|
Baseline data collections of lipopolysaccharide content in 414 herbal extracts and its role in innate immune activation
Scientific Reports volume 14, Article number: 15394 (2024) Cite this article
Abstract
Some herbal extracts contain relatively high amounts of lipopolysaccharide (LPS). Because orally administered LPS activates innate immunity without inducing inflammation, it plays a role as an active ingredient in herbal extracts. However, the LPS content in herbal extracts remains extensively unevaluated. This study aimed to create a database of LPS content in herbal extracts; therefore, the LPS content of 414 herbal extracts was measured and the macrophage activation potential was evaluated. The LPS content of these hot water extracts was determined using the kinetic–turbidimetric method. The LPS concentration ranged from a few ng/g to hundreds of μg/g (Standard Escherichia coli LPS equivalent). Twelve samples had a high-LPS-content of > 100 μg/g, including seven samples from roots and three samples from leaves of the herbal extracts. These samples showed high phagocytosis and NO production capacity, and further investigation using polymyxin B, an LPS inhibitor, significantly inhibited macrophage activation. This study suggests that some herbal extracts contain sufficient LPS concentration to activate innate immunity. Therefore, a new approach to evaluate the efficacy of herbal extracts based on their LPS content was proposed. A database listing the LPS content of different herbal extracts is essential for this approach.
초록
일부 허브 추출물에는
상대적으로 높은 양의 리포폴리사카라이드(LPS)가 함유되어 있습니다.
구강 투여된 LPS는 염증을 유발하지 않고
선천성 면역계를 활성화시키기 때문에
허브 추출물의 활성 성분으로 역할을 합니다.
그러나
허브 추출물 내 LPS 함량은 여전히 광범위하게 평가되지 않았습니다.
본 연구는
허브 추출물 내 LPS 함량 데이터베이스를 구축하기 위해
414개의 허브 추출물에서 LPS 함량을 측정하고 대식세포 활성화 잠재력을 평가했습니다.
이 추출물들의 LPS 함량은
동적-탁도 측정법을 사용하여 측정되었습니다.
LPS 농도는
몇 ng/g에서 수백 μg/g (표준 Escherichia coli LPS 등가물) 사이로 다양했습니다.
12개 샘플은
100 μg/g 이상의 고농도 LPS를 함유했으며,
이 중 7개는 뿌리 추출물, 3개는 잎 추출물에서 유래했습니다.
이러한 샘플은
높은 식균작용과 NO 생성 능력을 보여주었으며,
LPS 억제제인 폴리믹신 B를 사용한 추가 실험에서
대식세포 활성화가 유의미하게 억제되었습니다.
이 연구는 일부 허브 추출물이
선천성 면역 활성화를 유발할 수 있는
충분한 LPS 농도를 함유함을 시사합니다.
따라서
허브 추출물의 효능을 LPS 함량 기반으로 평가하는 새로운 접근 방식이 제안되었습니다.
이 접근 방식에는 다양한 허브 추출물의 LPS 함량을 기록한 데이터베이스가 필수적입니다.
Similar content being viewed by others
Article Open access24 March 2025
Article Open access05 October 2022
Antibacterial, antioxidant, cytotoxicity, and phytochemical screening of Moringa oleifera leaves
Article Open access16 December 2024
Introduction
Lipopolysaccharide (LPS) is a lipid and polysaccharide molecule found in the outer membrane of gram-negative bacteria1,2. LPS has long been considered an endotoxin owing to its wide use as a potent inflammation inducer because it binds to Toll-like receptor (TLR4)3,4,5,6 of immune cells and activates nuclear factor-kappa beta (NFκB)7,8,9 to cause inflammatory cytokines, including interleukin-1 beta (IL-1β)10,11,12, interleukin-6 (IL-6)13, and tumor necrosis factor alpha (TNFα)14,15, inducing severe fever, diarrhea, and shock when intravenously injected16,17,18,19,20. Furthermore, although oral administration of LPS does not induce inflammation in healthy subjects, it has been observed that disrupted barrier system and bacterial translation may occur in diseases with persistent inflammatory lesions in the intestinal tract and periodontal tissues. Experimental models in which persistent bacterial and LPS invasion in vivo induces systemic inflammation suggest the involvement of LPS in chronic inflammatory diseases, including lifestyle-related diseases21.
However, gram-negative bacteria with LPS are found in large amounts in the human intestinal tract22, skin23,24, and other organs in contact with the outside world without causing any inflammatory effects under healthy conditions25. The decreased number of these gram-negative bacteria in the intestinal tract resulting from the use of antibiotics causes a decrease in the amount of antimicrobial peptides 5926,27, making individuals more susceptible to infections28,29. Thus, LPS in the intestinal tract and skin has been suggested to play a beneficial role in maintaining health. Furthermore, the lack of exposure to LPS is associated with susceptibility to allergic and infectious diseases30,31. This shows that LPS have unknowingly been taken orally and transdermally to maintain our health.
In a previous study, it was revealed that LPS is present in many plants, including herbal extracts32. It also known that several LPSs are present in rice and wheat, which are staple foods, and that their ingestion confers functional properties. Additionally, Pantoea agglomerans was isolated as the dominant LPS symbiont in wheat33. Oral consumption of Pantoea agglomerans LPS (LPSp) enhanced phagocytosis of abdominal macrophages in mice, but this effect was not observed in TLR4-deficient mice34. This indicates that orally administered LPS promotes foreign body removal via innate immunity using TLR4. Furthermore, in disease prevention and treatment experiments, oral LPSp administration was found to enhance the effect of anticancer drugs35, promote the treatment of lung metastases36, inhibit itching in atopic dermatitis25, prevent atherosclerosis in apolipoprotein-E (ApoE)-deficient mice37, prevent dementia in brain diabetes-induced mice38 etc. Additionally, a recent study reported that orally administered LPS suppressed diabetic symptoms by increasing the expression of insulin signaling-related factors, especially adiponectin, in adipose tissue in type 2 diabetes mellitus, a disease supposedly LPS-induced39. Furthermore, LPSp has been confirmed to be highly safe in rats, with no adverse effects after oral administration at 2 g/kg body weight (BW) or higher40.
From the above-mentioned studies, LPS from ingested food is likely to activate and regulate innate immunity. Furthermore, considering its presence in herbal extracts, there is a possibility that the consumption of herbal extracts may activate the body innate immunity regulation. Herbal extracts are defined as naturally occurring unrefined substances from any part or parts of plants, animals, and other organisms with one or more active ingredients intended to alleviate, treat, or prevent diseases41. The above-mentioned wheat is a herbal extract listed in the “The Japanese standards for nonpharmacopoeial herbal extracts 2022” and is called Shobaku42. The overall health benefits of consuming herbal extracts are generally thought to be due to the low molecular weight of the active ingredient. However, a sufficient amount of LPS in the herbal extracts can activate the innate immune system; therefore, LPS should also be considered an active ingredient of herbal extracts. As the innate immune system-activating effect of orally administered LPS is coming to light34, LPS in herbal extracts as a component of the effects of Chinese herbal medicine deserves attention. Thus, a database of the LPS content in herbal extracts and food ingredients is required to make this concept common knowledge.
In 1992, our group screened approximately 60 plant samples, including herbal extracts, for their LPS content and found that some plants had a high LPS content of over 100 μg/g32. However, since then, little effort has been made to measure the LPS content in herbal extracts. Montenegro et al. was the first to report on LPS’s ability to activate macrophages, an innate immunity mechanism, in Kampo medicine43. In this study, they showed that the macrophage-activating component of Juzen-taiho-to, an immune-boosting Kampo medicine formulated from 10 herbal extracts, is correlated with the amount of LPS, which is obtained from symbiotic bacteria existing in one of its ingredients. Their study showed that LPS is a functional component that activates and controls macrophages (innate immunity) in Juzen-taiho-to; hence, LPS can be regarded as an active component of the innate immune system of numerous herbal extracts because most herbal extracts have symbiotic bacteria that supply LPS. Therefore, if information on the LPS content found in herbal extracts can be obtained, the knowledge that oral intake of LPS does not induce inflammation can be enforced, and a new perspective on the concept of LPS as an effective component of herbal extracts can be provided. However, data evaluating herbal extracts from the LPS viewpoint are currently extremely limited, as described above.
Thus, to provide a comprehensive list of the LPS content of herbal extracts and other food ingredients, the LPS content of 414 herbal extracts were measured and compared. Additionally, the macrophage activation potential of herbal extracts with particularly high-LPS-content was compared and measured to investigate the connection between LPS content and macrophage activity.
소개
리포폴리사카라이드(LPS)는
그람 음성 세균의 외막에 존재하는
LPS는
면역 세포의 Toll-like 수용체(TLR4)에 결합하여3,4,5,6
핵 인자-카파 베타(NFκB)를 활성화시켜
염증성 사이토카인을 유발하기 때문에 강력한 염증 유발제로 널리 사용되어 왔기 때문에
오랫동안 내독소로 간주되어 왔습니다.
인터루킨-1 베타(IL-1β)10,11,12, 인터루킨-6(IL-6)13, 및 종양 괴사 인자 알파(TNFα)14,15와 같은
염증성 사이토카인을 유도하며,
정맥 주사 시 심각한 발열, 설사, 쇼크를 유발합니다16,17,18,19,20.
또한,
건강한 대상에서 LPS의 경구 투여는 염증을 유발하지 않지만,
장 점막과 치주 조직에서 지속적인 염증 병변이 있는 질환에서
장벽 기능 장애와 세균의 번역이 발생할 수 있다는 것이 관찰되었습니다.
장내에서 지속적인 세균 및 LPS 침입이 전신 염증을 유발하는 실험 모델은
LPS가 생활습관 질환을 포함한 만성 염증성 질환에 관여한다는 것을 시사합니다21.
그러나
LPS를 가진 그람 음성 세균은
인간 장내22, 피부23,24 및 외부 환경과 접촉하는 다른 장기에서
건강한 상태에서 염증 효과를 일으키지 않고 대량으로 존재합니다25.
항생제 사용으로 인해 장내 그람 음성 세균의 수가 감소하면
항균 펩타이드의 양이 감소하여
따라서
장과 피부 내 LPS는 건강 유지에 유익한 역할을 한다는 것이 제안되었습니다.
또한
LPS에 노출되지 않는 것은
알레르기 및 감염성 질환에 대한 취약성과 연관되어 있습니다30,31.
이는
LPS가 우리 건강을 유지하기 위해
무의식적으로 경구 및 경피적으로 섭취되어 왔음을 보여줍니다.
이전 연구에서
LPS가 허브 추출물을 포함한 많은 식물에서 존재한다는 것이 밝혀졌습니다32.
또한 쌀과 밀과 같은
주요 식량 작물에도 여러 종류의 LPS가 존재하며,
그 섭취가 기능적 특성을 부여한다는 것이 알려져 있습니다.
또한 밀에서 Pantoea agglomerans가
주요 LPS 공생균으로 분리되었습니다33.
Pantoea agglomerans LPS (LPSp)의 경구 섭취는
쥐의 복부 대식세포의 식작용을 촉진했지만,
TLR4 결핍 쥐에서는 이 효과가 관찰되지 않았습니다34.
이는 구강 투여된 LPS가
TLR4를 통해 선천성 면역계를 통해 이물질 제거를 촉진함을 시사합니다.
또한 질병 예방 및 치료 실험에서 구강 LPSp 투여는
항암제 효과 강화35, 폐 전이 치료 촉진36, 아토피 피부염에서의 가려움증 억제25,
아포리포프로틴-E (ApoE) 결핍 마우스에서의 동맥경화 예방37,
뇌 당뇨병 유발 마우스에서의 치매 예방38 등 다양한 효과를 나타냈습니다.
또한 최근 연구에서는
제2형 당뇨병(LPS 유발성 질환으로 추정됨) 환자의 지방 조직에서 인슐린 신호 전달 관련 인자,
특히 아디포넥틴의 발현을 증가시켜 당뇨병 증상을 억제한다는 결과가 보고되었습니다39.
또한 LPSp는
2g/kg 체중(BW) 이상의 경구 투여 후 쥐에서 부작용이 없음을 확인하여
높은 안전성을 입증했습니다40.
위에서 언급된 연구 결과로부터
섭취된 식품 내 LPS는
선천성 면역계를 활성화하고 조절할 가능성이 있습니다.
또한 허브 추출물에 존재한다는 점을 고려할 때,
허브 추출물의 섭취가 신체 선천성 면역 조절을 활성화할 가능성이 있습니다.
