|
J Neural Transm (Vienna). 2022; 129(5-6): 505–520.
Published online 2022 May 9. doi: 10.1007/s00702-022-02505-5
PMCID: PMC9188502
PMID: 35534717
A brief history of brain iron accumulation in Parkinson disease and related disorders
Paul B. Foley,1 Dominic J. Hare,2 and Kay L. Double
3
Author information Article notes Copyright and License information PMC Disclaimer
Abstract
Iron has a long and storied history in Parkinson disease and related disorders. This essential micronutrient is critical for normal brain function, but abnormal brain iron accumulation has been associated with extrapyramidal disease for a century. Precisely why, how, and when iron is implicated in neuronal death remains the subject of investigation. In this article, we review the history of iron in movement disorders, from the first observations in the early twentieth century to recent efforts that view extrapyramidal iron as a novel therapeutic target and diagnostic indicator.
철분은
파킨슨병 및 관련 질환에서 오랜 역사를 가지고 있습니다.
이 필수 미량 영양소는
정상적인 뇌 기능에 매우 중요하지만
비정상적인 뇌 철분 축적은
한 세기 동안 추체외로 질환 extrapyramidal disease 과 연관되어 왔습니다.
철분이 왜, 어떻게, 언제 신경세포의 죽음과 관련이 있는지는 여전히 연구 대상입니다. 이 글에서는 20세기 초의 첫 관찰부터 추체외로 철을 새로운 치료 표적 및 진단 지표로 간주하는 최근의 노력까지 운동 장애에서 철의 역사를 살펴봅니다.
Keywords: Parkinson disease, iron, substantia nigra, history of neuroscience
Introduction
Satisfying the high energy demands of the brain requires adequate access to iron because of its essential role in electron transport and ATP production (Lill et al. 2012). Iron is also needed for numerous biochemical processes specific to the central nervous system; for example, as a cofactor in myelin synthesis by oligodendrocytes (Todorich et al. 2009). Iron deficiency during critical developmental windows consequently impairs the elaboration of neural networks and cell signaling pathways, resulting in neurodevelopmental deficits (Gerlach et al. 1994; Beard and Connor 2003; Lozoff and Georgieff 2006; Hare et al. 2013a).
The key feature of iron in many chemical reactions is its propensity to donate electrons under physiological conditions. Redox cycling—whereby ferrous iron (Fe2+) is oxidized to ferric iron (Fe3+), which in turn is reduced to the ferrous state—allows the catalysis of hundreds of repeated reactions by relatively low concentrations of iron (micrograms per gram tissue). But the reactivity of iron can also be detrimental: in the Fenton reaction (first described in 1894: Fenton 1894), part of the Haber‒Weiss reaction (Haber and Weiss 1934), Fe2+ catalyzes the generation of cytotoxic hydroxyl radicals from hydrogen peroxide produced during mitochondrial respiration (Meneghini 1997). To maintain iron homeostasis in the brain, a complex network of regulatory proteins and signaling pathways constrain the impact of these deleterious reactions, and antioxidant proteins (e.g., superoxide dismutase 1, glutathione peroxidases) and other antioxidant species (e.g., α-tocopherol, coenzyme Q10) mitigate cellular damage (Hare et al. 2013a). A variety of transporter, chaperone, and storage proteins transport iron into and around the brain, ensuring delivery to where it is needed, while levels of unbound intracellular iron (primarily as Fe2+), the “labile iron pool”, are kept low by minimizing iron import, shunting iron excess to storage proteins (e.g., ferritins), and promoting its export (Kakhlon and Cabantchik 2002; Moos et al. 2007).
In this article, we outline the history of iron in Parkinson disease and other neurodegenerative disorders. Oxidative stress caused by iron dyshomeostasis is a driving factor in many neurodegenerative diseases (Ward et al. 2014; Valko et al. 2016), and it is also invoked as a major component of the free radical theory of aging (Schipper 2004). A role for iron metabolism in the pathophysiology of parkinsonism has an even longer history (Fig. 1), stretching back a century to the time of another pandemic that captured international attention. Whether a change in iron metabolism is a cause or consequence of parkinsonism, however, remains unresolved; the answer to this question is critical to how iron biochem-istry is viewed in the context of developing novel therapies for Parkinson disease and related movement disorders.
뇌의 높은 에너지 수요를 충족하려면
철분이 전자 수송과 ATP 생성에 필수적인 역할을 하기 때문에
적절한 철분 공급이 필요합니다(Lill 외. 2012).
철분은 또한
중추신경계와 관련된 수많은 생화학적 과정,
예를 들어
희돌기아교세포에 의한 미엘린 합성의 보조 인자로서도
필요합니다(Todorich et al. 2009).
중요한 발달 시기에 철분이 결핍되면
신경 네트워크와 세포 신호 경로의 정교함이 손상되어
결과적으로 신경 발달 결손이 발생합니다(
Gerlach 외. 1994; Beard and Connor 2003; Lozoff and Georgieff 2006; Hare 외. 2013a).
많은 화학 반응에서 철의 주요 특징은
생리적 조건에서
전자를 기증하는 경향입니다.
산화 환원 순환(철(Fe2+)이
철(Fe3+)로 산화되고
다시 철 상태로 환원되는 과정은
상대적으로 낮은 농도의 철(조직 그램당 마이크로그램)로
수백 가지의 반복 반응을 촉매할 수 있게 해줍니다.
그러나
철의 반응성은 해로울 수도 있습니다.
Haber-Weiss 반응의 일부인
Fenton 반응(1894년 처음 설명: Fenton 1894)에서
Fe2+는 미토콘드리아 호흡 중에 생성되는 과산화수소로부터
세포 독성 하이드 록실 라디칼의 생성을 촉매합니다(Meneghini 1997).
뇌의 철 항상성을 유지하기 위해
조절 단백질과 신호 경로의 복잡한 네트워크가
이러한 유해한 반응의 영향을 제한하고
항산화 단백질(예: 슈퍼옥사이드 디스뮤타제 1, 글루타치온 퍼옥시다제) 및
기타 항산화 종(예: α-토코페롤, 코엔자임 Q10)이
세포 손상을 완화합니다(Hare et al. 2013a).
To maintain iron homeostasis in the brain, a complex network of regulatory proteins and signaling pathways constrain the impact of these deleterious reactions, and antioxidant proteins (e.g., superoxide dismutase 1, glutathione peroxidases) and other antioxidant species (e.g., α-tocopherol, coenzyme Q10) mitigate cellular damage (Hare et al. 2013a)
다양한 수송체,
샤프론 및 저장 단백질이
철을 뇌 안팎으로 운반하여 필요한 곳으로
철이 전달되도록 하는 한편,
철 수입을 최소화하고
과도한 철을 저장 단백질(예: 페리틴)로 전환하며
수출을 촉진함으로써 "불안정한 철 풀"인
세포 내 철(주로 Fe2+)의 수준을 낮게 유지합니다(Kakhlon and Cabantchik 2002; Moos et al. 2007).
A variety of transporter, chaperone, and storage proteins transport iron into and around the brain, ensuring delivery to where it is needed, while levels of unbound intracellular iron (primarily as Fe2+), the “labile iron pool”, are kept low by minimizing iron import, shunting iron excess to storage proteins (e.g., ferritins), and promoting its export (Kakhlon and Cabantchik 2002; Moos et al. 2007).
이 글에서는
파킨슨병 및 기타 신경 퇴행성 질환에서
철분의 역사에 대해 간략하게 설명합니다.
철분 항상성 이상으로 인한
산화 스트레스는
많은 신경 퇴행성 질환의 원인이며(Ward 외. 2014; Valko 외. 2016),
노화의 자유 라디칼 이론의 주요 구성 요소로 언급되기도 합니다(Schipper 2004).
파킨슨병의 병태생리에서 철 대사의 역할은 국제적인 관심을 끌었던 또 다른 팬데믹 시기까지 거슬러 올라가는 훨씬 더 긴 역사를 가지고 있습니다(그림 1). 그러나 철분 대사의 변화가 파킨슨병의 원인인지 결과인지는 아직 해결되지 않았으며, 이 질문에 대한 답은 파킨슨병 및 관련 운동 장애에 대한 새로운 치료법을 개발하는 맥락에서 철분 생화학을 어떻게 바라보는가에 따라 결정됩니다.
Timeline of some of the major developments in iron and Parkinson disease (PD) research
1880‒1950: Initial observations
The presence of non-hemoglobin iron in the brain (i.e., iron other than that bound in erythrocytes), albeit at much lower levels than in other organs, had been recognized since the late nineteenth century. In 1887, Polish chemist Stanisław Szczepan Zaleski (1858‒1923; Dorpat) found that iron reactions in the brain (using ammonium sulfide or potassium ferrocyanide) were much stronger in gray than white matter (Zaleski 1887). More specifically, Romanian neuroanatomist Gheorghe Marinescu (1863‒1938) noted in 1909 that hemosiderin (degraded ferritin‒iron complexes) and melanin coexisted in some substantia nigra cells, but that melanin itself was iron-free (Marinesco 1909). In 1914, Italian pathologist Giosuè Biondi (1885–1959) described iron particles in neuronal nuclei and neuroglia of the substantia nigra and other tegmental mesencephalic regions in arteriosclerotic dementia, as well as in the cytoplasm of neurons, glia, and adventitial cells of the pallidum (Biondi 1914).
In 1915, Italian pathologist Pietro Guizzetti (1862–1937) visualized granules of ‘masked iron’—tissue-bound ferric iron, released by treatment with acid alcohol—in unfixed brain slices, using Max Perls’ 1867 Berlin (Prussian) blue method. In higher mammals, the reaction was strongest in the globus pallidus, substantia nigra, nucleus dentatus, and (in humans only) the nucleus ruber. He described a diffuse iron reaction in vascular walls, the neuronal cytoplasm, and the nucleus and cytoplasm of glia in these regions, and fine cytoplasmic granules around but never within the nuclei. Guizzetti further noted that brain iron was not present in younger animals; in humans, the reaction was first evident in the pallidum at about six months and peaked at eight years of age, while in the nigra the response commenced at 9‒12 months, and peaked at 16 years of age (Guizzetti 1915). German pathologist Otto Lubarsch (1866‒1933) reported that iron deposits in the neuroglia of the striatum, substantia nigra (but not co-located with melanin), and pituitary reflected local processes for removing erythrocytes that had leaked through the particularly thin walls of the vasculature in these regions (Lubarsch 1917).
