Research on lactic acid bacteria has confirmed how specific strains possess probiotic properties and impart unique sensory characteristics to food products. The use of probiotic lactic acid bacteria (LAB) in many food products, thus confers various health benefits to humans when they are frequently consumed in adequate amounts. The advent of functional food or the concept of nutraceuticals objectively places more emphasis on seeking alternatives to limit the use of medications thus promoting the regular consumption of fermented foods. Probiotic use has thus been recommended to fulfill the role of nutraceuticals, as no side effects on human health have been reported. Probiotics and lactic acid bacteria can boost and strengthen the human immune system, thereby increasing its resistance against numerous disease conditions. Consumer safety and confidence in dairy and fermented food products and the desire of the food industry to meet the sensory and health needs of consumers, has thus increased the demand for probiotic starter cultures with exceptional performance coupled with health benefiting properties. The potential of probiotic cultures and lactic acid bacteria in many industrial applications including fermented food products generally affects product characteristics and also serves as health-promoting foods for humans. The alleviation of lactose intolerance in many populations globally has been one of the widely accepted health claims attributed to probiotics and lactic acid bacteria, although many diseases have been treated with probiotic lactic acid bacteria and have been proven with scientific and clinical studies. The aim of our review was to present information related to lactic acid bacteria, the new classification and perspectives on industrial applications with a special emphasis on food safety and human health.
초록
유산균에 대한 연구는
특정 균주가 어떻게 프로바이오틱 특성을 갖고
식품에 독특한 감각적 특성을 부여하는지를 확인해 주었습니다.
따라서
프로바이오틱 유산균(LAB)을 많은 식품에 사용하면,
충분한 양을 자주 섭취할 때 인간에게 다양한 건강상의 이점을 부여합니다.
기능성 식품의 등장이나 기능성 식품의 개념은
약물 사용을 제한하는 대안을 찾는 데 객관적으로 더 중점을 두고 있으며,
따라서 발효 식품의 규칙적인 섭취를 촉진합니다.
프로바이오틱스의 사용은
인체 건강에 부작용이 보고된 바 없기 때문에
기능성 식품의 역할을 수행하는 데 권장됩니다.
프로바이오틱스와 젖산균은
인체 면역 체계를 강화하고 강화하여 다양한 질병에 대한 저항력을 높일 수 있습니다.
소비자의 유제품 및 발효 식품에 대한 안전성과 신뢰,
그리고 소비자의 감각적, 건강적 요구를 충족시키려는 식품 업계의 욕구로 인해
건강에 유익한 특성을 지닌 탁월한 성능의 프로바이오틱스 스타터 배양제에 대한 수요가 증가했습니다.
Lactic acid bacteria (LAB) are important microorganisms that mainly produce lactic acid as a by-product during metabolic activities. Lactic acid bacteria play a multifaceted role in the agricultural, food, and clinical sectors [1]. Lactic acid bacteria is employed in many food fermentations with fermentation using this bacteria is one of the most conventional and recognized arts of food preservation. As lactic acid bacteria are very important in many food applications, the food industry is always seeking strains with superior characteristics and properties to enhance sensory and product quality. Lactic acid bacteria also possess therapeutic properties that are vital for human health enhancement. Distinct nutritional properties of lactic acid bacteria coupled with enhanced adhesional adaptive features enable the bacteria to easily thrive in different environments such as in dairy-based foods, fermented foods, vegetables as well as in the human gut [1]. During fermentation, lactic acid bacteria produce organic acids and other metabolites that enhance flavor development in food, prevent spoilage, and are thus very useful in many applications, especially in the food and dairy industry. The dairy sector in particular benefits immensely from lactic acid bacteria hencethe need to validate the potential of lactic acid bacteria as starter cultures are vital as product quality and sensory appeal are largely influenced by the role of dairy starter cultures [2].
The use of lactic acid bacteria in food preservation is known as bio-preservation which is a natural approach to using controlled microbiota as an alternative for shelf life extension and the preservation of food. Therefore, bio-preservation is considered as one of the many attributes derived from lactic acid bacteria under the scope of food safety/spoilage. Because lactic acid bacteria naturally produces bacteriocins that aid in food bio-preservation, they function as the antagonistic, inhibitory, and antimicrobial defense system that acts against pathogens and spoilage microorganisms [3]. As a result, lactic acid bacteria can be used as tool to ensure the safety and quality of food products. Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. Probiotics such as lactic acid bacteria work by promoting and maintaining a strong human immune system. For example, a number of human health diseases have been reported to be prevented by the administration of probiotics and lactic acid bacteria. The regular consumption of probiotics and lactic acid fermented foods will thus benefit consumers nutritionally and serve as an immunity booster against diseases and infections. In this review, lactic acid bacteria, their classification and perspectives on industrial applications with a special focus on food safety and therapeutic benefits to human health was elucidated.