허브 추출물은
식물, 동물, 기타 유기체의 일부 또는 전체에서 추출된 자연적으로 발생하는 정제되지 않은 물질로,
질병을 완화, 치료, 또는 예방하기 위해 하나 이상의 활성 성분을 포함하는 것으로 정의됩니다41.
위에서 언급된 밀은 “일본 비약전 약초 추출물 기준 2022”에 등재된 약초 추출물로, Shobaku42라고 불립니다.
약초 추출물의 전반적인 건강 효과는
일반적으로 활성 성분의 낮은 분자량 때문으로 여겨집니다.
그러나
약초 추출물에 충분한 양의 LPS가 존재하면
선천성 면역 시스템을 활성화시킬 수 있으므로,
LPS도 약초 추출물의 활성 성분으로 고려되어야 합니다.
구강 투여된 LPS의 선천성 면역 체계 활성화 효과가
밝혀지고 있습니다34.
따라서
한방 약물의 효과 구성 요소로서 한방 추출물 내 LPS는 주목받을 필요가 있습니다.
이 개념을 일반 지식이 되기 위해 한방 추출물 및 식품 원료 내 LPS 함량 데이터베이스가 필요합니다.
1992년 우리 연구진은
약초 추출물을 포함한 약 60개의 식물 샘플을 LPS 함량으로 스크리닝했으며,
일부 식물에서 100 μg/g 이상의 높은 LPS 함량을 발견했습니다32.
그러나 이후 약초 추출물 내 LPS 함량을 측정하기 위한 노력은 거의 이루어지지 않았습니다. 몬테네그로 등(Montenegro et al.)은 한방 의학에서 LPS가 선천 면역 메커니즘인 대식세포를 활성화하는 능력을 최초로 보고했습니다43. 이 연구에서 그들은 10가지 한약재 추출물로 구성된 면역 강화 한방 의약품인 주젠타이호토(Juzen-taiho-to)의 대식세포 활성화 성분이, 그 성분 중 하나에 존재하는 공생 세균에서 얻어진 LPS의 양과 상관관계가 있음을 보여주었습니다.
이 연구는 LPS가 주젠타이호토에서 대식세포(선천성 면역)를 활성화하고 조절하는 기능성 성분임을 보여주었으며, 따라서 대부분의 한방 추출물에 공생 세균이 존재해 LPS를 공급한다는 점을 고려할 때 LPS는 다양한 한방 추출물의 선천성 면역 시스템 활성 성분으로 간주될 수 있습니다. 따라서, 허브 추출물 내 LPS 함량에 대한 정보를 얻을 수 있다면, LPS의 경구 섭취가 염증을 유발하지 않는다는 사실을 확립할 수 있으며, 허브 추출물의 유효 성분으로서 LPS의 개념에 대한 새로운 관점을 제시할 수 있습니다. 그러나 위에서 설명된 바와 같이, LPS 관점에서 허브 추출물을 평가한 데이터는 현재 극히 제한적입니다.
따라서, 허브 추출물 및 기타 식품 원료의 LPS 함량을 포괄적으로 목록화하기 위해 414종의 허브 추출물에서 LPS 함량을 측정하고 비교했습니다. 또한, 특히 높은 LPS 함량을 가진 허브 추출물의 대식세포 활성화 잠재력을 비교 및 측정하여 LPS 함량과 대식세포 활동 간의 연관성을 조사했습니다.
Results
Measurement of the LPS content of herbal extracts
By measuring Limulus activity, the amount of LPS in the herbal extracts was examined. The LPS concentrations of 414 samples of herbal extracts obtained from vascular plants, fungi, and others ranging from below the detection limit to several 100 μg/g are shown in Table 1. Figure 1 shows the distributions of the LPS concentrations within each species. Herbal extracts from vascular plants were further divided according to their parts. For this analysis, the groups were classified according to the crude drug classification method. The results showed that herbal extract ingredients with high LPS contents were mostly found in the vascular plant group. Comparisons between vascular plant parts indicated that roots (107 samples) had significantly higher LPS levels than fruits (69 samples) and seeds (22 samples), and leaves (68 samples) had significantly higher LPS levels than fruits (69 samples). The average LPS concentration in all samples was 17.4 ± 69.3 μg/g. There are 12 samples containing high LPS concentration > 100 μg/g, 80 samples containing concentrations of 10–100 μg/g, and 162 samples containing concentrations of 1–10 ng/g. The 12 samples with significantly high LPS contents, which are listed in Table 2, were selected to further test the macrophage-activating effect of LPS. The measured LPS content indicated that herbal extracts contain LPS and that the amount of LPS in each plant’s part varies depending on the parts from which they are derived.
허브 추출물의 LPS 함량 측정
리무루스 활성도를 측정하여 허브 추출물 내 LPS의 양을 조사했습니다. 혈관식물, 곰팡이, 기타에서 얻은 414개의 허브 추출물 샘플의 LPS 농도는 검출 한계 이하에서 수백 μg/g까지 다양하며, 이는 표 1에 표시되어 있습니다. 그림 1은 각 종 내 LPS 농도의 분포를 보여줍니다. 혈관식물에서 추출된 허브 추출물은 부분에 따라 추가로 분류되었습니다. 이 분석을 위해 그룹은 원료 약물 분류 방법에 따라 분류되었습니다. 결과적으로, 높은 LPS 함량을 가진 약초 추출물 성분은 주로 혈관식물 그룹에서 발견되었습니다. 혈관식물 부위 간 비교 결과, 뿌리(107개 샘플)는 과일(69개 샘플)과 종자(22개 샘플)보다 유의미하게 높은 LPS 수준을 보였으며, 잎(68개 샘플)은 과일(69개 샘플)보다 유의미하게 높은 LPS 수준을 나타냈습니다. 모든 샘플의 평균 LPS 농도는 17.4 ± 69.3 μg/g였습니다.
LPS 농도가 100 μg/g 초과인 12개 샘플, 10–100 μg/g인 80개 샘플, 1–10 ng/g인 162개 샘플이 있었습니다. 표 2에 기재된 LPS 함량이 유의미하게 높은 12개 샘플은 LPS의 대식세포 활성화 효과를 추가로 테스트하기 위해 선정되었습니다. 측정된 LPS 함량은 허브 추출물에 LPS가 함유되어 있으며, 각 식물 부위에서 추출된 LPS의 양이 부위에 따라 다르다는 것을 나타냈습니다.
Table 1 LPS concentrations of 414 samples of herbal extracts. For herbal extracts with multiple scientific names, the scientific names listed in this table are those most used in Japan.
NoSpeciesEnglish nameScientific namePartLimulus activity (μg/g)
1 | Plant | Achyranthes root | Achyranthes bidentata Blume | Root | 0.391 |
2 | Plant | Aconite root | Aconitum carmichaelii Debeaux | Root (Tuberous root) | 2.705 |
3 | Plant | Actinidia gall | Actinidia polygama (Siebold & Zucc.) Planch. ex Maxim | Fruit (Gall) | 3.891 |
4 | Plant | Adenophora root | Adenophora triphylla (Thunb.) A.DC | Root | 5.984 |
5 | Plant | Agarwood | Aquilaria malaccensis Lam | Stem (Xylem) | 16.284 |
6 | Plant | Agrimony | Agrimonia eupatoria L. | Stem and Leaf | 3.282 |
7 | Plant | Ajuga herb | Ajuga decumbens Thunb | Whole plant | 10.642 |
8 | Plant | Akebia fruit | Akebia quinata (Thunb. ex Houtt.) Decne | Fruit | 12.147 |
9 | Plant | Akebia stem | Akebia quinata (Thunb. ex Houtt.) Decne | Stem | 1.962 |
10 | Plant | Alfalfa | Medicago sativa L. | Stem and Leaf | 4.089 |
11 | Plant | Alisma tuber | Alisma plantago-aquatica subsp. orientale (Sam.) Sam | Root (Rhizome) | 0.409 |
12 | Plant | Allium chinense bulb | Allium chinense G.Don | Root (Bulb) | 6.554 |
13 | Plant | Allspice | Pimenta dioica (L.) Merr | Fruit | 3.543 |
14 | Plant | Amomum seed | Wurfbainia villosa var. xanthioides (Wall. ex Baker) Škorničk. & A.D.Poulsen | Seed | 6.392 |
15 | Plant | Amomum tsao-ko fruit | Lanxangia tsao-ko (Crevost & Lemarié) M.F.Newman & Škorničk | Fruit (Mature fruit) | 0.018 |
16 | Plant | Anemarrhena rhizome | Anemarrhena asphodeloides Bunge | Root (Rhizome) | 38.905 |
17 | Plant | Angelica | Angelica archangelica L. | Root | 29.527 |
18 | Plant | Angelica dahurica root | Angelica dahurica (Hoffm.) Benth. & Hook.f. ex Franch. & Sav | Root | 266.554 |
19 | Plant | Anise | Pimpinella anisum L. | Fruit | 0.100 |
20 | Plant | Apple | Malus domestica (Suckow) Borkh | Fruit | 8.276 |
21 | Plant | Apricot kernel | Prunus armeniaca L. | Seed | 0.009 |
22 | Plant | Aralia rhizome | Aralia cordata Thunb | Root (Rhizome) | 503.986 |
23 | Plant | Aralia root | Aralia cordata Thunb | Root | 31.014 |
24 | Plant | Aralia elata root bark | Aralia elata (Miq.) Seem | Root (Root bark) | 3.891 |
25 | Plant | Areca | Areca catechu L. | Seed | 0.808 |
26 | Plant | Arisaema tuber | Arisaema heterophyllum Blume | Root (Tuber) | 1.488 |
27 | Plant | Arnica flower | Arnica montana L. | Flower | 29.527 |
28 | Plant | Artemisia leaf | Artemisia princeps Pamp | Leaf | 121.750 |
29 | Plant | Artichoke | Cynara cardunculus L. | Stem and Leaf | 4.642 |
30 | Plant | Ash bark | Fraxinus chinensis subsp. rhynchophylla (Hance) A.E.Murray | Stem (Bark) | 1.251 |
31 | Plant | Ashitaba | Angelica keiskei (Miq.) Koidz | Leaf | 0.220 |
32 | Plant | Asparagus | Asparagus officinalis L | Stem | 0.066 |
33 | Plant | Asparagus root | Asparagus cochinchinensis (Lour.) Merr | Root | 2.389 |
34 | Plant | Aster root | Aster tataricus L.f. | Root (Root and Rhizome) | 13.635 |
35 | Plant | Astragalus root | Astragalus mongholicus Bunge | Root | 1.256 |
36 | Plant | Asunaro | Thujopsis dolabrata (L.f.) Siebold & Zucc | Branch and Leaf | 1.445 |
37 | Plant | Atractylodes lancea rhizome | Atractylodes lancea (Thunb.) DC | Root (Rhizome) | 5.609 |
38 | Plant | Bamboo culm | Bambusa textilis McClure | Stem (Culm) | 1.151 |
39 | Plant | Banaba | Lagerstroemia speciosa (L.) Pers | Leaf | 0.363 |
40 | Plant | Barbed skullcup herb | Scutellaria barbata D.Don | Whole plant | 2.372 |
41 | Plant | Barberry | Berberis vulgaris L. | Fruit | 0.011 |
42 | Plant | Bay leaf, Laurel | Laurus nobilis L. | Leaf | 1.636 |
43 | Plant | Bearberry leaf | Arctostaphylos uva-ursi (L.) Spreng | Leaf | 0.735 |
44 | Plant | Beautiful sweetgum fruit | Liquidambar formosana Hance | Fruit | 0.778 |
45 | Plant | Beet | Beta vulgaris L. | Root | 0.124 |
46 | Plant | Belvedere fruit | Bassia scoparia (L.) A.J.Scott | Fruit | 7.322 |
47 | Plant | Bilberry | Vaccinium myrtillus L. | Leaf | 0.397 |
48 | Plant | Birch, Abedul, Betula | Betula pendula Roth | Leaf | 0.132 |
49 | Plant | Bitter bottle gourd | Cucurbita pepo L. | Fruit | 0.151 |
50 | Plant | Bitter melon | Momordica charantia L. | Fruit | 118.514 |
51 | Plant | Bitter orange peel | Citrus × aurantium L. | Fruit (Peel) | 0.050 |
52 | Plant | Black tea | Camellia sinensis (L.) Kuntze | Leaf | 1.075 |
53 | Plant | Blackthorn | Prunus spinosa L. | Fruit | 0.175 |
54 | Plant | Bladder wrack | Fucus evanescens C.Agardh | Whole plant | 4.945 |
55 | Plant | Boldo, Boldus | Peumus boldus Molina | Leaf | 0.156 |
56 | Plant | Boston ivy, Japanese ivy | Parthenocissus tricuspidata (Siebold & Zucc.) Planch | Leaf | 96.453 |
57 | Plant | Brown rice | Oryza sativa L. | Seed | 3.446 |
58 | Plant | Bupleurum root | Bupleurum falcatum L. | Root | 148.514 |
59 | Plant | Burdock | Arctium lappa L. | Root | 4.295 |
60 | Plant | Burdock fruit | Arctium lappa L. | Fruit | 8.577 |
61 | Plant | Cabbage | Brassica oleracea L. | Leaf | 0.257 |
62 | Plant | Calendula, Marigold | Calendula officinalis L. | Flower | 21.622 |
63 | Plant | Calumba | Jateorhiza palmata (Lam.) Miers | Root | 4.549 |
64 | Plant | Caraway | Carum carvi L. | Fruit | 2.004 |
65 | Plant | Cardamon | Elettaria cardamomum (L.) Maton | Fruit | 9.203 |
66 | Plant | Carob, St. john’s bread | Ceratonia siliqua L. | Fruit (Bean pod) | 0.009 |
67 | Plant | Cassia seed | Senna obtusifolia (L.) H.S.Irwin & Barneby | Seed | 0.020 |
68 | Plant | Cassis, Black currant | Ribes nigrum L. | Fruit | 0.033 |
69 | Plant | Cassis, Black currant | Ribes nigrum L. | Leaf | 26.649 |
70 | Plant | Catalpa fruit | Catalpa ovata G.Don | Fruit | 2.199 |
71 | Plant | Catnip, Catmint | Nepeta cataria L. | Stem and Leaf | 13.009 |
72 | Plant | Cat’s whisker, Java tea | Orthosiphon aristatus (Blume) Miq | Leaf | 11.472 |
73 | Plant | Cauliflower | Brassica oleracea L. | Stem | 0.128 |