In Germany, the Munich-based neuroanatomist Hugo Spatz (1888‒1969) interpreted these deposits quite differently. Spatz examined brain iron with the ammonium sulfide method for his macroscopic (Fig. 2) and the Turnbull Berlin blue method for his microscopic analysis, culminating in 1922 in a 130-page article accompanied by colored plates that garnered broader attention than Guizzetti’s report, overshadowed by the Great War. He could only assess the ephemeral iron reaction qualitatively, but two brain region groups were distinguished by particularly strong iron reactions:
1880-1950: 초기 관찰
뇌에 비헤모글로빈 철(즉, 적혈구에 결합된 철 이외의 철)의 존재는
다른 기관에 비해 훨씬 낮은 수준이지만
19세기 후반부터 인식되어 왔습니다.
1887년
폴란드의 화학자 Stanisław Szczepan Zaleski(1858-1923, 도르파트)는
뇌의 철 반응(황화암모늄 또는 페로시아나이드 칼륨 사용)이
백질보다 회색에서 훨씬 더 강하다는 사실을 발견했습니다(Zaleski 1887).
좀 더 구체적으로 루마니아의 신경해부학자 게오르게 마린스코(1863~1938)는 1909년 일부 흑질 세포에서 헤모사이데린(분해된 페리틴-철 복합체)과 멜라닌이 공존하지만 멜라닌 자체에는 철분이 없다는 사실을 발견했습니다(Marinesco 1909). 1914년 이탈리아 병리학자 지오수에 비온디(1885-1959)는 동맥경화성 치매에서 흑질의 신경핵과 신경아교세포 및 기타 분절성 중뇌 영역뿐만 아니라 신경세포, 신경교세포 및 뇌초세포의 세포질에서 철 입자를 발견했다고 설명했습니다(Biondi 1914).
1915년 이탈리아 병리학자 피에트로 귀제티(Pietro Guizzetti, 1862~1937)는 1867년 막스 펄스의 베를린(프로이센) 블루 방법을 사용하여 고정되지 않은 뇌 절편에서 산성 알코올로 처리하여 방출되는 조직 결합 철인 '마스크 철'의 과립을 시각화했습니다. 고등 포유류의 경우, 이 반응은 구상체, 흑질, 흑질핵 및 (인간에게만 해당되는) 핵 루버에서 가장 강하게 나타났습니다. 그는 혈관벽, 신경세포질, 신경아교세포의 핵과 세포질에서 확산 철 반응이 일어나고 핵 주변에는 미세한 세포질 과립이 있지만 핵 내에는 나타나지 않는다고 설명했습니다. 귀제티는 또한 뇌 철분은 어린 동물에는 존재하지 않으며, 인간의 경우 약 6개월에 팔리둠에서 반응이 처음 나타나고 8세에 정점에 이르는 반면, 흑질에서는 9-12개월에 반응이 시작되어 16세에 정점에 이른다고 지적했습니다(Guizzetti 1915). 독일의 병리학자 오토 루바르쉬(Otto Lubarsch, 1866~1933)는 선조체, 흑질(흑색질과 함께 위치하지 않음), 뇌하수체의 신경아교세포에 철 침착물이 이 부위의 혈관의 특히 얇은 벽을 통해 누출된 적혈구를 제거하는 국소적인 과정을 반영한다고 보고했습니다(Lubarsch 1917).
독일 뮌헨의 신경해부학자 휴고 슈파츠(1888~1969)는 이러한 침착을 완전히 다르게 해석했습니다. Spatz는 거시적 분석에서는 황화암모늄법을, 현미경 분석에서는 턴불 베를린 블루법을 사용하여 뇌 철을 조사했으며, 1922년 130페이지에 달하는 논문과 컬러 판을 첨부하여 기제티의 보고서보다 더 큰 주목을 받았지만 1차 대전으로 인해 가려졌습니다. 그는 일시적인 철분 반응을 정성적으로만 평가할 수 있었지만, 두 뇌 영역 그룹이 특히 강한 철분 반응으로 구별되었습니다:
Depiction by Spatz (1922a, b) of macroscopic distribution of iron staining in coronal sections of unfixed human brain, visualized with the ammonium sulfide method. Abb. 1. 42-year-old woman, section through rear left frontal lobe; concentrated ammonium sulfide for one minute: supra- and infra-commissural pallidum gray, otherwise no reaction. Abb. 2. 16-year-old boy, slightly caudal to plane of Abb. 1; ½ hour in 2% ferrocyanide solution, 15 h in dilute hydrochloric acid. Abb. 3. 62-year-old man, section through medial mammillary body; ¼ hour in 2% ferrocyanide solution, ¼ hour in hydrochloric acid. The blue coloration of the white matter is more intensive in the image than in reality. Abb. 5. 37-year-old woman, section through the caudal basal ganglia; several days in ammonium sulfide in alcohol. The strongest reaction is in the substantia nigra, then the nucleus ruber, the nucleus caudatus, and the caudal part of the putamen (the pallidum is not included in this section). Cl. = claustrum; C. L. = corpus Luysi; C. m. = corpus mamillare; C. a. = commissura anterior; C. i. = capsula interna; G. p. = globus pallidus (infrac. = pars infracommissuralis; p. suprac. = pars supracommissuralis); G. g. l. = ganglion geniculatum laterale; J. = lnsula; N. c. = nucleus caudatus; N. am. = nucleus amygdalae; N. r. = nucleus ruber; N. II. = nervus opticus; N. s. i. = nucleus substantiae innominatae; P. = putamen; S. n. = substantia nigra; Th. = thalamus; S. p. a. = substantia perforata anterior; V. A. = Vicq d’Azyr tract
In contrast to Lubarsch, Spatz distinguished the ‘endogenous’ or ‘functional iron’ in these regions from the ‘meta-bolic iron’ derived from erythrocyte decay; it was not transported by the accumulating cells, but was required for local metabolic processes, including the recently elucidated cellular respiration pathways. The iron-containing centers were structurally quite diverse in location and structure, but connected by pathways implicated in the regulation of muscle tone. Spatz therefore proposed “uniting these centers and their connective tracts as an extrapyramidal motor system” (Spatz 1922b). This was the first systems model based on biochemical relationships in the brain, and the earliest attempt to realize the concept recently proposed by the prominent neuroanatomists Cécile and Oskar Vogt (Berlin) that a regional chemical or metabolic characteristic might be critical to the function of that region, or could predispose it to dysfunction (“pathoclisis”) (Vogt and Vogt 1922).
Spatz conceived his model during the height of the encephalitis lethargica pandemic in Europe, an infection that elicited a variety of motor symptoms, including acute and chronic parkinsonism. Shortly after he submitted his synthesis for publication (August 1921), the Frankfurt-based neurologist Kurt Goldstein (1878–1965) reported his preliminary findings on the nigral lesion in chronic encephalitis lethargica (Goldstein 1921), unaware that Konstantin Trétiakoff (Paris) had described similar findings two years earlier (Trétiakoff 1919). Spatz recognized the significance of both reports for his contentious inclusion of the substantia nigra in the extrapyramidal motor system and his view that the nigral lesion underlay the parkinsonism of chronic encephalitis lethargica (Spatz 1922a,b).
Shortly thereafter, neuropathologist Julius Hallervorden (1882–1965) consulted Spatz regarding a woman who had had severe motor symptoms before her death at the age of 24 years. The only macroscopic change in the brain was the rust-brown coloration of the substantia nigra reticularis and pallidum, which they attributed to disturbed iron metabolism in glial cells, consistent with “the assumption of increased demand as well as stagnation in the operation of oxidative processes” (Hallervorden and Spatz 1922). The first biochemical change identified in an extrapyramidal disorder was thus localized increases in reactive iron levels. The genetic disorder suffered by the woman and several other members of her family was known as “Hallervorden‒Spatz disease” from the late 1930s, and more recently as pantothenate kinase-associated neurodegeneration (PKAN). It is one type of “neurodegeneration with brain iron accumulation”, a group of at least a dozen inherited metabolic disorders characterized by iron deposits in the basal ganglia, with a variety of neurologic and psychiatric symptoms, including progressive dementia, that generally emerge during late childhood and early adolescence (D'Mello and Kindy 2020).
Spatz found that iron levels were increased in encephalitis lethargica in the glia (but not the neurons) of the substantia nigra reticulata and the medial pallidum; in more advanced disease, iron clumps also appeared in the oligodendroglia of the reticulata. Similar changes were seen in Huntington disease (mainly in the striatum) and schizophrenia (dementia praecox) (Metz and Spatz 1924). Spatz’ colleague August Metz (1878–1945) observed that the increased iron content was initially accumulated by oligodendroglia, as fine granules; only later were the microglia recruited, accumulating iron as coarse granules, and still later the astrocytes near blood vessels (Metz and Spatz 1926). Spatz interpreted this distribution as reflecting a local “disparity between supply and demand”: microglia ( an only recently recognized cell type) were forced to accept the overflow that resulted from neuronal loss and their consequent loss of activity.
Spatz’ macroscopic findings on brain iron were particularly positively received. In 1923, they were quantitatively confirmed by Otto Wuth (1885–1946) (Wuth 1923), and Dutch pathologist Abraham Gans (1885–1971) commented that a “reaction that demonstrates specific chemical properties of certain centers of the brain cannot fail to be of interest to the pathologist. The iron reaction does that with wonderful clarity” (Gans 1923).
Increased nigral iron levels were also sometimes reported in non-extrapyramidal system disease (e.g., in neurosyphilis: Struwe 1928) or outside the extrapyramidal system in people with extrapyramidal disease (e.g., in the frontal cortex in post-encephalitic parkinsonism, although much more marked in the substantia nigra: Kingo 1934).
