016, Advanced economy inflation: the role of global factors, ECB, Working Paper 1948, August.
Lombardi, M. J., Riggi, M., Viviano, E., 2020, Bargaining power and the Phillips curve: A micro-macro analysis. BIS Working Papers 903.
Lombardi, M. J., Riggi, M., Viviano, E., 2023, Workers’ Bargaining Power and the Phillips Curve: A Micro–Macro Analysis, Journal of the European Economic Association 21(5), 1905-1943.
Melitz, M.J., 2003, The impact of trade on intra-industry reallocatons and aggregate industry productivity, Econometrica 71(6), 1695-1725.
Melitz, M.J., Ottaviano, G.I., 2008, Market size, trade and productivity, Review of Economic Studies 75(1), 295-316.
Mertens, E., 2016, Measuring level and uncertainty of trend inflation, Review of Economics and Statistics 98(5), 950-967.
Mikolajun, I., Lodge, D., 2016, Advanced economy inflation: The role of global factors, ECB, Working Paper Series No.1948.
Milani, F., 2012, Has Globalization Transformed U.S. Macroeconomic Dynamics?, Macroeconomic Dynamics 16(2), 204-29.
Mishkin, F.S., 2009, Globalization, Macroeconomic Performance and Monetary Policy, Journal of Money, Credit and Banking 41(1), 187-196.
Mody, A,, Ohnsorge, F., 2007, Can domestic policies influence inflation? The European experience, IMF Working Paper WP/07/257.
Mojon, B., Ragot, X., 2019, Can an ageing workforce explain low inflation?, BIS, Working Papers No.776.
Obstfeld, M., 2020, Global Dimensions of U.S. Monetary Policy, International Journal of Central Banking 16(1), 73-132.
Pain, N., Koske, I., Sollie, M., 2008, Globalisation and OECD Consumer price inflation, OECD Journal: Economic Studies 2008(1), 1-32.
Peach, R., Rich, R., Linder, M.H., 2013, The parts are more than the whole: Separating goods and services to predict core inflation, FRB New York, Current Issues in Economics and Finance 19(7).
Pesaran, M.H., Shin, Y., Smith, R. J., 2001. Bounds testing approaches to the analysis of level relationships, Journal of Applied Econometrics 16(3), 289–326.
Powell, J.H., 2018, Monetary policy and risk management at a time of low inflation and low unemployment, FRB.
Rapach, D.E., Wohar, M.E., 2005, Regime changes in international real interest rates: Are they a monetary phenomenon?, Journal of Money, Credit and Banking 37(5), 887-906.
Razin, A., Binyamini, A., 2007, Flattened Inflation-Output Tradeoff & Enhanced Anti-Inflation Policy: Outcome of Globalization?, NBER Working Paper No.13280.
Rogoff, K., 2004, Globalization and Global Disinflation, Monetary Policy and Uncertainty: Adapting to a Changing Economy, 77-112, FRB Kansas City.
Sbordone, A.M., 2007. Globalization and Inflation Dynamics: The Impact of Increased Competition. NBER Working Paper 13556, National Bureau of Economic Research, Cambridge, MA.
Schnabel, I., 2022, A new age of energy inflation: Climateflation, fossilfaltion and greenflation, ECB.
Shirakawa, M., 2012, Demographic changes and macroeconomic performance-Japanese experience, Opening remarks by Mr Masaaki Shirakawa, Governor of the Bank of Japan, at the 2012 BOJ-IMES Conference, hosted by the Institute for Monetary and Economic Studies, at the Bank of Japan, Tokyo, 30 May 2012.
Stock, J.H., Watson, M.W., 2007, Why Has U.S. Inflation Become Harder to Forecast, Journal of Money, Credit and Banking 39(1), 3-33.
Stock, J.H. and Watson, M.W., 2016, Core Inflation and Trend Inflation, Review of Economics and Statistics 98(4), 770-784.
Stock, J.H., Watson, M.W., 2021, Slack and cyclically sensitive inflation, Journal of Money, Credit and Banking 52(2), 393-428.
Subramanian, A., Kessler, M., 2013, Hyperglobalization of trade and its future, PIIE(Perterson Institute for International Economics) Working Paper 13-6.
Temple, J., 2002, Openness, Inflation, and the Phillips curve: A puzzle, Journal of Money, Credit and Banking 34(2), 450-469.
Tootell, G.M.B., 1998, Globalisation and US inflation, FRB Boston, New England Economic Review (July/August), 21-33.