74 | Plant | Celandine | Chelidonium majus L. | Whole plant | 32.824 |
75 | Plant | Celery | Apium graveolens L. | Root | 0.037 |
76 | Plant | Celery seed | Apium graveolens L. | Seed | 4.377 |
77 | Plant | Chaenomeles fruit | Pseudocydonia sinensis (Dum.Cours.) C.K.Schneid | Fruit | 3.088 |
78 | Plant | Chamaecrista herb | Chamaecrista nomame (Makino) H.Ohashi | Whole plant | 0.833 |
79 | Plant | Chaste tree | Vitex agnus-castus L. | Fruit | 4.124 |
80 | Plant | Cherry bark | Prunus jamasakura (Makino) Siebold ex Koidz | Stem (Bark) | 1.300 |
81 | Plant | China berry | Melia azedarach L./Melia azedarach var. subtripinnata Miq | Leaf | 0.331 |
82 | Plant | Chinese blackberry, sweet tea | Rubus chingii var. suavissimus (S.K.Lee) L.T.Lu | Leaf | 0.304 |
83 | Plant | Chinese honeylocust spine | Gleditsia sinensis Lam. | Stem (Hook) | 84.297 |
84 | Plant | Chinese prickly ash | Zanthoxylum simulans Hance | Fruit (Peel) | 13.399 |
85 | Plant | Chinese pulsatilla root | Pulsatilla chinensis (Bunge) Regel | Root | 58.676 |
86 | Plant | Chokeberry | Aronia melanocarpa (Michx.) Elliott | Fruit | 0.106 |
87 | Plant | Chrysanthemum flower | Chrysanthemum indicum L. | Flower (Capitula) | 13.399 |
88 | Plant | Chundan, Kathala hibutu tea | Salacia reticulata Wight | Root (Root bark) | 0.678 |
89 | Plant | Cimicifuga rhizome | Actaea dahurica (Turcz. ex Fisch. & C.A.Mey.) Franch | Root (Rhizome) | 13.349 |
90 | Plant | Cimicifuga rhizome | Actaea simplex (DC.) Wormsk. ex Prantl | Root (Rhizome) | 4.822 |
91 | Plant | Cinnamon | Neolitsea cassia (L.) Kosterm | Stem (Bark) | 0.047 |
92 | Plant | Cinnamon bark (Crude drug) | Neolitsea cassia (L.) Kosterm | Stem (Bark) | 12.386 |
93 | Plant | Citrus peel | Citrus × aurantium L./Citrus reticulata Blanco | Fruit (Peel) | 0.106 |
94 | Plant | Citrus unshiu peel | Citrus × aurantium f. deliciosa (Ten.) M.Hiroe/Citrus reticulata Blanco | Fruit (Peel) | 0.133 |
95 | Plant | Clematis root | Clematis terniflora var. mandshurica (Rupr.) Ohwi | Root | 2.953 |
96 | Plant | Clove (Crude drug) | Syzygium aromaticum (L.) Merr. & L.M.Perry | Flower (Flower bud) | 0.216 |
97 | Plant | Clove | Syzygium aromaticum (L.) Merr. & L.M.Perry | Flower (Flower bud) | 0.075 |
98 | Plant | Club moss | Lycopodium clavatum L. | Whole plant | 2.434 |
99 | Plant | Cnidium monnieri fruit | Cnidium monnieri (L.) Cusson | Fruit | 36.730 |
100 | Plant | Cnidium rhizome | Ligusticum officinale (Makino) Kitag | Root (Rhizome) | 5.264 |
101 | Plant | Codonopsis root | Codonopsis pilosula (Franch.) Nannf | Root | 0.322 |
102 | Plant | Cola | Cola nitida (Vent.) Schott & Endl | Seed | 0.121 |
103 | Plant | Coltsfoot | Tussilago farfara L. | Leaf | 2.162 |
104 | Plant | Coltsfoot flower | Tussilago farfara L. | Flower (Flower bud) | 1.916 |
105 | Plant | Comfrey, Boneset | Symphytum officinale L. | Root | 29.459 |
106 | Plant | Comfrey, Boneset | Symphytum officinale L. | Whole plant | 21.986 |
107 | Plant | Common Curculigo rhizome | Curculigo orchioides Gaertn | Root (Rhizome) | 0.778 |
108 | Plant | Common ducksmeat herb | Spirodela polyrhiza (L.) Schleid | Whole plant | 366.554 |
109 | Plant | Common knotgrass herb | Polygonum aviculare L. | Whole plant | 14.243 |
110 | Plant | Common mullein, Great mullein | Verbascum thapsus L. | Stem and Leaf | 2.649 |
111 | Plant | Common reed | Phragmites australis (Cav.) Trin. ex Steud | Stem | 6.554 |
112 | Plant | Coptis rhizome | Coptis japonica (Thunb.) Makino | Root (Rhizome) | 0.289 |
113 | Plant | Coriander | Coriandrum sativum L. | Fruit | 20.986 |
114 | Plant | Corn silk | Zea mays L. | Flower (Flower’s style) | 180.068 |
115 | Plant | Cornflower | Centaurea cyanus L. | Flower | 0.155 |
116 | Plant | Cornus fruit | Cornus officinalis Siebold & Zucc | Fruit | 0.043 |
117 | Plant | Corydalis tuber | Corydalis yanhusuo (Y.H.Chou & Chun C.Hsu) W.T.Wang ex Z.Y.Su & C.Y.Wu | Root (Tuber) | 8.796 |
118 | Plant | Couch grass, Quack grass | Elymus repens (L.) Gould | Root (Rhizome) | 392.635 |
119 | Plant | Cowherb | Gypsophila vaccaria (L.) Sm | Seed | 0.354 |
120 | Plant | Crataegus fruit | Crataegus cuneata Siebold & Zucc | Fruit | 0.244 |
121 | Plant | Cumin | Cuminum cyminum L. | Fruit | 80.054 |
122 | Plant | Curcuma rhizome | Curcuma zedoaria (Christm.) Roscoe | Root (Rhizome) | 65.608 |
123 | Plant | Cyperus rhizome | Cyperus rotundus L. | Root (Rhizome) | 2.801 |
124 | Plant | Daisy fleabane | Erigeron annuus (L.) Pers | Whole plant | 0.389 |
125 | Plant | Damiana | Turnera diffusa Willd. ex Schult | Leaf | 1.962 |
126 | Plant | Dandelion | Taraxacum Weber | Root | 4.945 |
127 | Plant | Dayflower | Commelina communis L. | Whole plant | 6.058 |
128 | Plant | Devil’s claw | Harpagophytum procumbens (Burch.) DC. ex Meisn | Root (Tuber) | 0.188 |
129 | Plant | Dioscorea rhizome | Dioscorea japonica Thunb. | Root (Rhizome) | 0.010 |
130 | Plant | Dipsacus root | Dipsacus asper Wall. ex DC | Root | 0.170 |
131 | Plant | Echinacea | Echinacea purpurea (L.) Moench | Stem and Leaf | 10.635 |
132 | Plant | Elder | Sambucus nigra L. | Flower | 9.359 |
133 | Plant | English hawthorn | Crataegus laevigata (Poir.) DC | Leaf | 36.730 |
134 | Plant | Ephedra herb | Ephedra sinica Stapf | Stem | 0.723 |
135 | Plant | Epimedium herb | Epimedium grandiflorum var. koreanum (Nakai) K.Suzuki | Leaf | 11.359 |
136 | Plant | Erythrina bark | Erythrina variegata L. | Stem (Bark) | 16.959 |
137 | Plant | Eucalyptus | Eucalyptus globulus Labill. | Leaf | 0.023 |
138 | Plant | Eucommia bark | Eucommia ulmoides Oliv. | Stem (Bark) | 0.188 |
139 | Plant | Eucommia leaf | Eucommia ulmoides Oliv. | Leaf | 2.791 |
140 | Plant | Euodia fruit | Tetradium ruticarpum (A.Juss.) T.G.Hartley | Fruit | 10.642 |
141 | Plant | European verbena herb | Verbena officinalis L. | Stem | 7.001 |
142 | Plant | Eyebright | Euphrasia officinalis L. | Stem and Leaf | 8.577 |
143 | Plant | Feather cockscomb seed | Celosia argentea L. | Seed | 2.791 |
144 | Plant | Fennel | Foeniculum vulgare Mill. | Fruit | 0.045 |
145 | Plant | Fenugreek | Trigonella foenum-graecum L. | Stem and Leaf | 36.351 |
146 | Plant | Fermented black soybean | Glycine max (L.) Merr. | Seed | 5.264 |
147 | Plant | Feverfew | Tanacetum parthenium (L.) Sch.Bip. | Whole plant | 8.714 |
148 | Plant | Figwort flower Picrorhiza rhizome | Neopicrorhiza scrophulariiflora (Pennell) D.Y.Hong | Root (Rhizome) | 1.678 |
149 | Plant | Finger citron | Citrus medica L. | Fruit (Peel) | 18.716 |
150 | Plant | Flatstem milkvetch seed | Phyllolobium chinense Fisch. | Seed | 4.295 |
151 | Plant | Forsythia fruit | Forsythia suspensa (Thunb.) Vahl. | Fruit | 10.530 |
152 | Plant | Fortune windmill palm petiole | Trachycarpus fortunei (Hook.) H.Wendl. | Leaf | 1.151 |
153 | Plant | Fortune’s drynaria rhizome | Drynaria roosii Nakaike | Root (Rhizome) | 423.041 |
154 | Plant | Foxtail millet | Setaria italica (L.) P.Beauv. | Seed | 0.006 |
155 | Plant | Fragrant rosewood | Dalbergia odorifera T.C.Chen | Root (Heart wood) | 1.418 |
156 | Plant | Fragrant solomonseal rhizome | Polygonatum odoratum (Mill.) Druce | Root (Rhizome) | 0.894 |
157 | Plant | Frankincense | Boswellia sacra Flück. | Resin | 0.003 |
158 | Plant | French bean | Phaseolus vulgaris L. | Fruit (Bean pod) | 0.936 |
159 | Plant | Garden burnet root | Sanguisorba officinalis L. | Root (Root and Rhizome) | 6.392 |
160 | Plant | Gardenia fruit | Gardenia jasminoides J.Ellis | Fruit | 0.014 |
161 | Plant | Gastrodia tuber | Gastrodia elata Blume | Root (Tuber) | 0.155 |
162 | Plant | Gentiana macrophylla root | Gentiana macrophylla Pall. | Root | 0.385 |
163 | Plant | Geranium herb | Geranium thunbergii Siebold & Zucc. ex Lindl. & Paxton | Stem and Leaf | 10.642 |
164 | Plant | German chamomile | Matricaria chamomilla L. | Flower | 0.322 |
165 | Plant | Ginger | Zingiber officinale Roscoe | Root (Rhizome) | 122.020 |
166 | Plant | Ginkgo | Ginkgo biloba L | Leaf | 6.936 |
167 | Plant | Ginseng | Panax ginseng C.A.Mey | Root | 0.023 |
168 | Plant | Glechoma hederacea herb | Glechoma grandis (A.Gray) Kuprian. | Stem and Leaf | 3.470 |
169 | Plant | Glycyrrhiza | Glycyrrhiza uralensis Fisch. ex DC. | Root | 3.101 |
170 | Plant | Goldenrod | Solidago virgaurea subsp. asiatica (Nakai ex Hara) Kitam. ex Hara L. | Leaf | 18.378 |
171 | Plant | Gooseberry, European gooseberry | Ribes uva-crispa L. | Fruit | 0.000 |
172 | Plant | Gorgon euryale seed | Euryale ferox Salisb. | Seed | 0.081 |
173 | Plant | Grape | Vitis L. | Leaf | 1.151 |
174 | Plant | Green tea leaf | Camellia sinensis (L.) Kuntze. | Leaf | 0.115 |
175 | Plant | Guarana seed | Paullinia cupana Kunth. | Seed | 5.058 |
176 | Plant | Guava | Psidium guajava L. | Fruit | 0.080 |
177 | Plant | Gymnema | Gymnema sylvestre (Retz.) R.Br. ex Sm. | Leaf | 0.346 |
178 | Plant | Haichow Elsholtzia herb | Elsholtzia splendens var. splendens | Whole plant | 3.839 |
179 | Plant | Hairyveine agrimonia herb | Agrimonia pilosa Ledeb. | Whole plant | 23.892 |
180 | Plant | Heather | Calluna vulgaris (L.) Hull. | Flower (Flower bud) | 4.124 |
181 | Plant | Hedysarum root | Hedysarum polybotrys Hand.-Mazz. | Root | 1.364 |
182 | Plant | Henna | Lawsonia inermis L. | Leaf | 1.104 |
183 | Plant | Heterophylly false starwort root | Pseudostellaria heterophylla (Miq.) Pax. | Root (Tuberous root) | 0.141 |
184 | Plant | Hibiscus, Roselle | Hibiscus sabdariffa L. | Flower (Calyx) | 0.030 |
185 | Plant | Hollyhock | Alcea rosea L. | Flower | 0.906 |
186 | Plant | Hop strobile | Humulus lupulus L. | Flower | 1.628 |