In 1923, German pathologist Friedrich Lewy (1885–1950) confirmed Spatz’ findings regarding iron localization, but particularly noted the perivascular iron deposits in the pallidum and striatum of brains from people with Parkinson disease (paralysis agitans) (Lewy 1923). Vascular wall iron deposits, particularly in the pallidum, had been described in a number of toxic and other pathologic conditions during the previous quarter century, but the Romanian neuroanatomists Marinesco and Draganesco emphasized that “active, atomic” iron could be identified in most neurons if appropriate methods were used (Marinesco and Draganesco 1923).
Using Perls staining, Jean Lhermitte (Paris), Walter Kraus (New York) and Douglas McAlpine (London) reported in 1924 that intracellular iron levels were diminished in the pallidum (but normal in the substantia nigra) in post-encephalitic parkinsonism, replaced by abnormal vascular wall deposits and siderophilic globules (Fig. 3). Although consistent with earlier findings in parkinsonism, the authors cautiously concluded that they had "no proof that these deposits play any part in the symptomatology of the disease" (Lhermitte et al. 1924).
루바르슈와 달리 스패츠는 이 부위의 '내인성' 또는 '기능성 철'을 적혈구 붕괴에서 파생된 '메타볼릭 철'과 구별했는데, 이는 축적된 세포에 의해 운반되지 않지만 최근에 밝혀진 세포 호흡 경로를 포함한 국소 대사 과정에 필요한 철이었습니다. 철분 함유 센터는 구조적으로 위치와 구조가 매우 다양하지만 근육 긴장도 조절과 관련된 경로로 연결되어 있습니다. 따라서 Spatz는 "이러한 중추와 그 연결 통로를 피라미드 외 운동 시스템으로 통합"할 것을 제안했습니다(Spatz 1922b). 이는 뇌의 생화학적 관계를 기반으로 한 최초의 시스템 모델이었으며, 최근 저명한 신경해부학자 세실과 오스카 보그트(베를린)가 제안한, 특정 부위의 화학적 또는 대사적 특성이 해당 부위의 기능에 중요하거나 기능 장애("병증")를 유발할 수 있다는 개념을 실현한 최초의 시도였습니다(Vogt and Vogt 1922).
Spatz는 유럽에서 급성 및 만성 파킨슨병을 비롯한 다양한 운동 증상을 유발하는 뇌염이 한창 유행하던 시기에 자신의 모델을 구상했습니다. 프랑크푸르트의 신경과 전문의 쿠르트 골드슈타인(1878~1965)은 출판을 위해 종합 결과를 제출한 직후(1921년 8월), 2년 전에 콘스탄틴 트레티아코프(파리)가 유사한 결과를 기술한 사실을 알지 못한 채 만성 뇌염의 흑질 병변에 대한 예비 연구 결과를 보고했습니다(Goldstein 1921). Spatz는 피라미드 외 운동 시스템에 흑질을 포함시킨 것과 흑질 병변이 만성 뇌염의 파킨슨병의 기저에 있다는 그의 견해에 대해 두 보고서의 중요성을 인식했습니다(Spatz 1922a,b).
얼마 후 신경병리학자 줄리어스 할러보든(1882-1965)은 24세의 나이로 사망하기 전에 심각한 운동 증상을 보였던 한 여성에 대해 Spatz와 상담했습니다. 뇌의 유일한 거시적 변화는 흑질 망상체와 흑질의 녹갈색 착색이었는데, 이는 "산화 과정의 작동 정체뿐만 아니라 수요 증가의 가정"과 일치하는 신경교 세포의 철 대사 장애로 인한 것으로 추정했습니다(Hallervorden and Spatz 1922). 따라서 피라미드 외 장애에서 확인된 최초의 생화학적 변화는 반응성 철 수치의 국소적 증가였습니다. 이 여성과 다른 가족 구성원이 겪은 유전적 장애는 1930년대 후반부터 '할러보덴-스파츠병'으로 알려졌고, 최근에는 판토텐산 키나아제 관련 신경 퇴행(PKAN)으로 불립니다. 이는 "뇌 철분 축적을 동반한 신경 퇴화"의 한 유형으로, 기저핵의 철분 침착을 특징으로 하는 최소 12가지 유전성 대사 장애 그룹으로 일반적으로 아동기 후반과 청소년기에 나타나는 진행성 치매를 포함한 다양한 신경 및 정신과적 증상이 나타납니다(D'Mello와 Kindy 2020).
Spatz는 무기력성 뇌염에서 흑질 망상체의 신경교세포(뉴런은 아님)와 내측 구상체의 철분 수치가 증가했으며, 더 진행된 질환에서는 철분 덩어리가 망상체의 희소돌기아교세포에도 나타났다는 사실을 발견했습니다. 헌팅턴병(주로 선조체)과 정신분열증(전두엽 치매)에서도 비슷한 변화가 나타났습니다(Metz와 Spatz 1924). Spatz의 동료인 August Metz(1878-1945)는 증가된 철분 함량이 처음에는 미세 과립 형태의 희소돌기아교세포에 의해 축적되고, 나중에는 미세아교세포가 모집되어 굵은 과립 형태로 철분을 축적하고, 그 후에는 혈관 근처의 성상세포에 축적되는 것을 관찰했습니다(Metz and Spatz 1926). Spatz는 이러한 분포가 국소적인 "수요와 공급 사이의 불균형"을 반영하는 것으로 해석했습니다. 즉, 최근에야 인식된 세포 유형인 미세아교세포가 신경세포 손실과 그에 따른 활동 상실로 인한 과잉을 받아들여야만 했던 것입니다.
뇌 철분에 대한 스패츠의 거시적 연구 결과는 특히 긍정적인 평가를 받았습니다. 1923년 오토 우스(Otto Wuth, 1885~1946)에 의해 정량적으로 확인되었고(Wuth 1923), 네덜란드 병리학자 아브라함 간스(Abraham Gans, 1885~1971)는 "뇌의 특정 중심부의 특정 화학적 특성을 보여주는 반응은 병리학자에게 관심을 끌 수밖에 없다"고 논평했습니다. 철분 반응은 놀라울 정도로 명확하게 이를 보여줍니다."(Gans 1923)라고 말했습니다.
피라미드 외 질환(예: 신경 매독)이나 피라미드 외 질환(예: 뇌전증 후 파킨슨병의 전두피질, 흑질에서 훨씬 더 두드러지지만)을 가진 사람들의 피라미드 외 질환에서도 흑질 철분 수치 증가가 보고되기도 했습니다(Struwe 1928): Kingo 1934).
1923년 독일의 병리학자 프리드리히 루이(1885~1950)는 철분 국소화에 관한 Spatz의 연구 결과를 확인했지만, 특히 파킨슨병(운동실조증) 환자의 뇌에서 뇌의 시상과 선조체의 혈관 주위 철분 침착에 주목했습니다(Lewy 1923). 혈관벽 철 침착, 특히 구상체의 철 침착은 지난 25세기 동안 여러 독성 및 기타 병리학적 조건에서 설명되었지만 루마니아의 신경해부학자 Marinesco와 Draganesco는 적절한 방법을 사용하면 대부분의 뉴런에서 "활성, 원자" 철을 확인할 수 있다고 강조했습니다(Marinesco와 Draganesco 1923).
1924년에 Perls 염색법을 사용하여 Jean Lhermitte(파리), Walter Kraus(뉴욕), Douglas McAlpine(런던)은 뇌전증 후 파킨슨병에서 세포 내 철분 수치가 뇌교에서 감소하고(흑질에서는 정상) 비정상적인 혈관벽 침착물과 측삭 소구로 대체되었다고 보고했습니다(그림 3). 파킨슨병의 초기 발견과 일치하지만, 저자들은 "이러한 침착물이 질병의 증상에 어떤 역할을 한다는 증거는 없다"고 조심스럽게 결론지었습니다(Lhermitte 외. 1924).
An early histopathological assessment of iron in the Parkinson disease brain using Perls Prussian blue staining described by Lhermitte et al. (1924). a, b Deposition of non-heme iron was found in globules lining the vessel walls of the globus pallidus (arrows; both with hematoxylin and Van Giesen stain; ×60 magnification for (a); ×180 for (b). c These deposits were also observed as extracellular globules with a high fat content (arrows; Scharlach R and hematoxylin stain; ×200 magnification) in globus pallidus tissue. d The substantia nigra showed no abnormal iron deposition, though pigmented cells were noted to be shrunken (Nissl stain; ×140 magnification).
Figures reproduced with permission from BMJ Publishing.
Iron-related pathology was also reported in individual cases of other parkinsonian disorders. In 1932, abnormal deposits in the pallidum were described in a 24-year-old man with “progressive pallidal degeneration”, characterized by parkinsonism and rigidity (Winkelman 1932); the disorder was perhaps akin to progressive supranuclear palsy, also marked by iron deposits in the basal ganglia and nigra (Dexter et al. 1991; Boelmans et al. 2012). Prominent Boston neurologist Stanley Cobb (1887‒1968) wrote in 1932 that “in … any degeneration or inflammation of the basal ganglia, [pallidal siderosis] is enhanced and iron rings may be found about the vessels of young people” (Cobb 1932). In 1935, two Indiana physicians described a 60-year-old laborer who developed severe parkinsonian symptoms after falling eight feet from a pile of rubber; autopsy two and a half years later found marked neural loss and glial and microglial iron accumulation in the nigra (Turnbull blue staining) (Bruetsch and DeArmond 1935). On the other hand, another study found normal levels of detectable iron in two cases of post-encephalitic parkinsonism (Bahr 1935), and a comprehensive summary of parkinsonism case studies to 1942 included only one (post-encephalitic) in which (pallidal) iron deposits were described (Benda and Cobb 1942).
Würzburg pathologist Martin Benno Schmidt (1863‒1949) concluded in 1940 that “Spatz’ interpretation that [iron] was connected with the activities and metabolism of the centers in which it is located—namely, those of the extrapyramidal motor system—is completely justified” (Schmidt 1940). Nevertheless, interest in whether iron was involved in the pathophysiology of parkinsonism had largely lapsed by this point for want of a conceptual framework, and attention gradually shifted to the Lewy bodies (first described by Friedrich Lewy in 1912, and so designated in 1919 by Trétiakoff), with which changes iron levels were not associated (Greenfield and Bosanquet 1953).