젖산균, 그 분류, 식품 안전과 인체 건강에 대한 치료적 이점에 중점을 둔 산업적 응용에 대한 관점을 설명했습니다.
2. Lactic Acid Bacteria
Lactic acid bacteria are Gram-positive, non-spore-forming, non-respiring but aerotolerant, which produce lactic acid as one of the key fermentation products by utilizing carbohydrates during fermentation. These bacteria produce lactic acid as an end product of carbohydrate catabolism and also make organic substances that contribute to the flavor, texture, and aroma that result in unique organoleptic characteristics [4,5,6,7]. Orla Jensen (1919) [8] first published a monograph that laid the foundation for classifying lactic acid bacteria. This system of classification was linked to certain factors that entailed the following; glucose fermentation characteristics, cell morphology, capacity to utilize sugars, and optimum growth temperature range. This classification system thus recognized only four lactic acid bacteria genera: Lactobacillus, Pediococcus, Leucononstoc, and Streptococcus [4].
Lactic acid bacteria has also been classified into different genera/species based on their acid production characteristics by fermenting sugars and its growth at specific temperatures [9]. Additionally, the lactic acid bacteria can be classified as homofermentative or heterofermentative organisms based on their ability to ferment carbohydrates [10]. The homofermentative lactic acid bacteria such as Lactococcus and Streptococcus yield two molecules of lactates from one glucose molecule whereas heterofermentative lactic acid bacteria such as Leuconostoc, Wiessella, and some lactobacilli generate lactate, ethanol, and carbon dioxide from one molecule of glucose [11]. The conventional approach to lactic acid bacteria classification was based on physiological and biochemical characteristics; however, more recently, molecular characterization has become an important tool for classification and identification of lactic acid bacteria. Molecular characterization includes random amplified polymorphic DNA profiling, 16S rRNA gene sequencing, PCR-based fingerprinting, and soluble protein patterns [12] and differentiation of species by multiplex PCR assay by using specific recA derived primers [13].
페디오코쿠스는 전통 발효 식품 생산에 수세기 동안 사용되어 온 젖산균(LAB)입니다. 페디오코쿠스의 발효 능력은 현대 식품 가공 산업에서 페디오코쿠스를 스타터 배양균으로 사용하여 독특한 특성을 지닌 발효 식품을 생산할 수 있도록 하는 데 사용되었습니다. 또한, 일부 페디오코커스 균주는 페디오신과 같은 박테리오신과 기타 항균성 대사 산물(AMM)을 생산할 수 있으며, 이러한 물질은 다양한 식품 매트릭스에서 생물학적 방부제로서 점점 더 많이 연구되고 있습니다. 페디오코커스 박테리오신과 AMM은 그 다양성과 억제 스펙트럼 때문에 식품 산업뿐만 아니라 수의학 및 인체 의학 분야에서도 광범위하게 연구되고 있습니다. 일부 페디오코커스 균은 인간과 다른 동물의 건강과 관련된 다양한 유익한 적용 분야를 가진 잠재적 프로바이오틱스로 평가되었습니다. 페디오코커스 종의 주요 분류학적 특징과 함께, 스타터 배양, 생물학적 방부제, 프로바이오틱스 후보로서의 잠재적 역할과 적용이 여기에 제시되어 있습니다.
hetero-fermentive lactic acid bacteria : Leuconostoc, Wiessella, and some lactobacilli
The homofermentative lactic acid bacteria such as Lactococcus and Streptococcus yield two molecules of lactates from one glucose molecule whereas heterofermentative lactic acid bacteria such as Leuconostoc, Wiessella, and some lactobacilli generate lactate, ethanol, and carbon dioxide from one molecule of glucose.
유산균 분류에 대한 전통적인 접근 방식은 생리적, 생화학적 특성에 기반을 두었지만,
최근에는 분자 특성화가 유산균의 분류와 식별을 위한 중요한 도구가 되었습니다.
분자 특성화에는 무작위 증폭 다형성 DNA 프로파일링, 16S rRNA 유전자 염기서열 분석, PCR 기반 지문 분석, 가용성 단백질 패턴[12] 및 특정 recA 파생 프라이머를 사용하는 다중 PCR 분석을 통한 종의 구분[13]이 포함됩니다.