187 | Plant | Horse chestnut | Aesculus hippocastanum L. | Leaf | 0.397 |
188 | Plant | Horseradish | Armoracia rusticana G.Gaertn., B.Mey. & Scherb. | Root | 0.422 |
189 | Plant | Horsetail, Field hare-tail | Equisetum arvense L. | Stem | 0.639 |
190 | Plant | Houttuynia herb | Houttuynia cordata Thunb. | Whole plant (Aerial part) | 1.880 |
191 | Plant | Hovenia seed or fruit | Hovenia dulcis Thunb. | Fruit | 3.446 |
192 | Plant | Hyssop | Hyssopus officinalis L. | Stem and Leaf | 4.945 |
193 | Plant | Immature citrus unshiu peel | Citrus × aurantium f. deliciosa (Ten.) M.Hiroe/Citrus reticulata Blanco | Fruit (Peel) | 0.091 |
194 | Plant | Immature orange fruit | Citrus × aurantium L. | Fruit | 0.066 |
195 | Plant | Indian madder root | Rubia cordifolia L. | Root | 12.147 |
196 | Plant | Indigo | Isatis tinctoria L. | Branch and Leaf | 9.762 |
197 | Plant | Inula flower | Pentanema britannica (L.) D.Gut.Larr., Santos-Vicente, Anderb., E.Rico & M.M.Mart.Ort | Flower (Capitula) | 13.349 |
198 | Plant | Ipe, Taheebo | Handroanthus impetiginosus (Mart. ex DC.) Mattos | Stem (Bark) | 4.377 |
199 | Plant | Ipecac | Carapichea ipecacuanha (Brot.) L.Andersson | Root | 0.577 |
200 | Plant | Isatis root | Isatis tinctoria L. | Root | 0.373 |
201 | Plant | Isodon herb | Isodon japonicus (Burm.f.) H.Hara | Stem and Leaf | 5.270 |
202 | Plant | Japanese angelica root | Angelica acutiloba (Siebold & Zucc.) Kitag. | Root | 16.284 |
203 | Plant | Japanese angelica tree | Aralia elata (Miq.) Seem | Stem | 2.791 |
204 | Plant | Japanese banana, Hardy banana | Musa basjoo Siebold & Zucc. ex Iinuma | Root | 94.135 |
205 | Plant | Japanese bush cherry | Prunus japonica Thunb. | Seed | 1.300 |
206 | Plant | Japanese gentian | Gentiana scabra Bunge. | Root (Root and Rhizome) | 2.791 |
207 | Plant | Japanese horse chestnut | Aesculus turbinata Blume. | Fruit | 0.098 |
208 | Plant | Japanese primrose | Primula sieboldii É.Morren | Flower | 51.176 |
209 | Plant | Japanese thistle root | Cirsium japonicum DC | Root | 13.009 |
210 | Plant | Japanese thyme | Thymus quinquecostatus Čelak | Leaf | 11.359 |
211 | Plant | Japanese torreya | Torreya nucifera (L.) Siebold & Zucc. | Seed | 0.094 |
212 | Plant | Japanese valerian | Valeriana fauriei Briq. | Root (Root and Rhizome) | 9.203 |
213 | Plant | Jasmine | Jasminum L. | Flower | 0.044 |
214 | Plant | Javanese turmeric | Curcuma zanthorrhiza Roxb. | Root (Rhizome) | 13.399 |
215 | Plant | Jujube | Ziziphus jujuba var. inermis (Bunge) Rehder | Fruit | 0.123 |
216 | Plant | Jujube seed | Ziziphus jujuba var. spinosa (Bunge) Hu ex H.F.Chow | Seed | 0.002 |
217 | Plant | Juniper berry | Juniperus communis L. | Fruit | 0.019 |
218 | Plant | Kava, Kava pepper | Piper methysticum G.Forst | Root | 54.365 |
219 | Plant | Kidachi aloe | Aloe arborescens Mill. | Leaf | 1.174 |
220 | Plant | Kombu | Laminariaceae | Root | 1.117 |
221 | Plant | Kuwagataso | Veronica miqueliana Nakai | Stem and Leaf | 7.481 |
222 | Plant | Lady’s mantle | Alchemilla vulgaris L. | Leaf | 6.936 |
223 | Plant | Lemon grass | Cymbopogon citratus (DC.) Stapf. | Stem and Leaf | 0.142 |
224 | Plant | Licorice | Glycyrrhiza glabra L. | Root | 22.730 |
225 | Plant | Ligusticum sinense rhizome | Conioselinum anthriscoides (H.Boissieu) Pimenov & Kljuykov | Root (Rhizome) | 10.642 |
226 | Plant | Ligustrum fruit | Ligustrum lucidum W.T.Aiton | Fruit | 8.430 |
227 | Plant | Lilium bulb | Lilium lancifolium Thunb. | Leaf (Bulb) | 0.056 |
228 | Plant | Linden, Lime flower | Tilia cordata Mill. | Leaf | 3.891 |
229 | Plant | Lindera root | Lindera aggregata var. aggregata | Root | 61.986 |
230 | Plant | Lithospermum root | Lithospermum erythrorhizon Siebold & Zucc. | Root | 10.530 |
231 | Plant | Long pepper | Piper longum L. | Fruit | 1.063 |
232 | Plant | Lonicera flower | Lonicera japonica Thunb. | Flower (Flower bud) | 0.256 |
233 | Plant | Lonicera leaf and stem | Lonicera japonica Thunb. | Stem and Leaf | 2.162 |
234 | Plant | Lophatherum herb | Lophatherum gracile Brongn. | Whole plant | 1.628 |
235 | Plant | Loquat leaf | Eriobotrya japonica (Thunb.) Lindl. | Leaf | 0.084 |
236 | Plant | Low-bush cranberry | Vaccinium macrocarpon Aiton | Leaf | 3.268 |
237 | Plant | Luffa, Vegetable sponge | Luffa aegyptiaca Mill. | Fruit (Fiber of mature fruit) | 23.892 |
238 | Plant | Luobuma | Apocynum venetum L. | Leaf | 5.984 |
239 | Plant | Lycium bark | Lycium chinense Mill. | Root (Root bark) | 5.609 |
240 | Plant | Lycium leaf | Lycium chinense Mill. | Branch and Leaf | 6.155 |
241 | Plant | Magnolia bark | Magnolia obovata Thunb. | Stem (Bark) | 2.946 |
242 | Plant | Magnolia flower | Magnolia kobus DC | Flower (Flower bud) | 0.131 |
243 | Plant | Mallotus bark | Mallotus japonicus (L.f.) Müll.Arg. | Stem (Bark) | 3.088 |
244 | Plant | Mallow | Malva sylvestris L. | Whole plant | 5.469 |
245 | Plant | Malt | Hordeum vulgare L. | Seed | 73.500 |
246 | Plant | Marjoram, Sweet marjoram | Origanum majorana L. | Leaf | 0.141 |
247 | Plant | Marshmallow, Altea | Althaea officinalis L. | Leaf | 19.486 |
248 | Plant | Marshmallow, Altea | Althaea officinalis L. | Root | 8.276 |
249 | Plant | Meadowsweet | Filipendula ulmaria (L.) Maxim | Stem and Leaf | 26.486 |
250 | Plant | Melia fruit | Melia azedarach L. | Fruit (Mature fruit) | 0.049 |
251 | Plant | Melilot | Melilotus officinalis (L.) Lam. | Whole plant | 2.503 |
252 | Plant | Mentha herb | Mentha canadensis L. | Leaf | 6.199 |
253 | Plant | Milk thistle | Silybum marianum (L.) Gaertn. | Whole plant | 2.059 |
254 | Plant | Mountain ash | Sorbus aucuparia L. | Fruit | 0.121 |
255 | Plant | Moutan bark | Paeonia × suffruticosa Andrews | Root (Root bark) | 1.424 |
256 | Plant | Mulberry | Morus alba L. | Leaf | 3.101 |
257 | Plant | Mulberry bark | Morus alba L. | Root (Root bark) | 10.530 |
258 | Plant | Mulberry fruit | Morus alba L. | Fruit | 5.264 |
259 | Plant | Myrobalan fruit | Terminalia chebula Retz. | Fruit | 0.001 |
260 | Plant | Nandina fruit | Nandina domestica Thunb. | Fruit | 2.649 |
261 | Plant | Natural indigo (Dye) | Indigofera tinctoria L. | Leaf | 0.020 |
262 | Plant | Nikko maple | Acer maximowiczianum Miq. | Stem (Bark) | 0.906 |
263 | Plant | Notopterygium | Hansenia weberbaueriana (Fedde ex H.Wolff) Pimenov & Kljuykov | Root (Rhizome) | 2.946 |
264 | Plant | Nutmeg | Myristica fragrans Houtt. | Seed | 0.012 |
265 | Plant | Oat | Avena sativa L. | Stem and Leaf | 825.541 |
266 | Plant | Olive | Olea europaea L. | Leaf | 0.302 |
267 | Plant | Ophiopogon root | Ophiopogon japonicus (Thunb.) Ker Gawl. | Root | 0.220 |
268 | Plant | Orange daylily | Hemerocallis fulva var. fulva | Flower (Flower bud) | 0.022 |
269 | Plant | Orange flower | Citrus × aurantium L. | Flower | 0.919 |
270 | Plant | Orange leaf | Citrus × aurantium L. | Leaf | 30.878 |
271 | Plant | Orange peel (bitter) | Citrus × aurantium L. | Fruit | 0.015 |
272 | Plant | Oregano | Origanum vulgare L. | Stem and Leaf | 7.350 |
273 | Plant | Oriental arborvitae leafy twig | Platycladus orientalis (L.) Franco. | Leaf | 3.470 |
274 | Plant | Orris root | Iris florentina L. | Root | 12.327 |
275 | Plant | Pale butterfly bush flower | Buddleja officinalis Maxim. | Flower (Flower bud) | 0.208 |
276 | Plant | Panax japonicus rhizome | Panax japonicus (T.Nees) C.A.Mey | Root (Rhizome) | 0.322 |
277 | Plant | Panax notoginseng root | Panax notoginseng (Burkill) F.H.Chen | Root | 0.002 |
278 | Plant | Parsley | Petroselinum crispum subsp. crispum | Leaf | 0.627 |
279 | Plant | Patrinia herb | Patrinia scabiosifolia Link | Whole plant | 0.723 |
280 | Plant | Peach | Prunus persica (L.) Batsch | Leaf | 0.464 |
281 | Plant | Pennyroyal | Mentha pulegium L. | Whole plant | 0.389 |
282 | Plant | Peony | Paeonia lactiflora Pall. | Flower | 0.125 |
283 | Plant | Peony root | Paeonia lactiflora Pall. | Root | 0.529 |
284 | Plant | Perilla fruit | Perilla frutescens var. frutescens | Fruit | 0.084 |
285 | Plant | Perilla herb | Perilla frutescens var. crispa (Thunb.) H.Deane | Leaf | 4.650 |
286 | Plant | Perilla, Beefsteak plant | Perilla frutescens (L.) Britton | Stem | 5.264 |
287 | Plant | Persimmon | Diospyros kaki L.f. | Leaf | 1.474 |
288 | Plant | Persimmon calyx | Diospyros kaki L.f. | Fruit (Calyx) | 0.465 |
289 | Plant | Peucedanum root | Kitagawia praeruptora (Dunn) Pimenov. | Root | 1.628 |
290 | Plant | Phellodendron bark | Phellodendron amurense Rupr. | Stem (Bark) | 6.993 |
291 | Plant | Pine | Pinus L. | Leaf | 1.019 |
292 | Plant | Pinellia tuber | Pinellia ternata (Thunb.) Makino | Root (Tuber) | 1.872 |
293 | Plant | Plantago herb | Plantago asiatica L. | Whole plant | 2.642 |
294 | Plant | Plantago seed | Plantago asiatica L. | Seed | 0.385 |
295 | Plant | Platycodon root | Platycodon grandiflorus (Jacq.) A.DC. | Root | 2.199 |
296 | Plant | Polygala root | Polygala tenuifolia Willd. | Root | 0.075 |
297 | Plant | Polygonatum rhizome | Polygonatum falcatum A.Gray | Root (Rhizome) | 0.006 |
298 | Plant | Polygonum root | Reynoutria multiflora (Thunb.) Moldenke | Root (Tuberous root) | 0.008 |
299 | Plant | Pomegranate rind | Punica granatum L. | Fruit (Peel) | 0.777 |
300 | Plant | Potentilla, Silverweed | Argentina anserina (L.) Rydb | Whole plant | 6.731 |
301 | Plant | Prickly pear cactus | Opuntia Mill. | Flower | 1.174 |
302 | Plant | Processed ginger | Zingiber officinale Roscoe | Root (Rhizome) | 45.486 |
303 | Plant | Processed mume | Prunus mume (Siebold) Siebold & Zucc. | Fruit | 0.010 |
304 | Plant | Prunella spike | Prunella vulgaris subsp. asiatica (Nakai) H.Hara | Flower (Spike) | 35.216 |