1950‒1980: Revival of interest in extrapyramidal system iron
As late as the 1980s, Spatz’ macroscopic findings were cited as the major publication on the subject, and confirmed by investigators using improved versions of the Perls reaction (Meguro et al. 2007). The Swedish investigators Hallgren and Sourander confirmed in 1958 that iron levels in the human brain were highest in extrapyramidal system structures; levels increased during the first two decades of life, but plateaued by 30 years of age. About one-third of non-heme iron was bound to a ferritin-like protein that the authors assumed was an iron store reserved for the specific needs of the brain (Hallgren and Sourander 1958). The marked concentration of iron in some regions of the extrapyramidal basal ganglia circuit vulnerable to Parkinson disease, including the substantia nigra, is now recognized (Davies et al. 2013), and is a feature of the human brain absent in other species such as the mouse (Hare et al. 2012a, b).
Alfonso Asenjo (1906‒1980) and colleagues at the Neurosurgical Institute in Chile undertook a series of light and electron microscopy studies of brain iron during the second half of the 1960s. They identified abnormal iron deposits in neurons and glia in ventrolateral thalamic tissue from four patients with various types of parkinsonism; siderosis was also evident in post mortem samples from various peripheral organs, but not in the cerebral cortex (Rojas et al. 1965). However, blood, urine and cerebrospinal fluid iron levels were similar in people without and without parkinsonism (Asenjo 1968). The authors subsequently found that chronic administration of large doses of iron to rabbits and monkeys (100 mg/week i.v., for up to 50 weeks) increased iron levels in the basal ganglia (Oberhauser et al. 1970) and elicited “parkinsonian” symptoms (primarily tremor) (Aranda and Asenjo 1969). Charles Still (South Carolina) similarly proposed in 1977 that a porous blood–brain barrier and “positive body iron balance” could lead to parkinsonism resulting from “brain iron overload” (Still 1977).
American neuropathologist Kenneth Earle (1919–1996; Washington), using X-ray fluorescence spectroscopy (which detects iron in biological tissue with very high sensitivity and spatial resolution (Pushie et al. 2014), found that that iron levels in brains from eleven people with parkinsonism were twice those in controls, and that the difference was greater in gray than white matter (Earle 1968). The spatial distribution of iron-rich granules in the putamen in ‘striato-nigral degeneration’ (now: multiple system atrophy) was visualized by Arnulf Koeppen and colleagues (New York) with electron probe X-ray microscopy and Perls staining in 1971 (Koeppen et al. 1971). Each of these studies used tissue fixed with formalin, a process long known to leach iron from biological tissue (Gōmōri 1936).
Only scattered reports of iron status in people with parkinsonism were otherwise published before 1980; for instance, slightly elevated CSF level in one of two patients with parkinsonism (Kjellin 1967), but normal serum and urinary levels of iron, transferrin, and ferritin (Campanella et al. 1973). However, major advances in knowledge about iron metabolism during this period would later have significant implications for Parkinson disease research, including studies of the iron storage protein ferritin (Dognin and Crichton 1975) and ferroxidase proteins such as ceruloplasmin (Curzon and O'Reilly 1960), although ceruloplasmin was not linked with parkinsonism until several decades later (Ayton et al. 2013). It was also during this period that the role of iron in monoamine oxidase activity was first examined by Ted Sourkes, Moussa Youdim and colleagues in Montreal (Symes et al. 1969), with later implications for dopamine metabolism.
Further, neurotoxins which cause relatively specific lesions of the nigrostriatal pathway became available that later served in laboratory models of parkinsonism, including 6-hydroxydopamine (6-OHDA) in 1968 (Ungerstedt 1968) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in 1976 (Langston and Palfreman 2014). It would later prove that their neurotoxicity involve iron-mediated oxidative stress (reviewed: Blum et al. 2001; Hare et al. 2013b; Hare and Double 2016); 6-OHDA itself has also been characterized as a neurotoxic metabolite of dopamine formed by iron-catalyzed autoxidation (Kienzl et al. 1999). In 1985, Judes Poirier, John Donaldson, and André Barbeau (Montreal) proposed that high levels of transition metals, including iron, in the substantia nigra could explain the specificity of the damage wreaked by MPTP (Poirier et al. 1985).
The exact role of iron in MPTP toxicity is still unclear, as is its relevance to the natural pathogenesis of idiopathic Parkinson disease. MPTP is metabolized by iron-containing monoamine oxidase B (MAO-B) in astrocytes to 1-methyl-4-phenylpyridinium (MPP+), and elevated brain iron levels may exacerbate this process; increasing brain iron levels by dietary means during periods of brain development indeed potentiates MPTP toxicity (Kaur et al. 2007). Nevertheless, the link between MPTP and MAO-B activity spurred the initial use of MAO-B inhibitors (e.g., selegiline, rasagiline) as therapy for people with Parkinson disease (Jenner and Olanow 1996), although the basis of their clinical utility is now thought to be much more complex.
1950-1980: 피라미드 외계 철에 대한 관심의 부활
1980년대 후반에 Spatz의 거시적 연구 결과가 이 주제에 대한 주요 논문으로 인용되었고, 연구자들은 펄스 반응의 개선된 버전을 사용하여 이를 확인했습니다(Meguro 외. 2007). 스웨덴의 연구자 홀그렌과 수란더는 1958년 인간 뇌의 철분 수치가 추체외로계 구조에서 가장 높으며, 생후 첫 20년 동안 수치가 증가하지만 30세가 되면 정체된다는 것을 확인했습니다. 비헴철의 약 1/3은 페리틴 유사 단백질에 결합되어 있었는데, 저자들은 이 단백질이 뇌의 특정 필요를 위해 저장된 철분 저장고라고 가정했습니다(Hallgren and Sourander 1958). 흑질을 포함하여 파킨슨병에 취약한 피라미드 외측 기저핵 회로의 일부 영역에 현저한 철분 농도가 존재한다는 사실이 밝혀졌으며(Davies 외. 2013), 이는 생쥐와 같은 다른 종에는 없는 인간 뇌의 특징입니다(Hare 외. 2012a, b).
칠레 신경외과 연구소의 알폰소 아센조(Alfonso Asenjo, 1906-1980)와 동료들은 1960년대 후반에 뇌 철분에 대한 일련의 광학 및 전자 현미경 연구를 수행했습니다. 이들은 다양한 유형의 파킨슨병 환자 4명의 복측 시상 조직에서 뉴런과 신경교세포에서 비정상적인 철 침착을 확인했으며, 다양한 말초 기관의 사후 샘플에서도 측색증이 관찰되었지만 대뇌 피질에서는 나타나지 않았습니다(Rojas 등, 1965). 그러나 혈액, 소변 및 뇌척수액 철분 수치는 파킨슨병이 있는 사람과 없는 사람에서 비슷했습니다(Asenjo 1968). 이후 저자들은 토끼와 원숭이에게 다량의 철분을 만성적으로 투여(최대 50주 동안 주당 100mg/정맥주사)하면 기저핵의 철분 수치가 증가하고(Oberhauser 외. 1970) "파킨슨병" 증상(주로 떨림)이 유발된다는 사실을 발견했습니다(Aranda and Asenjo 1969). 찰스 스틸(사우스 캐롤라이나)도 1977년에 다공성 혈액-뇌 장벽과 "양성 체내 철분 균형"이 "뇌 철분 과부하"로 인한 파킨슨병을 유발할 수 있다고 제안했습니다(Still 1977).
미국의 신경병리학자인 Kenneth Earle(1919-1996, 워싱턴)은 X-선 형광 분광법(매우 높은 감도와 공간 해상도로 생물학적 조직에서 철분을 검출하는 방법)을 사용하여 파킨슨병 환자 11명의 뇌에서 철분 수치가 대조군의 2배이며 그 차이가 백질보다 회색질에서 더 크다는 것을 발견했습니다(Earle 1968). '선조체-흑질 변성'(현재: 다계통 위축)에서 선조체에 철분이 풍부한 과립의 공간적 분포는 1971년 Arnulf Koeppen과 동료들(뉴욕)이 전자 프로브 X-선 현미경과 펄 염색을 사용하여 시각화했습니다(Koeppen 외. 1971). 이러한 각 연구는 포르말린으로 고정된 조직을 사용했는데, 이는 생물학적 조직에서 철분을 침출하는 것으로 오랫동안 알려져 왔습니다(Gōmōri 1936).
1980년 이전에는 파킨슨병 환자의 철분 상태에 대한 보고가 흩어져 있었는데, 예를 들어 파킨슨병 환자 2명 중 1명에서 CSF 수치가 약간 상승했지만 혈청과 소변의 철분, 트랜스페린, 페리틴 수치는 정상이었다(Kjellin 1967)는 보고가 있었습니다(Campanella et al. 1973). 그러나 이 기간 동안 철 대사에 대한 지식의 주요 발전은 나중에 철 저장 단백질 페리틴(Dognin and Crichton 1975)과 세룰로플라즈민과 같은 페록시다제 단백질에 대한 연구를 포함하여 파킨슨병 연구에 중요한 영향을 미치게 되지만(Curzon and O'Reilly 1960), 세룰로플라즈민은 수십 년이 지나야 파킨슨병과 관련이 밝혀졌습니다(Ayton et al. 2013). 또한 이 시기에 몬트리올의 테드 소크스, 무사 유딤과 동료들이 모노아민 산화효소 활성에서 철의 역할을 처음으로 조사했으며, 나중에 도파민 대사에 영향을 미쳤습니다(Symes 등. 1969).
또한, 1968년 6-하이드록시도파민(6-OHDA)과 1976년 1-메틸-4-페닐-1,2,3,6-테트라하이드로피리딘(MPTP) 등 흑질 경로의 비교적 특정한 병변을 유발하는 신경독소가 등장하여 파킨슨증 실험실 모델에 사용되었습니다(Langston and Palfreman 2014). 이후 이들의 신경 독성이 철을 매개로 한 산화 스트레스와 관련이 있다는 사실이 밝혀졌고(검토: Blum 외. 2001; Hare 외. 2013b; Hare and Double 2016), 6-OHDA 자체도 철 촉매 자가 산화에 의해 형성되는 도파민의 신경 독성 대사산물로 특징지어졌습니다(Kienzl 외. 1999). 1985년 쥬드 푸아리에, 존 도널드슨, 앙드레 바보(몬트리올)는 흑질에 철을 포함한 전이금속이 많으면 MPTP로 인한 손상의 특이성을 설명할 수 있다고 제안했습니다(푸아리에 외. 1985).