2.1. Taxonomic Classification of Lactic Acid Bacteria
The genus Lactobacillus has recently been reclassified by scientists into 25 genera. This reclassification was necessitated due to the extent of how diverse the original genus was, which made it very challenging to classify, name, and distinguish between different lactobacilli [14]. The new genera are Lactobacillus, Paralactobacillus and the 23 novel genera. The twenty three (23) novel genera includes: Amylolactobacillus, Acetilactobacillus, Agrilactobacillus, Apilactobacillus, Bombilactobacillus, Companilactobacillus, Dellaglioa, Fructilactobacillus, Furfurilactobacillus, Holzapfelia, Lacticaseibacillus, Lactiplantibacillus, Lapidilactobacillus, Latilactobacillus, Lentilactobacillus, Levilactobacillus, Ligilactobacillus, Limosilactobacillus, Liquorilactobacillus, Loigolactobacilus, Paucilactobacillus, Schleiferilactobacillus, and Secundilactobacillus [14].
2.1. 젖산균의 분류학적 분류
락토바실러스 속은
최근 과학자들에 의해 25개의 속으로 재분류되었습니다.
이 재분류는 원래 속이 얼마나 다양했는지를 고려할 때, 분류, 명명, 그리고 다른 락토바실러스 간의 구별이 매우 어려웠기 때문에 필요했습니다 [14]. 새로운 속은 락토바실러스, 파라락토바실러스, 그리고 23개의 새로운 속입니다.
Lactic acid bacteria constitute a ubiquitous bacterial group that is widespread in nature in niches of dairy (fermented), meat and vegetable origin, the gastrointestinal and urogenital tracts of humans and animals, and soil and water [15]. The ecology of lactic acid bacteria has transitioned over time from theirsoil and plant habitats to the gut of mammals. The mammalian intestine is a repository of 100 trillion microorganisms generally called microbiota [16]. The microbiota colonizes the gastrointestinal tract and is essential for health by enhancing metabolism, digestion and boosts the immune system [16]. The microbiota is well adapted to the mammalian gut, based mainly on three factors which include adhesion to intestinal cells, resistance to host barriers, and substrate fermentation in the gut [17]. Bile salts and low pH also affect the lipid membrane composition of the microbiota [18].
The adhesion of lactic acid bacteria to the intestinal cells is facilitated by the action of peristalsis which is coupled with lubrication from mucins that protect and line the epithelial intestinal cells. This coordination thus ensures an increased adherence capacity of lactic acid bacteria to the intestinal cells [19]. Intestinal mucins are thus very important as their continuous production impedes and prevents pathogenic bacteria from adhering to the intestinal epithelial cells, thus promoting the activity of resident intestinal bacteria. Consequently, these gastrointestinal bacteria serve as a barrier system that acts against pathogens [20]. Antimicrobial substances that are produced by Lactobacillus and Bifidobacterium spp. have been confirmed to possess antimicrobial properties that are exerted against enteropathogenic bacteria linked to causing diarrhea against [21], and both genera can exert an inhibitory effect on the action of pathogenic enteric bacteria [20].
Fermentation is a process by which a carbon source is dissimilated by microorganisms yielding energy without net oxidation. The primary end products of microbial fermentation are generally alcohols and organic acids such as lactic acid, acetic acid, and propionic acid [22]. Food fermentation has been widely practiced using lactic acid bacteria which are able to preserve food and prevent spoilage. Consumer food preferences are now driven by nutrition and health benefits, resulting in choices that are trending more and more towards the sustainable use of natural ingredients as preservatives instead of chemicals [23]. As a result of this shift in preferences, the use of lactic acid bacteria in food applications has become more important. Lactic acid bacteria have thus been used extensively in food processing and many fermented foods as a result of their preservative capacity coupled with the health benefits that they provide to humans when lactic acid bacteria fermented foods are consumed. Lactic acid bacteria synthesizes small proteins called bacteriocins from ribosomes, and it is these bacteriocins that are inhibitory against foodborne pathogens, thus ensuring safe food. Moreover, bacteriocinogenic lactic acid bacteria are good candidates as dairy starter cultures that play an important role in food application processes [3].
Bacteriocins have been grouped into four major classes [10]. Class one bacteriocins are generally known as lantibiotics, and consist of nisin, an important and one of the most intensively used and studied bacteriocins. Group two, is characterized by large groups of small heat-stable proteins that are subsectioned d into three groups [10]: (i) subgroup (2a), these bacteriocins inhibit Listeria monocytogenes, notable members in this group are Pediocin PA-1, Lactococcin A and B, Leucocin A, Sakacins A and P, Curvacin A, and Bavaricin MN; (ii) subgroup (2b) these bacteriocins are activated by two different peptides; hence, they are also called two-peptide bacteriocins. These two peptides are Lactococcin G and Enterocosins. Lactococcins G and M, and lactacin F are examples in this group, and (iii) subgroup (2c), consists of circular cationic peptides that have an elevated antimicrobial property in comparison to other linear-shaped bacteriocins. An example of a circular bacteriocin is Enterococin AS-48. Group three bacteriocins are made up of larger heat-labile proteins with lactacins A and B, and helveticins J and V as members. Group four bacteriocins are considered complex due to their carbohydrate and lipid moieties. Leuconocin S, lactocin 27, and pediocin SJ-1 are part of this group based on their lipid or carbohydrate moieties.