305 | Plant | Psoralea corylifolia fruit | Cullen corylifolium (L.) Medik. | Fruit | 10.605 |
306 | Plant | Pueraria Root | Pueraria montana var. lobata (Willd.) Maesen & S.M.Almeida ex Sanjappa & Predeep | Root | 7.547 |
307 | Plant | Purslane herb | Portulaca oleracea L. | Whole plant | 13.055 |
308 | Plant | Quercus bark | Quercus acutissima Carruth. | Stem (Bark) | 6.836 |
309 | Plant | Quercus salicina leaf | Quercus salicina Blume. | Leaf | 0.259 |
310 | Plant | Raspberry | Rubus idaeus L. | Leaf | 9.614 |
311 | Plant | Red clover | Trifolium pratense L. | Whole plant | 7.507 |
312 | Plant | Red poppy, Corn poppy | Papaver rhoeas L. | Flower | 5.001 |
313 | Plant | Rehmannia root | Rehmannia glutinosa (Gaertn.) DC | Root | 0.529 |
314 | Plant | Rhubarb | Rheum palmatum L. | Root (Rhizome) | 1.364 |
315 | Plant | Rice paper plant | Tetrapanax papyrifer (Hook.) K.Koch | Stem (Pith) | 0.028 |
316 | Plant | Rooibos | Aspalathus linearis (Burm.f.) R.Dahlgren | Leaf | 94.135 |
317 | Plant | Rose | Rosa L. | Flower (Flower bud) | 0.028 |
318 | Plant | Rose fruit | Rosa multiflora Thunb. | Fruit | 2.196 |
319 | Plant | Rosehips | Rosa L. | Fruit (Peel) | 0.030 |
320 | Plant | Rosemary | Salvia rosmarinus Spenn. | Leaf | 1.555 |
321 | Plant | Rosewood | Dalbergia cochinchinensis Pierre | Stem (Heart wood) | 0.004 |
322 | Plant | Rugosa rose flower | Rosa rugosa Thunb. | Flower (Flower bud) | 0.156 |
323 | Plant | Sacred lotus, Lotus | Nelumbo nucifera Gaertn. | Root (Rhizome node) | 624.459 |
324 | Plant | Safflower | Carthamus tinctorius L. | Flower | 38.392 |
325 | Plant | Salvia miltiorrhiza root | Salvia miltiorrhiza Bunge. | Root | 10.530 |
326 | Plant | Sambucus wood | Sambucus williamsii Hance. | Stem | 2.515 |
327 | Plant | Saposhnikovia root and rhizome | Saposhnikovia divaricata (Turcz. ex Ledeb.) Schischk | Root (Root and Rhizome) | 4.650 |
328 | Plant | Sappan wood | Biancaea sappan (L.) Tod. | Stem (Heart wood) | 0.198 |
329 | Plant | Sargentgloryvine stem | Sargentodoxa cuneata (Oliv.) Rehder & E.H.Wilson | Stem | 1.488 |
330 | Plant | Sarsaparilla | Smilax purhampuy Ruiz. | Root (Root and Rhizome) | 24.176 |
331 | Plant | Saussurea root | Dolomiaea costus (Falc.) Kasana & A.K.Pandey | Root | 5.609 |
332 | Plant | Schizonepeta spike | Nepeta tenuifolia Benth. | Flower (Spike) | 0.596 |
333 | Plant | Scisandra fruit | Schisandra chinensis (Turcz.) Baill | Fruit | 0.022 |
334 | Plant | Scrophularia root | Scrophularia ningpoensis Hemsl. | Root | 1.916 |
335 | Plant | Scutellaria root | Scutellaria baicalensis Georgi | Root | 2.485 |
336 | Plant | Sea buckthorn, Argasse | Hippophae rhamnoides L. | Fruit | 0.024 |
337 | Plant | Seaweed | Sargassum fusiforme (Harvey) Setchell | Whole plant | 2.668 |
338 | Plant | Senna Leaf | Senna alexandrina var. alexandrina | Leaf | 0.206 |
339 | Plant | Sesame | Sesamum indicum L. | Seed | 2.004 |
340 | Plant | Sheep sorrel | Rumex acetosella subsp. pyrenaicus (Pourr. ex Lapeyr.) Akeroyd | Whole plant | 6.392 |
341 | Plant | Shiny bugleweed | Lycopus lucidus Turcz. ex Benth. | Stem and Leaf | 1.364 |
342 | Plant | Siberian cocklebur fruit | Xanthium strumarium L. | Fruit | 0.098 |
343 | Plant | Siberian ginseng | Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. | Root | 35.216 |
344 | Plant | Silktree Albizia bark | Albizia julibrissin Durazz. | Stem (Bark) | 0.927 |
345 | Plant | Sinomenium stem | Sinomenium acutum (Thunb.) Rehder et E.H.Wilson | Stem | 9.065 |
346 | Plant | Smilax rhizome | Smilax glabra Roxb. | Root (Rhizome) | 0.047 |
347 | Plant | Snowbell-leaf tickclover herb | Grona styracifolia (Osbeck) H.Ohashi & K.Ohashi | Stem and Leaf | 13.399 |
348 | Plant | Songaria cynomorium herb | Cynomorium coccineum subsp. songaricum (Rupr.) J.Léonard | Stem (Fleshy stem) | 0.075 |
349 | Plant | Sophora japonica flower | Styphnolobium japonicum (L.) Schott. | Flower (Flower bud) | 7.350 |
350 | Plant | Sophora root | Sophora flavescens Aiton | Root | 4.822 |
351 | Plant | Sophora subprostrata root | Sophora tonkinensis var. tonkinensis | Root | 7.001 |
352 | Plant | Sour cherry | Prunus cerasus L. | Fruit | 1.608 |
353 | Plant | Sparganium rhizome | Sparganium stoloniferum (Buch.-Ham. ex Graebn.) Buch.-Ham. ex Juz. | Root (Rhizome) | 0.018 |
354 | Plant | Spatholobus suberectus stem | Spatholobus suberectus Dunn. | Stem (Vine) | 0.927 |
355 | Plant | Spearmint | Mentha spicata L. | Whole plant (Aerial part) | 2.389 |
356 | Plant | Spicebush | Lindera umbellata Thunb. | Stem | 0.168 |
357 | Plant | Spreading Hedyotis herb | Scleromitrion diffusum (Willd.) R.J.Wang | Whole plant | 36.730 |
358 | Plant | Star anise | Illicium verum Hook.f. | Fruit | 0.010 |
359 | Plant | Stellaria herb | Stellaria media (L.) Vill. L. | Whole plant | 22.730 |
360 | Plant | Stevia | Stevia rebaudiana (Bertoni) Bertoni | Whole plant | 1.488 |
361 | Plant | Stinging nettle, Nettle | Urtica dioica L. | Leaf | 61.986 |
362 | Plant | Summer savory | Satureja hortensis L. | Leaf | 2.649 |
363 | Plant | Sunflower | Helianthus annuus L. | Flower | 0.120 |
364 | Plant | Sweet flag root | Acorus calamus L. | Root (Rhizome) | 1.364 |
365 | Plant | Sweet hydrangea leaf | Hydrangea serrata (Thunb.) Ser. | Leaf | 0.853 |
366 | Plant | Sweet tea vine, Gospel herb | Gynostemma pentaphyllum (Thunb.) Makino | Stem | 0.399 |
367 | Plant | Sweet violet | Viola odorata L. | Whole plant | 61.986 |
368 | Plant | Sweet woodruff | Galium odoratum (L.) Scop. | Leaf | 9.203 |
369 | Plant | Sweet wormwood herb | Artemisia annua L. | Whole plant (Aerial part) | 1.138 |
370 | Plant | Tansy | Tanacetum vulgare L. | Whole plant | 14.878 |
371 | Plant | Tarragon | Artemisia dracunculus L. | Leaf | 2.860 |
372 | Plant | Tetragonia herb | Tetragonia tetragonoides (Pall.) Kuntze. | Whole plant | 18.716 |
373 | Plant | Tokoro rhizome | Dioscorea tokoro Makino ex Miyabe | Root (Rhizome) | 3.107 |
374 | Plant | Tokyo violet herb | Viola philippica var. philippica | Whole plant | 11.377 |
375 | Plant | Tribulus fruit | Tribulus terrestris L. | Fruit | 1.104 |
376 | Plant | Trichosanthes fruit | Trichosanthes kirilowii Maxim. | Fruit | 0.238 |
377 | Plant | Trichosanthes peel | Trichosanthes kirilowii Maxim. | Fruit (Peel) | 2.418 |
378 | Plant | Trichosanthes root | Trichosanthes kirilowii Maxim. | Root | 0.180 |
379 | Plant | Trichosanthes seed | Trichosanthes kirilowii Maxim. | Seed | 0.029 |
380 | Plant | Trifoliate orange, Hardy orange | Citrus trifoliata L. | Fruit | 0.058 |
381 | Plant | Turmeric | Curcuma longa L. | Root (Rhizome) | 21.095 |
382 | Plant | Uncaria hook | Uncaria rhynchophylla (Miq.) Miq. | Stem (Hook) | 3.891 |
383 | Plant | Violet | Viola L. | Stem and Leaf | 2.059 |
384 | Plant | Walnut | Juglans L. | Fruit (Hull) | 11.472 |
385 | Plant | Walnut | Juglans L. | Leaf | 6.561 |
386 | Plant | Walnut | Juglans regia L. | Seed | 0.033 |
387 | Plant | Water chestnut | Trapa natans var. bispinosa (Roxb.) Makino | Fruit | 2.953 |
388 | Plant | Watercress | Nasturtium officinale R.Br. | Stem | 20.041 |
389 | Plant | Wheat | Triticum aestivum L. | Seed | 0.244 |
390 | Plant | White dead-nettle | Lamium album subsp. barbatum (Siebold & Zucc.) Mennema | Stem and Leaf | 25.365 |
391 | Plant | White horehound | Marrubium vulgare L. | Whole plant | 7.782 |
392 | Plant | White sandalwood | Santalum album L. | Stem (Xylem) | 0.176 |
393 | Plant | White willow | Salix alba L. | Stem (Bark) | 0.373 |
394 | Plant | Wild strawberry | Fragaria vesca L. | Leaf | 2.286 |
395 | Plant | Witch hazel, Hamamelis | Hamamelis virginiana L. | Leaf | 1.256 |
396 | Plant | Wormwood, Mugwort | Artemisia princeps Pamp. | Whole plant | 2.059 |
397 | Plant | Yarrow | Achillea millefolium L. | Whole plant | 1.306 |
398 | Plant | Yerbadetajo herb | Eclipta prostrata (L.) L. | Stem and Leaf | 6.155 |
399 | Plant | Yew | Taxus brevifolia Nutt. | Leaf | 0.487 |
400 | Fungus | Agaricus | Agaricus blazei Murill. | Fruit body | 0.005 |
401 | Fungus | Baikisei, Artist’s bracket | Ganoderma applanatum (Pers.) Pat. | Fruit body | 12.312 |
402 | Fungus | Ganoderma | Ganoderma lucidum P.Karsten | Fruit body | 0.004 |
403 | Fungus | Iceland moss | Cetraria islandica (L.) Ach. | Lichen thallus | 15.527 |
404 | Fungus | Jelly ear | Auricularia auricula-judae (Bull.) Quél | Fruit body | 38.392 |
405 | Fungus | Meshima | Tropicoporus linteus (Berk. & M.A.Curtis) L.W.Zhou & Y.C.Dai | Fruit body | 4.945 |
406 | Fungus | Polyporus sclerotium | Polyporus umbellatus Fries | Sclerotium | 3.673 |
407 | Fungus | Poria sclerotium | Wolfiporia cocos Ryvarden & Gilbertson (Poria cocos Wolf) | Sclerotium | 0.002 |
408 | Fungus | Snow tea | Thamnolia vermicularis (Sw.) Ach. ex Schaer | Lichen thallus | 0.422 |
409 | Fungus | Turkey tail | Trametes versicolor (L.) Lloyd. | Fruit body | 11.472 |
410 | Other (non-plant) | Abalone shell | Haliotis diversicolor Reeve, 1846 | Shell | 0.778 |
411 | Other (non-plant) | Earthworm | Pheretima aspergillum Perrier | Whole body | 18.716 |
412 | Other (non-plant) | Spirulina | Arthrospira platensis Gomont. | Algae | 39.662 |
413 | Other (non-plant) | Trogopterus feces | Trogopterus xanthipes (Milne-Edwards) | Feces | 28.014 |
414 | Other (non-plant) | Water buffalo horn | Bubalus bubalis | Horn | 0.000 |
Figure 1
The distribution of the LPS concentration of the 414 samples measured using the Limulus reaction. The samples were divided into plants, fungi, and others. The plant samples were further categorized according to their parts. *p-value < 0.05 for Steel–Dwass test.