특발성 파킨슨병의 자연적인 발병 기전과의 관련성과 마찬가지로 MPTP 독성에서 철의 정확한 역할은 아직 불분명합니다. MPTP는 성상교세포에서 철 함유 모노아민 산화효소 B(MAO-B)에 의해 1-메틸-4-페닐피리디늄(MPP+)으로 대사되며, 뇌 철분 수치가 높아지면 이 과정이 악화될 수 있고 뇌 발달 기간 동안 식이를 통해 뇌 철분 수치가 증가하면 실제로 MPTP 독성이 강화됩니다(Kaur 등. 2007). 그럼에도 불구하고 MPTP와 MAO-B 활성 사이의 연관성은 파킨슨병 환자의 치료제로 MAO-B 억제제(예: 셀레길린, 라사길린)의 초기 사용을 촉진했지만(Jenner and Olanow 1996), 현재 임상적 유용성의 근거는 훨씬 더 복잡한 것으로 여겨지고 있습니다.
1980‒2000: Part 1. Building a case for iron and neurodegeneration
New quantitative measures of total iron, as well as separate assessment of the two redox states of iron provided new insights into the role of iron in parkinsonism. It had long been recognized that quantifying tissue iron using traditional staining techniques was subject to several limitations; not only was it specific for ferric iron, including that bound by ferritin and hemosiderin, but the technique inevitably leached iron from the assayed tissue samples (Gōmōri 1936).
In 1988, Peter Riederer and colleagues, including Emin Sofič, Wolf-Dieter Rausch, Paul Kruzik (Vienna) and Moussa Youdim (Haifa), reported that total substantia nigra iron levels quantified by spectrophotometry were increased by 176% and iron(III) levels by 255% in fresh frozen tissue samples from eight people with parkinsonism, while levels in the cortex, hippocampus, putamen, and globus pallidus were similar to those in age-matched controls; the authors suspected that the specificity of the change compared with earlier reports might be explained by age differences in the source patients (Sofic et al. 1988). Further, they identified an inversion of the iron (II)/iron (III) ratio in the substantia nigra (from 2:1 to 1:2) (Riederer et al. 1989). Riederer and his colleagues interpreted their findings as possibly providing “an indirect indication of enhanced oxidative processes” (Sofic et al. 1988). They later specified the pars compacta as the site of greatest change (Sofic et al. 1991). Riederer and colleagues also reported that nigral ferritin levels were increased in parkinsonism (Riederer et al. 1989; Jellinger et al. 1990), but both unchanged and reduced levels were also documented (reviewed: Mochizuki et al. 2020).
At about the same time, David Dexter, Peter Jenner and colleagues (London), using inductively coupled plasma spectroscopy, reported a more modest 31‒35% increase in nigral iron and 29% decrease in the pallidum (in frozen tissue) (Dexter et al. 1987, 1989). Further, Jenner and colleagues found a generalized reduction in ferritin levels throughout the brain, including in the substantia nigra, in parkinsonism, but not progressive supranuclear palsy or multiple system atrophy, which also feature increased total iron levels (a response to neurodegeneration in affected basal ganglia regions) and nigral cell death (Dexter et al. 1991).
The Riederer and Jenner groups were both cautious about the implications of their findings for the pathophysiology of parkinsonism. The increase in brain iron levels with normal aging (Markesbery et al. 1984), however, was consistent with abnormal accumulation being involved in diseases such as parkinsonism, in which age is the major risk factor, and the significance of increased ferric iron levels for local oxidative stress were clear (Götz et al. 1990).
On the other hand, Ali Rajput and colleagues in Canada, for instance, found that levels of iron (and most other metals) assessed with atomic absorption and emission were near normal in fixed substantia nigra tissue from parkinsonian patients (Uitti et al. 1989); Loeffler and colleagues (Detroit) concurred, but found increased levels in the pallidum (Loeffler et al. 1995). In particular, investigators who employed Mössbauer spectroscopy generally did not find significant increases in total iron levels in parkinsonism (Friedman and Galazka-Friedman 2012), a pattern that may be explained by the relatively low accuracy of Mössbauer spectroscopy (Gerlach et al. 1995; Hare et al. 2012a, b).
Discordance regarding substantia nigra iron levels in parkinsonism (and, indeed, differing estimates of the normal levels) may have been related to the tissue assessed (fixed or unfixed), sample treatment, the detection methods applied, and the age and disease state of the source patients. In general, however, both semi-quantitative and quantitative analyses have concluded that total iron levels in the nigra are increased in parkinsonism; changes in other regions in post mortem tissue have been less consistent (reviewed: Sian-Hülsmann et al. 2011; Hare et al. 2012a, b; Ayton and Lei 2014).
Early findings regarding the association of iron with neuromelanin were also discordant. Electron microscopy with X-ray microprobe analysis indicated that iron levels were increased in neuromelanin-free areas of fixed substantia nigra (that is, sites of neurodegeneration) and reduced in melanin clumps; they were particularly high in Lewy bodies, which also included aluminum, and the authors concluded that the high iron levels, not found in progressive supranuclear palsy, were not attributable solely neurodegeneration (Hirsch et al. 1991). However, Daniel Perl and colleagues, using a laser microprobe mass analyzer to assess fixed tissue, found that iron levels of intra-neuronal neuromelanin granules were higher than in the non-melanized neuronal cytoplasm or adjacent neuropil, and higher in parkinsonism than control tissue (Good et al. 1992).
In 1989, Youdim, Dorit Ben-Shachar, and Riederer proposed that Parkinson disease results from a “progressive siderosis” of the substantia nigra involving oxidative stress driven by an iron–neuromelanin interaction (Youdim et al. 1989). Direct imaging of metal association with neuromelanin later confirmed that this pigment avidly binds ferric iron (as well as other metals) and that increased levels of iron are present on neuromelanin in the substantia nigra in Parkinson disease (Jellinger et al. 1992; Gerlach et al. 2003; Bohic et al. 2008). In a healthy cellular environment, neuromelanin, by binding iron at high- and low-affinity binding sites (Double et al. 2003), appears to effectively sequester excessive iron in vulnerable neurons (Li et al. 2005), but when its buffering capacity is exhausted by the abnormal accumulation of cellular iron it may actively contribute to the redox-active iron pool and thereby to oxidative stress-induced neurodegeneration (reviewed: Hare and Double 2016; Mochizuki et al. 2020; Sian-Hulsmann and Riederer 2021).
In 2001, Zecca and colleagues reported that nigral total iron levels (in contrast to those of the locus ceruleus) increased during the first four decades of life and then remained stable into old age (90 years); ferritin (light and heavy chain) levels also increased across life (also different to the locus ceruleus), but were lower than those of neuromelanin, which increases and matures with age (Zecca et al. 2001a; Fedorow et al. 2006). Mössbauer spectroscopy indicated that the major iron(III) storage in nigral neurons was neuromelanin (Zecca et al. 2001b; Friedman and Galazka-Friedman 2012). Werner and colleagues found in 2008 that nigral ferritin levels were increased (light and heavy chain ferritins, but statistically significant only for heavy chain ferritin (Werner et al. 2008), while Koziorowski reported in 2007 that nigral levels of light chain ferritin were lower and those of heavy chain ferritin higher in Parkinson disease (Koziorowski et al. 2007). Friedman and Galazka-Friedman have interpreted such findings as indicating that altered ferritin shell structure and the consequent leakage of free iron are more important for the pathophysiology of parkinsonism than total iron levels (Friedman and Galazka-Friedman 2012).
In 2000, reactive iron was identified in Lewy bodies (Castellani et al. 2000), the inclusion bodies, composed largely of α-synuclein, that are typical of idiopathic Parkinson disease. Both iron(II) and iron(III) can bind to α-synuclein, but iron(III) particularly favors α-synuclein aggregation and fibril formation, and reactive oxygen species generation (reviewed: Zecca et al. 2001b).
Mutations in several iron-related proteins have been associated with risk of Parkinson disease, including ferritin, transferrin, iron-regulatory protein 2, and divalent metal transporter 1 (reviewed: Hare et al. 2013a; Fig. 4). Peripheral iron metabolism, on the other hand, was generally found to be unrelated to the risk of parkinsonism. A meta-analysis of all quantitative reports of iron in the substantia nigra and biofluids in Parkinson disease concluded that cerebrospinal iron levels were non-significantly higher and serum/plasma levels somewhat lower in parkinsonism, while CSF and serum/plasma ferritin and transferrin and serum/plasma lactoferrin and haptoglobin concentrations are similar in people with Parkinson disease and controls (reviewed: Jiménez-Jiménez et al. 2021).
1980-2000: 파트 1. 철분과 신경 퇴행에 대한 사례 구축
총 철분의 새로운 정량적 측정과 철분의 두 가지 산화 환원 상태에 대한 별도의 평가는 파킨슨병에서 철분의 역할에 대한 새로운 통찰력을 제공했습니다. 기존의 염색 기법을 사용하여 조직 철분을 정량화하는 데는 페리틴과 헤모시데린에 결합된 철분에만 특이적일 뿐만 아니라 분석된 조직 샘플에서 철분이 필연적으로 침출된다는 몇 가지 한계가 있다는 사실이 오랫동안 인식되어 왔습니다(Gōmōri 1936).