Wall Street Journal (WSJ), 2021. 12. 5, Retreat from globalization adds to inflation risk.
Williams, J.C., 2006, Inflation persistence in an era of well-anchored inflation expectations, FRB Sanfran Cisco, Economic Letter 2006-27.
World Bank, 2020, World Development Report 2020: Trading for development in the age of global value chains. Washington, DC: World Bank.
Wynne, M., Kersting, E.K., 2007, Openness and inflation, FRB Dallas, Staff Papers.
Yellen, J.L., 2006, Monetary policy in a global environment, FRB Sanfran Cisco, Economic Letter 2006-12-13.
Yellen, J.L., 2015, Inflation dynamics and monetary policy, FRB.
Yoon, J., Kim, J., Lee, J., 2014, Impact of demographic changes on inflation and the macroeconomy, IMF Working Paper WP/14/210.
<부록 1> 변수
<부록 2> 필립스곡선 추가 분석
아래에서는 Ⅲ장 2절의 필립스곡선 평탄화 분석에서 기본모형 외에 추가로 분석한 확장 필립스곡선을 설명하고 추정 결과를 정리한다. Ⅲ장 2절의 본문에서 다룬 기본모형은 아래 식(부록1)과 같다.
첫 번째 추가모형으로 식(부록2)에 기술된 바와 같이 기본모형에 세계화
를 추가한 경우를 고려한다. 동 모형을 통해 세계화를 별도의 독립변수로 고려한 상태에서도 세계화가 필립스곡선 평탄화에 미치는 영향이 유의한 지 살펴볼 수 있다. 식(부록2)의 확장모형1(미국)에서는 기대인플레이션
대신 조정 기대인플레이션
를 사용한다. 분석 기간 중 미국 세계화지수
와 기대인플레이션
간 상관관계가 –0.85로 매우 높아 이를 조정할 필요가 있다. 이에 본 고에서는 세계화가 기대인플레이션에 미치는 영향을 제거하였으며, 이를 통해 얻은 기대인플레이션을 조정 기대인플레이션으로 지칭한다.115) 한국은 분석 기간 중 가용한 기대인플레이션 데이터가 존재하지 않는다.
다음으로 식(부록3)의 확장모형2(미국)에서는 확장모형1(미국)에 조정 기대인플레이션과 GDP갭 교차항
을 추가한다. 본 고 Ⅲ장 기존연구에서 살펴본 바와 같이 기대인플레이션 안정이 필립스곡선 평탄화를 유발한 핵심 요인이라는 연구가 다수 존재한다. 확장모형2의
계수 추정치가 유의한 양의 값을 가지면 기대인플레이션이 낮을수록 인플레이션의 GDP갭에 대한 민감도가 낮아지는 효과가 발생한다. 또한 확장모형2에서는 세계화와 GDP갭 간 교차항과 기대인플레이션과 GDP갭 간 교차항을 동시에 포함하므로 세계화 및 기대인플레이션이 필립스곡선 평탄화에 미친 영향을 비교해볼 수 있다.
아래 <표 부록-4> 및 <표 부록-5>에는 미국의 유형별 인플레이션에 대한 확장모형1 및 확장모형2의 분석 결과가 제시되어 있다. 다음으로 <표 부록-6>에는 한국 헤드라인 CPI에 대한 확장모형1의 추정 결과가 정리되어 있다.
<부록 3> 추세 인플레이션과 세계화 및 인구구조 간 장기균형(공적분) 관계 검증(ARDL 모형)
아래에서는 Ⅳ장 3절의 추세 인플레이션 결정요인 분석에서 적용한 ARDL 모형(본문 식(2))의 오차수정모형을 구성하여 장기적인 균형(공적분)관계를 검증하고 추가로 단기관계도 살펴본다.
우선 변수들이 I(1) 또는 I(0) 여부를 살펴보면, 본문에서 설명한 추세 인플레이션 추정 모형에 의해 식(2)의 종속변수인 추세 인플레이션은 I(1) 과정으로 볼 수 있다. 설명변수로 사용된 경제구조변수들에 대한 단위근 검정(Augmented Dickey-Fuller test: ADF test) 결과를 보면(<표 부록-7>), 변수들은 I(1) 과정으로 볼 수 있다. 원자재 수익률
과 환율 변화율
은 통상 알려져 있듯이 I(0)이다. 따라서 본문의 식(2)인 ARDL 모형에 대해 오차수정모형을 사용하여 추세 인플레이션과 경제구조변수 간 장기균형(공적분) 관계를 검증할 수 있다.