Table 2 Twelve herbal extract samples with significantly higher LPS content than the other samples. The samples are listed in the order of high concentration.
Sample nameScientific namePartLimulus activity (μg/g)
Oat | Avena sativa L. | Stem and leaf | 825.5 |
Sacred lotus, Lotus | Nelumbo nucifera Gaertn. | Root | 624.5 |
Aralia rhizome | Aralia cordata Thunb. | Root | 504.0 |
Fortune’s drynaria rhizome | Drynaria roosii Nakaike | Root | 423.0 |
Couch grass, Quack grass | Elytrigia repens (L.) Gould | Root | 392.6 |
Common ducksmeat | Spirodela polyrhiza (L.) Schleid. | Leaf | 366.6 |
Angelica dahurica root | Angelica dahurica (Hoffm.) Benth. & Hook.f. ex Franch. & Sav. | Root | 266.6 |
Corn silk | Zea mays L. | Flower | 180.1 |
Bupleurum root | Bupleurum falcatum L. | Root | 148.5 |
Ginger | Zingiber officinale Roscoe. | Root | 122 |
Artemisia leaf | Artemisia princeps Pamp. | Leaf | 121.8 |
Bitter melon | Momordica charantia L. | Fruit | 118.5 |
Measurement of the macrophage activation potential of the herbal extracts
Twelve herbal extract samples with LPS levels of ≥ 100 μg/g were tested for macrophage activation potential. Macrophage activation potential was assessed by measuring phagocytosis and nitric oxide (NO) production by stimulating RAW 264.7 cells with the herbal extracts. Stimulation using purified LPSp served as a positive control. Phagocytic activity was increased in all samples compared with that in the non-stimulated control group (Fig. 2). The phagocytosis ability of RAW 264.7 cells was increased when stimulated with Oat (Avena sativa L.), Sacred lotus (Nelumbo nucifera Gaertn.), Aralia rhizome (Aralia cordata Thunb.), Fortune’s drynaria rhizome (Drynaria roosii Nakaike), Couch grass (Elytrigia repens (L.) Gould), Angelica dahurica root (Angelica dahurica), Common ducksmeat (Spirodela polyrhiza (L.) Schleid.), Corn silk (Zea mays L.), and Bupleurum root (Bupleurum falcatum L.) compared with the positive control LPSp. The phagocytosis ability of RAW 264.7 cells with Ginger (Zingiber officinale Roscoe) was comparable, and that of Artemisia leaf (Artemisia princeps Pamp.) and Bitter melon (Momordica charantia L.) was lower than that of LPSp. The Pearson correlation between the amount of LPS and phagocytosis showed a clear positive correlation at R = 0.474. This suggests that LPS in crude drugs may increase the phagocytosis ability of macrophages, but other factors may also be involved.
허브 추출물의 대식세포 활성화 잠재력 측정
LPS 농도가 100 μg/g 이상인
12개의 한약 추출물 샘플을 대식세포 활성화 잠재력 평가에 사용했습니다.
대식세포 활성화 잠재력은
한약 추출물로 자극한 RAW 264.7 세포의 식작용 및 일산화질소(NO) 생성량을 측정하여 평가했습니다.
정제된 LPSp로 자극한 경우를 양성 대조군으로 사용했습니다.
모든 샘플에서 자극하지 않은 대조군에 비해 식작용 활성이 증가했습니다(그림 2). RAW 264.7 세포의 식작용 능력은 다음과 같은 약초 추출물로 자극했을 때 증가했습니다:
오트 (Avena sativa L.), 성스러운 연꽃 (Nelumbo nucifera Gaertn.), 아라리아 뿌리 (Aralia cordata Thunb.), 포춘의 드라이니아 뿌리 (Drynaria roosii Nakaike), 쿠치 그라스 (Elytrigia repens (L.) Gould), Angelica dahurica 뿌리 (Angelica dahurica), Common ducksmeat (Spirodela polyrhiza (L.) Schleid.), Corn silk (Zea mays L.), 및 Bupleurum 뿌리 (Bupleurum falcatum L.)로 자극했을 때 증가했으며, 이는 양성 대조군 LPSp와 비교했을 때 유의미했습니다. 생강 (Zingiber officinale Roscoe)의 식세포작용 능력은 유사했으며, Artemisia 잎 (Artemisia princeps Pamp.)과 쓴 멜론 (Momordica charantia L.)의 식세포작용 능력은 LPSp보다 낮았습니다.
LPS의 양과 식세포작용 사이의 피어슨 상관관계는 R = 0.474에서 명확한 양의 상관관계를 보였습니다. 이는 생약에 함유된 LPS가 대식세포의 식작용 능력을 증가시킬 수 있지만, 다른 요인도 관여할 수 있음을 시사합니다.
Figure 2
The percentage of phagocytic activity of RAW 264.7 cells stimulated by the 12 herbal extract samples containing the highest LPS levels are listed in Table 2. The concentrations of herbs and LPSp added were adjusted so that the LPS concentration was 100 ng/ml. The dotted line represents the phagocytosis percentage of RAW 264.7 cells without any external stimulation (medium only). Each bar represents the mean of two independent measurements, and the error bars represent the standard deviation.
To compare the NO production ability of the 12 herbal extracts with that of the positive control LPSp, the dose–response curves of the 12 herbal extract samples are presented in Fig. 3. The 12 herbal extracts were divided based on the amount of LPS required to induce 5 µM more nitrite than LPSp. Oat, (Avena sativa L.), Sacred lotus (Nelumbo nucifera Gaertn.), Fortune’s drynaria rhizome (Drynaria roosii Nakaike), and Couch grass (Elytrigia repens (L.) Gould) required a fewer samples per LPS content to induce 5 µM NO compared with LPSp (Fig. 3a). Corn silk (Zea mays L.), Bupleurum root (Bupleurum falcatum L.), Angelica dahurica root (Angelica dahurica), Common duckmeat (Spirodela polyrhiza (L.) Schleid.), and Angelica dahurica root (Angelica dahurica) required equivalent amounts of LPSp (Fig. 3b), whereas Ginger (Zingiber officinale Roscoe), Artemisia leaf (Artemisia princeps Pamp.), and Bitter melon (Momordica charantia L.) required more samples per LPS content to induce 5 µM Nitrite compared with LPSp (Fig. 3c). Table 3 shows the amount of LPS content in each herbal extract required to induce 5 µM NO and the relative NO induction strength compared with LPSp.
12가지 한약 추출물의 NO 생성 능력을 양성 대조군 LPSp와 비교하기 위해, 12가지 한약 추출물 시료의 용량-반응 곡선이 그림 3에 제시되었습니다. 12가지 한약 추출물은 LPSp보다 5 µM 더 많은 질산염을 유도하는 데 필요한 LPS의 양에 따라 분류되었습니다.
오트 (Avena sativa L.), 성스러운 연꽃 (Nelumbo nucifera Gaertn.), 포춘의 드라이나리아 뿌리 (Drynaria roosii Nakaike), 및 쿠치 그라스 (Elytrigia repens (L.) Gould)는 LPSp에 비해 5 µM의 NO를 유도하기 위해 LPS 함량당 더 적은 양의 샘플이 필요했습니다 (그림 3a). 옥수수 실 (Zea mays L.), 부플레룸 뿌리 (Bupleurum falcatum L.), 안젤리카 다후리카 뿌리 (Angelica dahurica), 일반 오리 고기 (Spirodela polyrhiza (L.) Schleid.), 및 안젤리카 다후리카 뿌리 (Angelica dahurica)는 LPSp와 동일한 양이 필요했습니다 (그림 3b),
반면 생강 (Zingiber officinale Roscoe), Artemisia 잎 (Artemisia princeps Pamp.), 및 Bitter melon (Momordica charantia L.)은 LPSp와 비교하여 5 µM 질산염을 유도하기 위해 LPS 함량당 더 많은 샘플이 필요했습니다 (그림 3c).
표 3은 각 허브 추출물에서 5 µM NO를 유도하기 위해 필요한 LPS 함량과 LPSp와의 비교를 통한 상대적 NO 유도 강도를 보여줍니다.
Figure 3
Dose–response curve of macrophage activation capacity determined by measuring the amount of NO produced as the amount of nitrite produced by RAW 264.7 cells stimulated by adding 1, 10, and 100 ng/ml per LPS to the 12 herbal extract samples containing the highest LPS content listed in Table 2. The amount of LPS needed to induce 5 µM more nitrite than LPSp used as control is (a) less than LPSp, (b) equivalent to LPSp, and (c) more than LPSp in this group. The dotted lines represent 5 µM Nitrite. The trendline equations (dashed lines) and R2 of each line are listed in Table 3.
Table 3 The equivalent amount of herbal extracts per LPS content needed to induce 5 µM nitrite, which is the relative nitrite induction strength compared with LPSp. The trendline equations and R2 of each line in Fig. 3 are also listed.
SamplesLPS (ng/mL)/nitrite 5 µMRelative NO induction strength (LPSp)Trendline equationR2 value
LPSp | 32.8 | 1.0 | y = 1.6218x0.3226 | 1.00 |
Oat | 7.3 | 4.5 | y = 2.3505ln(x) + 0.3357 | 0.99 |
Sacred lotus | 19.7 | 1.7 | y = 1.0709x0.517 | 0.99 |
Aralia rhizome | 24.7 | 1.3 | y = 1.4364ln(x) + 0.3958 | 0.98 |
Fortune’s drynaria rhizome | 14.3 | 2.3 | y = 1.4994x0.4533 | 1.00 |
Couch grass | 3.6 | 9.2 | y = 2.7422ln(x) + 1.5183 | 1.00 |
Common Ducksmeat | 14.6 | 2.2 | y = 1.5147ln(x) + 0.937 | 0.99 |
Angelica dahurica root | 18.3 | 1.8 | y = 1.6192ln(x) + 0.2956 | 0.97 |
Corn silk | 15.8 | 2.1 | y = 1.6192ln(x) + 0.5361 | 1.00 |
Bupleurum root | 12.0 | 2.7 | y = 2.011ln(x) − 0.0051 | 0.98 |
Ginger | 222.7 | 0.1 | y = 0.903x0.3166 | 0.64 |
Artemisia leaf | 145.2 | 0.2 | y = 1.006x0.3221 | 0.73 |
NO production results suggested that herbal extracts containing high LPS levels can activate macrophages. Moreover, NO production was significantly inhibited by the reaction with polymyxin B, an LPS inhibitor. In addition, an LPS inhibitor was used by Montenegro et al. as a way to verify that NO-inducing activity is obtained from LPS. The 12 samples exhibited significant inhibition of NO production, with inhibition rates of 71–95% (Fig. 4). The decrease in NO production when polymyxin was added suggests that it is mostly the LPS content that is involved in the macrophage-activating capacity of these herbal extracts.