1988년, 피터 리더러와 동료들(에민 소피치, 볼프-디터 라우쉬, 폴 크루직(비엔나), 무사 유딤(하이파)을 비롯한 연구자들은 파킨슨병 환자 8명의 신선한 냉동 조직 샘플에서 분광광도법으로 정량화된 총 흑질 철 수치가 176%, 철(III) 수치가 255% 증가한 반면 피질, 해마, 푸타멘 및 흑질체의 수준은 연령 일치 대조군과 비슷하다는 보고를 했습니다; 저자들은 이전 보고에 비해 변화의 특이성이 원인 환자의 연령 차이로 설명될 수 있다고 의심했습니다(Sofic et al. 1988). 또한, 그들은 흑질에서 철(II)/철(III) 비율이 2:1에서 1:2로 역전된 것을 확인했습니다(Riederer 등. 1989). Riederer와 그의 동료들은 이 연구 결과가 "강화된 산화 과정을 간접적으로 나타내는 것"이라고 해석했습니다(Sofic 외. 1988). 그들은 나중에 파스 콤팩타를 가장 큰 변화의 부위로 지정했습니다(Sofic 외. 1991). Riederer와 동료들은 또한 파킨슨병에서 니그랄 페리틴 수치가 증가한다고 보고했지만(Riederer 외. 1989; Jellinger 외. 1990), 변하지 않은 수치와 감소한 수치도 모두 기록되었습니다(검토: Mochizuki 외. 2020).
거의 동시에, 유도 결합 플라즈마 분광법을 사용한 데이비드 덱스터, 피터 제너와 동료들(런던)은 니그랄 철이 31-35% 증가하고 (냉동 조직에서) 팔리덤이 29% 감소했다고 보고했습니다(덱스터 외. 1987, 1989). 또한 제너와 동료들은 파킨슨병에서 흑질을 포함한 뇌 전체에서 페리틴 수치가 전반적으로 감소하지만 진행성 핵상 마비나 다계통 위축은 나타나지 않으며, 총 철분 수치(영향을 받은 기저핵 영역에서 신경 퇴화에 대한 반응)와 흑질 세포 사멸이 증가한다는 사실을 발견했습니다(Dexter 외. 1991).
리더러와 제너 그룹은 파킨슨병의 병태 생리학에 대한 연구 결과의 의미에 대해 신중을 기했습니다. 그러나 정상 노화에 따른 뇌 철분 수치의 증가(Markesbery 등. 1984)는 나이가 주요 위험 요인인 파킨슨병과 같은 질병에 비정상적인 축적이 관여한다는 것과 일치했으며, 국소 산화 스트레스에 대한 철분 수치 증가의 중요성은 분명했습니다(Götz 등. 1990).
반면, 캐나다의 알리 라즈푸트(Ali Rajput)와 동료들은 파킨슨병 환자의 고정 흑질 조직에서 원자 흡수 및 방출로 평가한 철(및 대부분의 다른 금속) 수치가 정상에 가깝다는 사실을 발견했으며(Uitti 외. 1989), 로플러(Loeffler)와 동료(디트로이트)도 이에 동의했지만 팔리덤에서 수치가 증가했음을 발견했습니다(Loeffler 외. 1995). 특히 뫼스바우어 분광법을 사용한 연구자들은 일반적으로 파킨슨병에서 총 철분 수치의 유의미한 증가를 발견하지 못했는데, 이는 뫼스바우어 분광법의 상대적으로 낮은 정확도로 설명할 수 있는 패턴입니다(Gerlach 외. 1995; Hare 외. 2012a, b).
파킨슨병의 흑질 철분 수치에 대한 불일치(그리고 실제로 정상 수치에 대한 다른 추정치)는 평가된 조직(고정 또는 비고정), 샘플 처리, 적용된 검출 방법, 원인 환자의 연령 및 질병 상태와 관련이 있을 수 있습니다. 그러나 일반적으로 반정량적 분석과 정량적 분석 모두 파킨슨병에서 흑질의 총 철분 수치가 증가한다는 결론을 내렸으며, 사후 조직에서 다른 영역의 변화는 일관성이 떨어졌습니다(검토 중): Sian-Hülsmann 외. 2011; Hare 외. 2012a, b; Ayton and Lei 2014).
철분과 뉴로멜라닌의 연관성에 관한 초기 연구 결과도 일치하지 않았습니다. X-선 마이크로프로브 분석을 통한 전자 현미경 검사 결과, 철분 수치는 고정 흑질의 뉴로멜라닌이 없는 영역(즉, 신경 퇴행 부위)에서 증가하고 멜라닌 덩어리에서는 감소했으며, 특히 알루미늄이 포함된 루이체에서 높게 나타났고 저자들은 진행성 핵상 마비에서는 발견되지 않는 높은 철분 수치는 신경 퇴행에만 기인하는 것이 아니라고 결론지었습니다(Hirsch et al. 1991). 그러나 Daniel Perl과 동료들은 레이저 마이크로프로브 질량 분석기를 사용하여 고정 조직을 평가한 결과, 신경세포 내 뉴로멜라닌 과립의 철분 수치가 멜라닌화되지 않은 신경세포질이나 인접 신경수초보다 높고 대조 조직보다 파킨슨병에서 더 높다는 것을 발견했습니다(Good et al. 1992).
1989년 Youdim, Dorit Ben-Shachar, Riederer는 파킨슨병이 철과 뉴로멜라닌의 상호작용에 의한 산화 스트레스와 관련된 흑질의 "진행성 측색증"으로 인해 발생한다고 제안했습니다(Youdim 등. 1989). 이후 뉴로멜라닌과 금속의 결합을 직접 영상화한 결과, 이 색소가 철(및 다른 금속)에 열렬히 결합하며 파킨슨병의 흑질에서 뉴로멜라닌에 철 수치가 증가한다는 것이 확인되었습니다(Jellinger 등, 1992; Gerlach 등, 2003; Bohic 등, 2008). 건강한 세포 환경에서 뉴로멜라닌은 고친화 및 저친화 결합 부위에서 철과 결합함으로써(Double et al. 2003) 취약한 뉴런에서 과도한 철을 효과적으로 격리하는 것으로 보이지만(Li et al. 2005), 세포 철의 비정상적인 축적으로 인해 완충 능력이 소진되면 산화 환원 활성 철 풀에 적극적으로 기여하여 산화 스트레스에 의한 신경 퇴화에 기여할 수 있습니다(검토 중): Hare and Double 2016; Mochizuki 외. 2020; Sian-Hulsmann and Riederer 2021).
2001년에 제카와 동료들은 (세큘러스 유전자좌와는 대조적으로) 흑색 총철 수치가 생애 첫 40년 동안 증가하다가 노년기(90세)까지 안정적으로 유지되고, 페리틴(경쇄 및 중쇄) 수치도 일생 동안 증가하지만(세큘러스 유전자좌와는 다른) 나이가 들면서 증가하고 성숙하는 뉴로멜라닌보다는 낮다고 보고했습니다(제카 외 2001a; 페도로우 외. 2006). 뫼스바우어 분광법은 흑질 뉴런의 주요 철(III) 저장소가 뉴로멜라닌이라는 것을 보여주었습니다(Zecca 등. 2001b; Friedman and Galazka-Friedman 2012). 베르너와 동료들은 2008년에 흑질 페리틴 수치가 경쇄 및 중쇄 페리틴 모두 증가했지만 중쇄 페리틴에 대해서만 통계적으로 유의미하다는 것을 발견했으며(베르너 외. 2008), 코지오로우스키는 2007년에 파킨슨병에서 경쇄 페리틴 수치는 낮고 중쇄 페리틴 수치는 높았다고 보고했습니다(코지오로우스키 외. 2007). 프리드먼과 갈라즈카-프리드먼은 이러한 결과를 총 철분 수치보다 변화된 페리틴 껍질 구조와 그에 따른 유리 철의 누출이 파킨슨병의 병리 생리학에 더 중요하다는 의미로 해석했습니다(Friedman and Galazka-Friedman 2012).
2000년에 특발성 파킨슨병의 전형적인 α-시누클레인으로 구성된 봉입체인 루이체에서 반응성 철이 확인되었습니다(Castellani 등. 2000). 철(II)과 철(III) 모두 α-시누클레인에 결합할 수 있지만, 철(III)은 특히 α-시누클레인 응집과 원섬유 형성, 활성 산소 종 생성에 유리합니다(검토: Zecca 등. 2001b).
페리틴, 트랜스페린, 철 조절 단백질 2, 2가 금속 수송체 1 등 여러 철 관련 단백질의 돌연변이는 파킨슨병 위험과 관련이 있습니다(검토: Hare 외. 2013a, 그림 4). 반면 말초 철분 대사는 일반적으로 파킨슨병의 위험과 관련이 없는 것으로 밝혀졌습니다. 파킨슨병에서 흑질과 생체액의 철분에 대한 모든 정량적 보고에 대한 메타 분석에 따르면 파킨슨병에서 뇌척수 철분 수치는 유의미하게 높지 않고 혈청/혈장 수치는 다소 낮은 반면, CSF와 혈청/혈장 페리틴 및 트랜스페린, 혈청/혈장 락토페린 및 합토글로빈 농도는 파킨슨병 환자와 대조군에서 비슷하다고 결론지었습니다(검토: Jiménez-Jiménez 외., 2021).
Iron metabolism in Parkinson disease. Proposed mechanism of iron accumulation in dopaminergic neurons and sources of oxidative stress.
Reproduced with permission from Hare and Double, 2016
1980‒2000: Part 2. New technologies, new discoveries: the in vivo imaging revolution
Interest in the role of iron in the pathophysiology of parkinsonism was boosted by recognition of the ability of magnetic resonance imaging (MRI), developed during the 1970s and introduced into the clinic in the 1980s, to detect and quantitate iron in the brains of living patients, particularly the substantia nigra. The paramagnetic properties of brain non-heme iron cause local areas of magnetic field inhomogeneity that reduce transverse relaxation times (T2) (Drayer et al. 1986b). In early studies, however, MRI findings were only incompletely correlated with post mortem reports based on Perls staining for iron. Initial imaging studies of living patients, some investigators found that nigral iron levels were reduced in parkinsonism (Rutledge et al. 1987), while others found iron deposits in the putamen, caudate, and substantia nigra compacta (Fig. 5) in patients with multisystem atrophy or progressive supranuclear palsy (Drayer et al. 1986b). Subsequent studies with larger numbers of patients (Antonini et al. 1993) and stronger magnetic fields (Gorell et al. 1995) confirmed that areas of T2-weighted hypointensity were typical in the nigra, caudate, and putamen in parkinsonism, but "shortening of T2 values in the substantia nigra did not correlate with disease duration nor with clinical severity" (Antonini et al. 1993). That is, nigral iron deposits were an early feature of parkinsonism, consistent with their playing a causative role in its pathogenesis, but also with their being unrelated to the disease process altogether.