본문 식(2)의 양변에서
을 차감하여 오차수정모형으로 변형하면 아래 식(부록4)와 같다. 장기관계(Long run) 계수들
은 추세 인플레이션과 설명변수들 간의 장기균형 관계를 나타내며, 단기관계(Short run) 계수
들은 오차수정 부분
이 제외된 추세 인플레이션 변화
와 설명변수들의 변화
간 관계를 나타낸다.
변수 간 공적분 관계의 유효성을 검증하기 위해 장기관계식(Long run equation)의 유효성을 검증하는 F검정 및 오차수정의 유효성을 검증하는 t검정
을 동시에 수행하며, Pesaran et al.(2001)의 한계검정법(bouns test)116)을 이용하였다. <표 부록-8>에 미국의 추세 인플레이션(헤드라인, 근원, 근원 재화, 근원 서비스)을 대상으로 <표 Ⅳ-3> 및 <표 Ⅳ-4>에서 적용한 ARDL 모형들에 대한 F 및 t 검정 결과(p-value)를 정리하였다. 검증 결과를 보면, 근원 재화 추세 인플레이션의 경우 10% 신뢰수준 이내에서 유의하였으며, 그 외 모형은 1% 신뢰수준에서 유의하여 공적분 관계를 확인할 수 있다. <표 부록-9>는 <표 Ⅳ-5>와 <표 Ⅳ-6>에서 추정한 한국의 추세 인플레이션(헤드라인, 근원) ARDL 모형들에 대한 F 및 t 검정 결과(p-value)를 나타내며, 같은 맥락으로 추세 인플레이션과 설명변수 간 공적분 관계의 유의성을 확인할 수 있다.
다음으로 <표 부록-10>은 오차수정모형(식(부록4))을 적용한 장기(Long run) 및 단기(Short run) 계수들의 추정 결과를 보여준다. 부록에서 세계화와 부양비율
변수를 사용한 모형에 대한 결과만 보고한다.117) <표 부록-11>은 한국의 추세 인플레이션(헤드라인, 근원)에 대한 장기 및 단기관계식 추정 결과를 나타낸다.
참고로 한미 필립스곡선 추정에 사용된 연간 세계화 변수 또한 비정상성을 가지는 것으로 확인되었다.118) 이에 본 부록에 기술된 방법을 통하여 필립스곡선 회귀식의 유효성을 검정하였다. 아래에는 식(부록2)에 기술된 한미 확장모형1에 대해 ARDL 모형을 구성하여 <식 부록 4>를 이용한 오차수정모형(장기균형관계식)의 추정 결과가 나타나 있다.
<부록 4> 추세 인플레이션 실증분석 : 미국 추가분석
<부록 5> 추세 인플레이션 변화 결정요인 분해
ARDL 모형(본문 식(2))을 이용한 추세 인플레이션 변화에 대한 역사적 결정요인 분해(historical decomposition) 방법119)은 아래와 같다(<그림 Ⅳ-7>, <그림 Ⅳ-8>, <그림 Ⅳ-9>).
식(2)의 추정 결과인 <표 Ⅳ-3>, <표 Ⅳ-4>, <표 Ⅳ-4>를 이용한다. 먼저 추세 인플레이션
의 장기평균120)을 차감하여 평균조정 추세 인플레이션
을 생성한다.
에 대해 식(2)를 적용하면 상수항(c)만 0이 되며, 추정 계수 및 잔차항 모두
에 대한 결과와 같다. 개별 설명변수의
에 대한 기여도를 계산하기 위해 해당 변수 시계열 값을 0으로 설정하고 가상의
를 시뮬레이션한다. 예를 들어 세계화의 기여도를 산출하기 위해 세계화 변수
만 0으로 설정하고(다른 변수들은 그대로 사용) 앞서 추정된 계수와 잔차를 식(2)에 적용하여
를 계산한다. 이후
에서
를 차감하여 해당 요인(세계화)의 기여도를 산출하게 된다.
에서 개별 설명변수들의 기여도의 합을 차감하면 설명변수들로 설명되지 않는 ‘기타요인’이 산출된다. 분기별로 산출된
및 개별 기여도의 연간 평균을 계산하여 연도별 평균조정 추세 인플레이션 및 개별 요인들의 기여도를 산출하고, 구간별로 연도별 기여도 값들의 차이를 계산한다. 예를 들어 1981~1986년 구간의 값들은 1986년 값에서 1981년 값을 차감한 값으로 해당 기간에 발생한 추세 인플레이션 변화를 요인별로 분해한 결과이다.
|