NO 생성 결과는
고농도 LPS를 함유한 허브 추출물이 대식세포를 활성화시킬 수 있음을 시사했습니다.
또한,
LPS 억제제인 폴리믹신 B와의 반응으로 NO 생성이 유의미하게 억제되었습니다.
또한, Montenegro 등(2012)은 LPS 억제제를 사용하여 NO 유도 활성이 LPS에서 유래함을 검증하는 방법으로 사용했습니다.
12개의 시료는 NO 생산이 71–95% 억제되는 유의미한 억제 효과를 나타냈습니다(그림 4).
폴리믹신을 추가했을 때 NO 생산이 감소한 것은 이러한 허브 추출물의 대식세포 활성화 능력에 주로 LPS 함량이 관여함을 시사합니다.
Figure 4
Macrophage activation potential determined by measuring the NO production of RAW 264.7 cells stimulated by the 12 herbal samples containing the highest LPS levels listed in Table 2. The percentage of NO produced by RAW 264.7 cells stimulated by LPS content (black bars) and other components (white) in the herbal extract samples. The concentrations of herbs and LPSp added were adjusted, making the LPS content 10 ng/ml. The black area represents the percentage of induced NO2 being decreased following polymyxin B addition, representing the percentage of NO2 induced by the LPS content in the herb samples. Each bar represents the mean of two independent measurements, and the error bars represent the standard deviation.
Discussion
Herbal extracts have several health-benefiting effects, such as hemostatic44,45, antifebrile46,47, detoxifying48, sweating49, and immunostimulating effects50, most of which are low molecular weight substances and have significantly contributed to the development of pharmaceuticals as the beginning of numerous medicines. LPS in herbal extracts supposedly causes this immunostimulating effect because previous LPS screening study revealed that some herbal extracts contain high LPS amounts (> 100 μg/g)32 and previous studies have shown that the oral intake of LPS enhances immunity and effectively prevents and improves various diseases, including cancer, viral infection, atopic dermatitis, diabetes, atherosclerosis, and Alzheimer’s disease38,51,52,53. Although there are more than several hundred herbal extracts worldwide and the possibility that the LPS in these herbal extracts playing a role in their functions is high, the LPS amount in them has never been measured or compared among the parts of plants from which they were obtained. Therefore, this study aimed to create a database of LPS levels in herbal extracts by measuring LPS levels in over 400 herbal extract samples stored at the Faculty of Pharmaceutical Sciences, Hokkaido University of Science, and to provide a basis for research to assess the immunostimulatory effects of herbal extracts and LPS’s contribution to these effects.
토론
허브 추출물은
지혈44,45, 해열46,47, 해독48, 발한49, 면역 자극 효과50 등
다양한 건강에 유익한 효과를 가지고 있으며,
이 중 대부분은 저분자량 물질로 구성되어 있어 수많은 의약품의 개발 초기 단계에서 중요한 역할을 해왔습니다.
허브 추출물 내 LPS는 이 면역 강화 효과를 유발한다고 추정됩니다. 이전 LPS 스크리닝 연구에서 일부 허브 추출물이 높은 LPS 함량(> 100 μg/g)을 함유한다는 것이 밝혀졌으며32, 이전 연구들은 LPS의 경구 섭취가 면역력을 강화하고 암, 바이러스 감염, 아토피 피부염, 당뇨병, 동맥경화증, 알츠하이머 병 등 다양한 질환의 예방 및 개선에 효과적임을 보여주었습니다38,51,52,53. 전 세계적으로 수백 가지의 허브 추출물이 존재하며, 이들 추출물 내 LPS가 기능에 역할을 할 가능성이 높지만, 이들 추출물 내 LPS 함량은 식물 부위별로 측정되거나 비교된 적이 없습니다. 따라서 본 연구는 홋카이도 과학대학 약학부에서 보관 중인 400개 이상의 허브 추출물 샘플에서 LPS 농도를 측정하여 허브 추출물 내 LPS 수준 데이터베이스를 구축하고, 허브 추출물의 면역 자극 효과 평가 및 LPS의 기여도를 연구하기 위한 기반을 제공하기 위해 수행되었습니다.
Table 1 shows the amount of LPS in 414 herbal extracts. LPS concentrations were widely distributed from a few μg/g to several hundred μg/g (Fig. 1). LPS content was shown to be significantly higher in roots (107 samples) than in fruits (69 samples) or seeds (22 samples) in terms of LPS concentration. Of the 414 herbal extracts measured in this study, approximately 100 herbal extracts contained ≥ 10 μg/g of LPS. Twelve of the herbal extracts exhibited very high LPS levels of over 100 μg/g. Comparison among vascular plant parts showed that the overall LPS level in root-derived herbal extracts was high and significantly higher than that in seed- and fruit-derived herbal extracts. Over half (seven) of the 12 high-LPS-content herbal extracts were root-derived. Most vascular plants are symbiotic with soil bacteria in their roots54,55,56. Symbiotic bacteria in soil promote plant growth through their involvement in nitrogen fixation, nutrient supply, and disease defense. Such bacteria are called plant growth-promoting rhizospheric microorganisms (PGPR)57; among them, bacteria of the genera Pseudomonas, Azospirillum, Bradyrhizobium, and Rhizobium are particularly essential. These bacteria are gram-negative bacteria and, therefore, may contribute to the high-LPS-content in the roots of herbal extracts. Montenegro et al. reported that 519 genera of bacteria are found in Angelica sinensi, a root-derived herbal extract that constitutes Juzen Daihoto, a Chinese herbal medicine known for its immunostimulating properties43. Among them, Rahnella, a gram-negative bacterium found in soil and fresh water, is abundant in Angelica sinensi. It was stipulated that the LPS content in Angelica sinensi is involved in the immunity-enhancing effects of Juzen Daihoto. The LPS content of Angelica sinensi (also called Angelica acutiloba Kitag. in Japan) was also measured in this study and it was shown that it contained 16 μg/g LPS, the 61st highest LPS content among all 414 samples in Table 1 (herb sample no. 202). These results suggest that the LPS amount in the root-derived herbal extract correlates with the number of soil-derived microorganisms that symbiotically coexist with the root-derived microorganisms during growth. These microorganisms are mostly gram-negative bacteria that contain a high LPS amount. On the other hand, the variation within each part group is large, suggesting that the high or low LPS content may not so much dependent on the part of the sample.
표 1은 414개 허브 추출물 내 LPS의 양을 보여줍니다. LPS 농도는 몇 μg/g에서 수백 μg/g까지 널리 분포되었습니다(그림 1). LPS 함량은 뿌리(107개 샘플)에서 과일(69개 샘플)이나 종자(22개 샘플)보다 LPS 농도 측면에서 유의미하게 높았습니다. 본 연구에서 측정된 414개 한약 추출물 중 약 100개 추출물이 LPS 함량 10 μg/g 이상을 포함했습니다.
12개의 허브 추출물은 100 μg/g를 초과하는 매우 높은 LPS 수준을 나타냈습니다.
혈관식물 부위 간 비교 결과, 뿌리 유래 허브 추출물의 전체 LPS 수준이 높으며, 종자 및 과일 유래 허브 추출물보다 유의미하게 높았습니다. 12개 고농도 LPS 함유 허브 추출물 중 절반 이상(7개)이 뿌리 유래였습니다. 대부분의 혈관식물은 뿌리에서 토양 세균과 공생 관계를 형성합니다54,55,56. 토양 내 공생 세균은 질소 고정, 영양분 공급, 질병 방어 등에 참여하여 식물 성장에 기여합니다. 이러한 세균은 식물 성장 촉진 뿌리권 미생물(PGPR)이라고 불리며57, 그 중 Pseudomonas, Azospirillum, Bradyrhizobium, Rhizobium 속의 세균이 특히 중요합니다. 이 세균은 그람 음성 세균으로, 따라서 허브 추출물의 뿌리에서 높은 LPS 함량에 기여할 수 있습니다. Montenegro 등(43)은 면역 자극 효과가 알려진 중국 전통 약재인 Juzen Daihoto를 구성하는 뿌리 추출물 Angelica sinensi에서 519개의 세균 속이 발견되었다고 보고했습니다. 이 중 토양과 담수에서 발견되는 그람 음성 세균인 Rahnella는 Angelica sinensi에서 풍부하게 존재합니다. Angelica sinensi의 LPS 함량이 주젠 다이호토의 면역 강화 효과와 관련이 있다는 것이 명시되었습니다. 이 연구에서 Angelica sinensi(일본에서 Angelica acutiloba Kitag.로도 알려져 있음)의 LPS 함량도 측정되었으며, 16 μg/g의 LPS를 함유하여 표 1(약초 샘플 번호 202)에 기재된 414개 샘플 중 61번째로 높은 LPS 함량을 보였습니다. 이 결과는 뿌리 유래 허브 추출물의 LPS 양이 성장 과정에서 뿌리 유래 미생물과 공생하는 토양 유래 미생물의 수와 관련이 있음을 시사합니다. 이러한 미생물은 주로 고농도의 LPS를 함유한 그람 음성 세균입니다. 반면, 각 부분 그룹 내 변동성이 크다는 점은 LPS 함량이 샘플의 부분에 크게 의존하지 않을 수 있음을 시사합니다.
The amount of LPS contained in plants is considered to be derived from symbiotic bacteria. Therefore, the type and amount of symbiotic bacteria may vary depending on the origin of the plant, time of collection, variety, and cultivation method. Consequently, it is meaningful to measure multiple samples, but it is difficult to obtain multiple lots of crude drugs because most of them are imported. Therefore, we decided to use the variation in LPS content of one crude drug, brown rice, as a model for the variation in a single crude drug sample. In a previous study, we obtained brown rice from 15 different locations in Japan and measured LPS content in the 10.9 ± 4.3 μg/g range58. Although the LPS content of brown rice may not necessarily be universalizable to other crude drugs, we believe that this can be used as a reference value for the degree of variation in LPS content. The range of LPS content in this one sample was relatively stable compared to the range of 0.001–100 μg/g in the LPS content data (Table 1, Fig. 1) obtained for individual crude drugs. Therefore, based on this fact, we conducted the experiment with the belief that the approximate degree of LPS content could be evaluated with a single sample.
In this study, Limulus amebocyte lysate (LAL) test was used to detect LPS in the herbal extracts. However, it has been reported that β-1,3-glucan also reacts with LAL, so, there is a possibility of measuring plant-derived β-1,3-glucan contaminant with ordinary LAL. In this study, this contamination is prevented by using an LAL test kit containing a carboxymethylated curdlan which has reported act as a blocker of β-1,3-glucan mediated coagulation pathway59. Therefore, the limulus activity detected in this study were specific to LPS.
The macrophage-activating ability of LPS is a fundamental LPS action34. Therefore, the macrophage activation potential of herbal extracts by phagocytosis and NO production was assessed using macrophage-like RAW 264.7 cells. RAW246.7 cells transduce LPS signaling via TLR460. In addition, many mammalian innate immune system cells, including humans, express TLR461. Therefore, even though this study used mouse macrophage cells as a representative model, it is safe to assume that LPS contained in crude drugs is functional for mammals in general, including humans. However, further research is needed to determine the effects of LPS in humans, especially when administered orally. Twelve samples containing particularly high amounts of LPS (100 μg/g) were examined using these methods. The results showed that herbal extracts increased the phagocytosis capability of RAW 264.7 cells (Fig. 2). The NO production by RAW 264.7 cells caused by these samples was found to be higher, similar, or lower than purified LPSp, depending on the 12 herbal extracts (Fig. 3). The LPS itself in the group that exhibited higher activity may display high macrophage activation. However, it is speculated that a synergistic effect with macrophage activators, such as bacterial-derived nucleic acids, peptidoglycans, and flagellin, may be observed. Conversely, those that exhibited weaker activity than LPSp derived from Enterobacteriaceae may be because of the nature of the symbiotic gram-negative bacteria, as some LPSs, such as Bacteroides, are weak in biological activity, which depends on their lipid A structure62,63. Additionally, NO production was significantly (> 70%) reduced in all RAW 264.7 cells stimulated with 12 herbal extracts when polymyxin B, an LPS inhibitor, was added (Fig. 4). These results suggest that LPS is responsible for most of the macrophage activation potential of herbal extracts. However, the strength of the macrophage-activating ability of the herbal extracts is not proportional to the amount of LPS contained and may significantly differ among various symbiotic bacteria. Therefore, in studying the innate immune activation potential of herbal extracts, it is necessary to assess and clarify their unique qualities.