Early T2-weighted magnetic resonance imaging using a 1.5 T field strength of iron in a multiple system atrophy. White arrows in a, b denote decreased signal intensity, indicating iron deposits, in the putamen and caudate nucleus compared to the globus pallidus (open arrows, (b)). Hypointensity marked with the white arrowhead (c) was interpreted as indicative of specific iron accumulation in the substantia nigra pars compacta. Reproduced from Drayer et al. 1986a with permission from the
Radiological Society of North America (copyright 1986)
The accuracy and specificity of in vivo brain iron measurements increased as MRI technology improved during the 1990s, allowing the two alternatives to be more closely examined. For instance, George Bartzokis (1956–2014) employed two MRI systems with different magnetic field strengths (0.5 and 1.5 T) to measure the field-dependent increase in R2 (the inverse of T2), a specific measure of total iron in the mineral core of ferritin molecules (Bartzokis et al. 1993). Bartzokis and his colleagues found evidence for increased ferritin-bound iron in people with early onset disease in the nigra compacta and reticulata, putamen and pallidum, but reduced ferritin capacity in the nigra reticulata in people with later onset Parkinson disease. The authors concluded that their results “suggest that dysregulation of iron metabolism occurs in Parkinson disease and that this dysregulation may differ in earlier- versus later-onset Parkinson disease” (Bartzokis et al. 1999). Substantia nigra compacta R2 values have subsequently been found to be significantly higher in recently diagnosed parkinsonism and to gradually increase with disease progression (reviewed: Feraco et al. 2021). The importance of the development of technologies capable of quantifying iron in the living central nervous system was underlined by the accruing data indicating that iron levels, and the status of iron-regulatory proteins, in the periphery do not reflect brain iron levels in Parkinson disease (Genoud et al. 2020; Jiménez-Jiménez et al. 2021).
Transcranial ultrasonography was also applied to assessing brain iron in the mid-1990s. Hyperechogenicity of the substantia nigra, viewed through the temporal bone window, is increased in Parkinson disease. First reported in 1995 by Georg Becker and colleagues (Würzburg), it was initially attributed to nigral gliosis and regarded as being correlated with disease severity and duration (Becker et al. 1995). Daniela Berg, who had detected nigral iron accumulation and increased echogenicity in 6-OHDA-treated rats (Berg et al. 1999b), confirmed that hyperechogenicity was a cost-effective means for screening for the iron accumulation in the basal ganglia (Berg et al. 1999a, 2002; Berg 2009). She and her colleagues also found that nigral hyperechogenicity developed early—indeed, before the emergence of any symptoms (Berg et al. 2011)—and did not change in the course of the disease (Berg et al. 2005; Fig. 6), leading to transcranial ultrasonography being included in the Movement Disorders Society research criteria for identifying people at increased risk of Parkinson disease (Berg et al. 2015).
Transcranial ultrasonogram showing progressive hyperechogenicity of the substantia nigra pars compacta in Parkinson disease. a Initial examination revealed an area of 0.23 cm2 hyperechogenicity in the substantia nigra pars compacta (white arrows). b Follow-up examination at five years showed hyperechogenicity had not changed. c Schematic representation of the ipsilateral mesencephalon, with the substantia nigra pars compacta marked with white arrows. Reproduced from (Berg et al. 2005) with permission from
John Wiley and Sons (copyright 2005)
Magnetic resonance imaging of brain iron is now an integral tool in Parkinson disease research (Pyatigorskaya et al. 2014). It may also be of clinical value in the future: for instance, one study found that iron changes were restricted to the ventral nigra over a period of three years, the regions that degenerates earliest and most completely in Parkinson disease (Bergsland et al. 2019). Further, nigral iron load in people with Parkinson disease may be correlated with motor disability, as measured by UPDRS rigidity and freezing of gait scores (reviewed: Heim et al. 2017; Mochizuki et al. 2020; Feraco et al. 2021). The degree of nigral iron elevation generally reflects the severity of motor symptoms, but not the duration of disease (Wallis et al. 2008).
New imaging protocols, including susceptibility-weighted imaging and quantitative susceptibility mapping (QSM), have significantly improved image resolution, allowing even more specific regional measurements. A meta-analysis of brain iron levels in Parkinson patients, assessed by MRI and post mortem histochemical analysis, confirmed the substantia nigra compacta as the site of most marked iron accumulation, with significant but less marked accumulation in the putamen, red nucleus, caudate nucleus, and pallidum in later stages of the disease (Wang et al. 2016). QSM iron findings, in particular, have been found to reflect both disease condition and duration, including lateral asymmetry of iron deposition in the compacta and the spread of iron pathology in later disease; further, it distinguishes between the patterns of this pathology in different types of parkinsonism (reviewed: Mochizuki et al. 2020; Ryman and Poston 2020; Feraco et al. 2021). Both the R2 and QSM modalities produce nigral iron data that are correlated with post mortem assessment, but α-synuclein aggregation could also be assessed with the R2 approach (Lewis et al. 2018). More recently, a technique for simultaneously imaging iron and neuromelanin as complementary imaging biomarkers has offered a tantalizing opportunity to investigate their interacting roles in the physiopathology of Parkinson disease, particularly during its early stages (He et al. 2021).
2001–2010: The transgenic toolbox opens
In the first decade of the new century, discussions of the role of iron in the etiology of Parkinson disease, particularly its role in stimulating oxidative stress and its potential as a target for treatment, continued (for instance:Berg et al. 2001; Ke and Ming Qian 2003; Götz et al. 2004; He et al. 2021). Further reports of changes in iron-associated pathways in brain tissues in Parkinson disease advanced knowledge in this field, but captured only a single time point in the course of the disease, usually late stage disease, and were possibly also subject by post mortem changes. Other studies of iron systems in biofluids from living Parkinson patients could be collected from early stage patients, but their relevance to changes in the central nervous system remains unclear (Genoud et al. 2020). Chemically induced animal models of Parkinson disease are still valuable, but the possibility of new murine models have excited interest as technologies for targeted genetic modifications have advanced. The first insertion of transgenic material into mice embryos was achieved in 1974, and the passage of implanted genes to offspring in 1981. In 1987, the first method for genetically ablating genes was reported (reviewed: Saunders 2020), completing a suite of tools required for further probing the roles of iron-regulatory proteins suspected of playing important roles in the pathogenesis of Parkinson disease (Gerlach et al. 1994).
Initial studies focused more on the broad effects of response factors to increased oxidative stress, such as the overexpression of human superoxide dismutase-1 (SOD1) or deletion of mitochondrial superoxide dismutase-2 (SOD2) (Chan et al. 1995). Mice that overexpress SOD1 were resistant to MPTP toxicity (Przedborski et al. 1992), echoing earlier studies that indicated MPTP intoxication was linked with increased oxidative stress. The oxidative stress hypothesis of Parkinson disease was investigated using a range of interventions thought to reduce cellular oxidative load, including the antiparkinsonian drug apomorphine, to investigate their effects on MPTP-induced dopamine neuron death (Grünblatt et al. 1999). The development of sophisticated strains of genetically modified mice later allowed the expression or knockout of genes involved in iron regulation, such as ferritin, ceruloplasmin, and tau protein, in specific neuron populations, including tyrosine hydroxylase-positive neurons, facilitating the investigation of their effects on iron-associated neuron damage (Kaur et al. 2003; Thompson et al. 2003; Zhu et al. 2010; Lei et al. 2012; Ayton et al. 2013). The production of mice expressing human wildtype of mutant forms of α-synuclein also provided new ways to study the role of this important protein in the etiology of the synucleinopathies (Kahle et al. 2001; Hashimoto et al. 2003). In 2011, it was reported that α-synuclein acts as a cellular ferrireductase (Davies et al. 2011), a function later shown to be impaired in Parkinson disease (McDowall et al. 2017), adding another iron-associated pathway to the Parkinson story. Two years later, a deficiency of the soluble form of the microtubule-associated protein tau, linked with the pathology of Alzheimer disease but also commonly deposited in the parkinsonian brain, was found in a transgenic mouse study to result in toxic iron accumulation in the brain, suggesting that the toxic properties of this protein may involve its interaction with iron (Lei et al. 2012).
2011–2021: The translation of discovery science
The wealth of information linking iron and Parkinson disease, carefully collected and analyzed over more than 120 years, led to the idea that therapies which maintain brain iron levels within the normal range might have a practical neuroprotective effect (Lange et al. 1994). The hypothesis was tested in vitro as early as 1990 (Tanaka et al. 1990), and later in mouse models of Parkinson disease; for example, following chemical lesions that produce parkinsonism-relevant dopamine neuron loss (e.g., Gal et al. 2010). By the turn of the twenty-first century, promising findings stimulated discussion in major international journals of whether modulating brain iron might be the next direction in anti-parkinsonian therapy, possibly for the first time modifying the course of the disease (Kaur et al. 2003). The discovery of a new iron-dependent cell death pathway, ferroptosis (Dixon et al. 2012), and the identification of this pathway in Parkinson disease-relevant models (Zhang et al. 2020) further stimulated interest in this area. In the early 2000s, the ability of clioquinol, an antifungal hydroxyquinoline with metal-chelating properties, to modify central iron levels in Parkinson disease was investigated (Kaur et al. 2003). But while preclinical findings were promising, links between clioquinol and a sensory neuropathy disorder (Egashira and Matsuyama 1982) undermined interest in its potential. It was later reported that the moderate iron chelator deferiprone, used to treat people with the iron overload disorder thalassemia, was neuroprotective for catecholaminergic neuroblastoma cells exposed to MPTP (Molina-Holgado et al. 2008) and in the 6-OHDA model of Parkinson disease (Dexter et al 2011), and it also improved motor function in a mouse model of synucleinopathy (Carboni et al. 2017). Deferiprone was also reported to reverse abnormal iron deposition in Friedrich ataxia (Abbruzzese et al. 2011) and possibly also in PKAN (Klopstock et al. 2019).