Herbal extracts are often prescribed in daily doses of 1–10 g64,65. Of the 414 herbal extracts for which LPS levels were measured in this study, 98 contained over 10 µg/g LPS, and oral intake of LPS increased the phagocytic activity of abdominal macrophages in mice at 10 µg/kg BW for 7 days34, induced increase in capillary vascularity at 10 µg/kg BW in human randomized control trial studies66, and in fish, 5–20 μg/kg BW increased the ability to prevent infection67. Based on these studies, 10 μg/kg BW of LPS can activate innate immunity, which is 500 μg/day for a 50 kg human. Therefore, consuming a daily dose of herbal extracts may mean taking in an effective amount of LPS, meaning that LPS may contribute to the medicinal effects of the herbal extracts. Juzen Daiho-to, a combination of herbal extracts, reportedly has preventive and ameliorative effects against diabetes and cancer partly because LPS is one of its ingredients68,69. The 414 herbal extract samples measured in this study are much greater than the 157 listed in the Japanese Pharmacopoeia. These should be sufficient populations for primary screening based on the efficacy of oral LPS intake over immune functions and the activation of immune cells using macrophages and other cells in herbal extracts. However, because the LPS content of plants is obtained from the symbiotic gram-negative bacterial population and may differ greatly depending on the time of collection, variety, cultivation method, etc., the LPS content of the samples to be studied should be analyzed with caution on a sample-by-sample basis.
식물 내 LPS 함량은 공생 세균에서 유래한 것으로 간주됩니다. 따라서 공생 세균의 종류와 양은 식물의 기원, 채취 시기, 품종, 재배 방법에 따라 달라질 수 있습니다. 따라서 다중 샘플 측정이 의미 있지만, 대부분의 원료 약물이 수입되기 때문에 다중 배치의 원료 약물을 확보하기 어렵습니다. 따라서 우리는 단일 원료 약물 샘플의 변동성을 모델로 삼기 위해 한 가지 원료 약물인 현미의 LPS 함량 변동을 사용하기로 결정했습니다. 이전 연구에서 우리는 일본 내 15개 다른 지역에서 현미를 수집하고 LPS 함량을 10.9 ± 4.3 μg/g 범위에서 측정했습니다. 갈색 쌀의 LPS 함량이 다른 원료 약물에 반드시 일반화될 수 없지만, 이는 LPS 함량 변동 정도를 평가하는 참고 값으로 사용할 수 있다고 판단했습니다. 이 단일 샘플의 LPS 함량 범위는 개별 원료 약물에서 얻은 LPS 함량 데이터(표 1, 그림 1)의 0.001–100 μg/g 범위와 비교해 상대적으로 안정적이었습니다. 따라서 이 사실을 바탕으로 단일 시료로 LPS 함량의 대략적인 정도를 평가할 수 있다는 가정 하에 실험을 진행했습니다.
본 연구에서는 한약 추출물 내 LPS를 검출하기 위해 Limulus amebocyte lysate (LAL) 검사를 사용했습니다. 그러나 β-1,3-글루칸도 LAL과 반응한다는 보고가 있어, 일반적인 LAL을 사용 시 식물 유래 β-1,3-글루칸 오염물을 측정할 가능성이 있습니다. 본 연구에서는 β-1,3-글루칸 매개 응고 경로를 차단하는 것으로 보고된 카르복시메틸화 커드란을 함유한 LAL 검사 키트를 사용하여 이 오염을 방지했습니다59. 따라서 본 연구에서 검출된 리무루스 활성은 LPS에 특이적입니다.
LPS의 대식세포 활성화 능력은 LPS의 기본 작용입니다34. 따라서 약초 추출물의 대식세포 활성화 잠재력은 대식세포 유사 RAW 264.7 세포를 사용하여 식작용과 NO 생산을 통해 평가되었습니다. RAW246.7 세포는 TLR4를 통해 LPS 신호를 전달합니다60. 또한 인간을 포함한 많은 포유류 선천 면역 시스템 세포는 TLR4를 발현합니다61. 따라서, 이 연구에서 마우스 대식세포 세포를 대표 모델로 사용했더라도, 약재에 함유된 LPS가 인간을 포함한 포유류 전반에 기능적임을 가정할 수 있습니다. 그러나 특히 경구 투여 시 인간에서의 LPS 효과를 확인하기 위해 추가 연구가 필요합니다. LPS 함량이 특히 높은 12개 샘플(100 μg/g)을 이러한 방법으로 분석했습니다. 결과는 허브 추출물이 RAW 264.7 세포의 식작용 능력을 증가시켰음을 보여주었습니다(그림 2). 이 샘플에 의해 유발된 RAW 264.7 세포의 NO 생산량은 12가지 한약 추출물에 따라 정제된 LPSp보다 높거나 유사하거나 낮았습니다(그림 3). 높은 활성을 보인 그룹의 LPS 자체는 높은 대식세포 활성화 효과를 나타낼 수 있습니다. 그러나 박테리아 유래 핵산, 펩티도글리칸, 플래길린과 같은 대식세포 활성화제와의 시너지 효과가 관찰될 수 있다는 추측이 있습니다. 반면, Enterobacteriaceae에서 유래한 LPSp보다 활성이 약한 경우, 공생성 그람음성 세균의 특성 때문일 수 있습니다. 일부 LPS(예: Bacteroides)는 지질 A 구조에 따라 생물학적 활성이 약할 수 있기 때문입니다62,63. 또한, 폴리믹신 B(LPS 억제제)를 추가한 후 12가지 허브 추출물로 자극받은 모든 RAW 264.7 세포에서 NO 생산이 유의미하게 (>70%) 감소했습니다(그림 4). 이 결과는 허브 추출물의 대식세포 활성화 잠재력의 대부분이 LPS에 의해 결정된다는 것을 시사합니다. 그러나 허브 추출물의 대식세포 활성화 능력의 강도는 함유된 LPS의 양과 비례하지 않을 수 있으며, 다양한 공생 세균 간에 크게 다를 수 있습니다. 따라서 허브 추출물의 선천성 면역 활성화 잠재력을 연구할 때는 그들의 독특한 특성을 평가하고 명확히 하는 것이 필요합니다.
허브 추출물은 일반적으로 1–10g의 일일 용량으로 처방됩니다64,65. 이 연구에서 LPS 수준이 측정된 414개의 허브 추출물 중 98개는 10 µg/g 이상의 LPS를 함유했으며, LPS의 경구 투여는 쥐의 복부 대식세포의 식작용 활성을 10 µg/kg 체중(BW)에서 7일 동안 증가시켰습니다34, 인간 무작위 대조군 연구에서 10 µg/kg BW에서 모세혈관 혈관 밀도를 증가시켰습니다66, 그리고 어류에서 5–20 μg/kg 체중에서 감염 예방 능력을 향상시켰습니다67. 이러한 연구 결과를 바탕으로, 10 μg/kg 체중의 LPS는 선천성 면역계를 활성화시킬 수 있으며, 이는 50 kg 인간 기준 500 μg/일입니다. 따라서 허브 추출물의 일일 섭취량은 효과적인 양의 LPS를 섭취하는 것을 의미할 수 있으며, 이는 LPS가 허브 추출물의 약리적 효과에 기여할 수 있음을 시사합니다. 주젠 대호-토(Juzen Daiho-to)는 허브 추출물의 조합으로, LPS가 주요 성분 중 하나이기 때문에 당뇨병과 암에 대한 예방 및 완화 효과가 보고되었습니다68,69. 본 연구에서 측정된 414개의 허브 추출물 샘플은 일본 약전(Japanese Pharmacopoeia)에 기재된 157개보다 훨씬 많습니다. 이 샘플 수는 구강 섭취를 통한 LPS의 면역 기능에 대한 효능과 허브 추출물 내 대식세포 및 기타 세포의 활성화 효과를 기반으로 한 초기 선별에 충분한 표본 규모입니다. 그러나 식물 내 LPS 함량은 공생하는 그람 음성 세균 군집에서 유래하며, 채취 시점, 품종, 재배 방법 등에 따라 크게 다를 수 있으므로, 연구 대상 샘플의 LPS 함량은 샘플별로 신중하게 분석해야 합니다.
Methods
Sample preparation
All dried samples were purchased from Tochimoto Tenkaido Co., Ltd. (Osaka, Japan). The dried samples were pulverized, and 100 mg powdered samples were extracted in 1 ml distilled water for 20 min at 90 °C. Subsequently, the samples were sonicated for 20 min and vortexed for two minutes to extract LPS. Next, the supernatants were obtained after centrifugation at 830 × g for 15 min. All methods involving the dried samples were carried out in accordance with relevant guidelines70.
Measurement of the LPS contents of herbal extracts
The LPS concentration in the samples were assayed using the kinetic–turbidimetric method. All samples were diluted 10,000-fold using pyrogen-free distilled water. Sample supernatants (0.2 ml) were added to LAL-ES in a glass tube (Limulus ES-II single test; Wako Pure Chemical Industries Ltd., Osaka, Japan). After a few seconds of votexing, the gelation time was measured using a Toxinometer ET-6000 (Wako Pure Chemical Industries Ltd.), and the specific activity was calculated using an LS Toximaster (Wako Pure Chemical Industries Ltd.), a data acquisition program for the Toxinometer.
The LAL test kits of Wako contain carboxymethylated curdlan in freeze-dried reagents, which stops β-d-glucans from triggering an interference in the test. Therefore, this test kit used in this study is specific to LPS59.
Phagocytosis assay
Phagocytic activity was measured using flow cytometry as previously described with minor modifications71. Briefly, the mouse macrophage/monocyte cell line RAW 264.7 cells (obtained from TIB-71; ATCC, Manassas, VA, USA) were treated for 18 h with extracts in a 48-well plate. The extract concentrations were measured so that the LPS content was 100 ng/ml. Next, fluorescent latex beads (Fluoresbrite® YG Microspheres 1.0 μm; Polysciences, Warrington, PA) at a cell: bead ratio of 1:10 were added and incubated for one hour. Cells were washed to eliminate non-internalized particles and detached from the well plate with 0.25% trypsin treatment (Life Technologies, Carlsbad, CA, USA). The phagocytosis rate of the cells was measured using a Beckman Coulter Gallios flow cytometer and Kaluza software (Beckman Coulter, Indianapolis, IN).
Nitric oxide (NO) production by murine macrophages
In a 48-well plate, cells from the mouse macrophage/monocyte cell line RAW 264.7 were plated at 8 × 105 cells/ml and treated with herbal extracts. The added extract concentrations were measured, so that the LPS content was 1, 10, and 100 ng/ml. The plate was incubated at 37 °C and 5% CO2. After 24-h incubation with extracts, the supernatants were collected, and the concentrations of nitrite (NO2−) released into the culture media were measured using Griess reagent. In addition, 100 μl Griess reagent was added to 100 μl diluted culture media in the wells of microtiter plates. After incubation at room temperature for ten minutes, absorbance at 570 nm was determined using an automated microplate reader (BIO-RAD, Hercules, CA, USA). The NO assay was conducted in duplicate. To determine the percentage of NO produced by the LPS in the herbal extracts, the concentrations of the extracts were measured, so that the LPS content was 10 ng/ml, and polymyxin B (Sigma-Aldrich, St. Louis, MO, USA) was added to each culture at a final concentration of 10 μg/ml.
Statistical analysis
Data are presented as mean ± standard deviation (SD). Statistical analyses (Steel–Dwass test and Pearsons’ correlation) were performed using the JMP statistical software, version 17. 0. 0 (SAS Institute Inc., Cary, NC, USA). Statistical differences between multiple groups in the box-and-whisker plot were calculated using the Steel–Dwass test. A p-value < 0.05 was considered statistically significant. The line equation and its R2 value in Table 3 were performed using Microsoft Excel.
Data availability
All data generated or analyzed during this study are included in this published article.
References
|