In 2014, David Devos in Lille reported the results of a pilot double-blind, placebo-controlled clinical trial of deferiprone in patients with early stage Parkinson disease: after six months’ treatment, their motor performance improved and the frequency of adverse events was reduced. Further, the R2* MRI parameter in the substantia nigra (thought to reflect iron load) was significantly reduced, and it increased after treatment stopped (Devos et al. 2014; Grolez et al. 2015). The success of this pilot study prompted more advanced trials of deferiprone (FAIRPARKI and FAIRPARKII), the results of which are not yet available (University Hospital Lille 2016). Meanwhile, David Dexter, continuing at Imperial College London his long term work on iron in Parkinson disease, found in a small clinical trial that deferiprone reduced brain iron levels in people in Parkinson disease (Martin-Bastida et al. 2017). The success of these trials has led to interest in applying this approach to other degenerative disorders in which iron accumulation is a feature; for example, a pilot trial of deferiprone for treating amyotrophic lateral sclerosis found that it reduced iron levels in the brain and spinal cord, with modest but positive clinical benefits (Moreau et al. 2018).
2011-2021: 발견 과학의 번역
철분과 파킨슨병을 연결하는 풍부한 정보를 120여 년에 걸쳐 신중하게 수집하고 분석한 결과,
뇌 철분 수치를 정상 범위로 유지하는 치료법이
실질적인 신경 보호 효과를 가질 수 있다는 생각이 떠올랐습니다(Lange 외. 1994).
이 가설은 1990년 초에 시험관 내에서 테스트되었고(Tanaka 외. 1990),
이후 파킨슨병 마우스 모델에서 파킨슨병 관련 도파민 신경세포 손실을 유발하는 화학적 병변(예: Gal 외. 2010)에 따라 테스트되었습니다. 21세기에 접어들면서 뇌 철분 조절이 파킨슨병 치료의 다음 방향이 될 수 있을지에 대한 주요 국제 학술지에서의 논의가 활발해지면서 처음으로 질병의 경과를 수정할 수 있을 것이라는 유망한 연구 결과가 발표되었습니다(Kaur 등. 2003).
새로운 철분 의존적 세포 사멸 경로인 페로셉토시스(Ferroptosis)가 발견되고(Dixon 외. 2012)
파킨슨병 관련 모델에서 이 경로가 확인되면서(Zhang 외. 2020)
이 분야에 대한 관심이 더욱 고조되었습니다.
2000년대 초, 금속 킬레이트 특성을 가진 항진균제 히드록시퀴놀린인 클리오퀴놀의 파킨슨병 중추 철분 수치 조절 능력이 조사되었습니다(Kaur 등. 2003). 그러나 전임상 결과는 유망했지만, 클리오퀴놀과 감각 신경병증 장애 사이의 연관성(Egashira and Matsuyama 1982)이 밝혀지면서 그 잠재력에 대한 관심이 약화되었습니다.
이후 철 과부하 장애인 지중해빈혈 환자의 치료에 사용되는
중등도 철 킬레이트인 데페리프론이
MPTP에 노출된 카테콜아민성 신경모세포종 세포(Molina-Holgado 외 2008)와
파킨슨병의 6-OHDA 모델(Dexter 외 2011)에서
신경 보호 효과가 있다는 보고가 있었으며,
시뉴클린병 마우스 모델(Carboni 외 2017)에서도 운동 기능이 개선되었습니다.
데페리프론은 또한 프리드리히 운동실조증(Abbruzzese 외 2011)과 PKAN(Klopstock 외 2019)에서도 비정상적인 철분 침착을 역전시키는 것으로 보고되었습니다.
2014년 릴의 데이비드 데보스는 초기 파킨슨병 환자를 대상으로 한 데페리프론의 이중맹검, 위약 대조 임상시험 결과를 보고했는데, 6개월 치료 후 운동 능력이 향상되고 부작용 발생 빈도가 감소했습니다. 또한 흑질(실질 흑질)의 R2* MRI 파라미터(철분 부하를 반영하는 것으로 생각됨)가 유의하게 감소했으며 치료 중단 후에는 증가했습니다(Devos 외. 2014; Grolez 외. 2015). 이 파일럿 연구의 성공으로 데페리프론에 대한 더 진보된 임상시험(FAIRPARKI 및 FAIRPARKII)이 진행되었으며, 그 결과는 아직 공개되지 않았습니다(릴 대학병원 2016). 한편, 임페리얼 칼리지 런던에서 파킨슨병의 철분에 대한 장기 연구를 계속하고 있는 데이비드 덱스터는 소규모 임상시험에서 데페리프론이 파킨슨병 환자의 뇌 철분 수치를 감소시키는 것을 발견했습니다(Martin-Bastida 외. 2017). 이러한 임상시험의 성공으로 철분 축적이 특징인 다른 퇴행성 질환에 이 접근법을 적용하는 것에 대한 관심이 높아졌습니다. 예를 들어 근위축성 측삭 경화증 치료를 위한 데페리프론의 파일럿 시험에서 뇌와 척수의 철분 수치를 낮추었으며, 소폭이지만 긍정적인 임상 효과가 있는 것으로 나타났습니다(Moreau et al. 2018).
Conclusion
That the iron economy of the extrapyramidal system is abnormal in parkinsonism has been established. How the described changes arise, and how they relate to the pathophysiology of parkinsonism, however, remain matters of debate (Fig. 5). Possible reasons for local elevations in iron level include age- or disease-dependent loss of iron storage protein capacity, increased importation (increased expression of transferrin receptor 1 and divalent metal transporter 1) or reduced export (reduced expression of ferroportin-1) in Parkinson disease, and microglial activation in response to neurodegeneration. Whether the increased levels are the cause or a consequence of neuronal loss, iron-associated degenerative pathways may play roles in driving progressive neurodegeneration (reviewed: Gerlach et al. 2006; Hare et al. 2013a; Ma et al. 2021; Riederer et al. 2021).
Plausible mechanisms of harm include iron-dependent programmed cell death (ferroptosis) and increased misfolding and aggregation of α-synuclein. α-Synuclein oligomers can activate both apoptosis via calcium ion influx and ferroptosis by iron-dependent reactive oxygen species production and lipid peroxidation reduce iron(III) to iron(II) using copper as a cofactor and NADH as electron donor; and activate microglia with all its consequences. Further, α-synuclein mRNA has a structured iron-responsive element that controls translation that is activated at higher iron concentrations (reviewed: Sian-Hulsmann and Riederer 2021).
More than 120 years after iron was first identified in the brain, its importance for the etiology of Parkinson disease is recognized. Information on the nature of this phenomenon, carefully collected over many years by laboratory researchers, and enabled by a series of technical developments that have underpinned their studies, are now being harnessed by researcher–clinicians testing the thesis that modifying central iron levels may offer hope for that most elusive of treatments: a disease-modifying therapy for people with Parkinson disease.
결론
파킨슨병에서
추체외로계의 철 경제가 비정상적이라는 것은 확립되었습니다.
그러나 설명한 변화가
어떻게 발생하고 파킨슨병의 병태 생리와 어떤 관련이 있는지는
여전히 논쟁의 여지가 있습니다(그림 5).
철분 수치의 국소적 상승에 대한 가능한 원인으로는
연령 또는 질병에 따른 철 저장 단백질 능력의 손실,
파킨슨병에서 철분 수입 증가(트랜스페린 수용체 1 및 2가 금속 수송체 1의 발현 증가) 또는
수출 감소(페로포틴-1의 발현 감소),
신경 퇴화에 따른 미세아교세포 활성화 등이 있습니다.
철분 수치의 증가가
신경세포 손실의 원인이든 결과이든,
철분 관련 퇴행성 경로는 진행성 신경 퇴행을 촉진하는 역할을 할 수 있습니다(검토 중):
Gerlach 외. 2006; Hare 외. 2013a; Ma 외. 2021; Riederer 외. 2021).
그럴듯한 피해 메커니즘으로는
철분 의존성 프로그램 세포 사멸(페로셉토시스)과
α-시누클레인의 오접힘 및 응집 증가 등이 있습니다.
α-시누클레인 올리고머는
칼슘 이온 유입을 통한
세포 사멸과 철 의존성 활성 산소종 생성 및
지질 과산화에 의한 페로렙토시스(철(III)을
구리 보조 인자 및 NADH를 전자 공여체로 사용하여
철(II)로 환원하는 현상)를 모두 활성화할 수 있으며,
그 결과 미세아교세포를 활성화할 수 있습니다.
또한 α-시누클레인 mRNA는
철분 농도가 높을 때 활성화되는 번역을 제어하는 구조화된 철분 반응 요소를 가지고 있습니다(검토: Sian-Hulsmann 및 Riederer 2021).
철분이 뇌에서 처음 발견된 지 120여 년이 지난 지금,
파킨슨병의 원인에 대한 철분의 중요성이 인식되고 있습니다.
실험실 연구자들이 수년에 걸쳐 신중하게 수집하고 연구를 뒷받침하는 일련의 기술 개발로 가능해진 이 현상의 본질에 대한 정보는 이제 연구자-임상의들이 중추 철분 수치를 조절하면 파킨슨병 환자를 위한 질병 수정 치료라는 가장 어려운 치료법에 대한 희망을 제공할 수 있다는 이론을 테스트하는 데 활용되고 있습니다.
Acknowledgements
We thank Professor Colin Masters and Ms Megan Iminitoff for assistance with accessing historical articles. This work was conducted by ForeFront, a large collaborative research group dedicated to the study of neurodegenerative diseases and funded by the National Health and Medical Research Council (NHMRC Ideas Grant 1181864 to K.L.D).
Funding
Open Access funding enabled and organized by CAUL and its Member Institutions.
Footnotes
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Contributor Information
Paul B. Foley, Email: ua.moc.ajm@yelofp.
Dominic J. Hare, Email: ua.ude.stu@erah.cinimod.
Kay L. Double, Email: ua.ude.yendys@elbuod.yak.
References
|