A study by Yang, Lin, Sung, and Fang (2014) [24] further grouped Gram-positive bacteriocins into three distinct classes: Class A (modified peptides, also known as lantibiotics), Class B (unmodified peptides, also known as non-lanthionine), and Class C (consisting of large proteins, that are heat unstable). Another study by Cotter, Ross, and Hill (2013) [25] again subsectioned Class B into five sub-classes. It is noteworthy that, nisin is the only commercially available bacteriocin that exists in its purest form among all the different groups of bacteriocins.
Nisin has important commercial value as it is usually added as an ingredient to milk, and dairy-based products, mayonnaise, canned foods, and in most infant and baby foods [26]. Bacteriocinogenic cultures are also vital as ingredients in fermented and non-feremented foods as they are usually employed as starter cultures. In addition, harmless bacteriocins are at risk of being digested by some proteases due to their susceptible and sensitive nature [27]. Consequently, bacteriocins are considered as safe food additives and beneficial to the gastrointestinal system [4,24]. A summary of all metabolites including bacteriocins synthesized by lactic acid bacteria and its mechanism of action as well as their potential targets is shown in Table 1.
(i) 하위 그룹(2a), 이 박테리오신들은 리스테리아 모노사이토제네스를 억제하며, 이 그룹의 대표적인 박테리오신은 페디오신 PA-1, 락토코친 A와 B, 류코신 A, 사카신 A와 P, 커바신 A, 바바리신 MN입니다;
(ii) 하위 그룹(2b) 이 박테리오신들은 두 개의 다른 펩티드에 의해 활성화되기 때문에, 2펩티드 박테리오신이라고도 불립니다. 이 두 펩티드는 락토코신 G와 엔테로코신입니다. 락토코신 G와 M, 락타신 F가 이 그룹의 예입니다. 그리고
(iii) 하위 그룹(2c)은 다른 선형 박테리오신에 비해 항균성이 높은 순환 양이온 펩티드로 구성되어 있습니다. 순환 박테리오신의 예로는 엔테로코신 AS-48이 있습니다.
세 번째 그룹의 박테리오신(bacteriocin)은 락타신 A와 B, 그리고 헬베티신 J와 V를 구성원으로 하는 더 큰 열에 불안정한 단백질로 구성되어 있습니다. 네 번째 그룹의 박테리오신은 탄수화물과 지질 부분으로 인해 복합체로 간주됩니다. 류코노신 S, 락토신 27, 페디오신 SJ-1은 지질 또는 탄수화물 부분으로 인해 이 그룹에 속합니다.
젖산균에 의해 합성되는 박테리오신을 포함한 모든 대사 산물의 요약과 그 작용 메커니즘 및 잠재적 표적은 표 1에 나와 있습니다.
Table 1. Antimicrobial Substances produced by Lactic Acid Bacteria.
2.4. Lactic Acid Bacteria in Fermented Foods
Lactic acid bacteria are essential, and their usefulness cannot be overemphasized in many food fermentation applications and preservation activities. Many traditional foods have been developed using lactic acid bacteria, which improve product characteristics and impart certain properties that enhance consumer acceptance and appeal. Most of the products that are developed by the use of lactic acid bacteria also provide superior health benefits to the consumer which is key to maintaining a healthy gastrointestinal system. Some of the fermented food products from lactic acid bacteria include kefir, cheese, butter, yogurt, sauerkraut, buttermilk, brined vegetables, sourdough, soya curd, koumiss, idly batter, uttapam, fermented meat, and beverages [34].
Fermented milk products, alternatively referred to as cultured dairy products, include dairy foods that have been fermented by a consortium of lactic acid bacteria that are responsible for milk curdling or the souring of milk [35]. Lactic acid bacteria are lactose fermenters that also preserve the taste and nutritional properties of milk. Bacterial members associated with fermented dairy products belong to the genera of Lactobacillus, Lactococcus, Leuconostoc, Pediococcus, Bacillus, Propionibacterium, and Bifidobacterium. These bacteria live in the same ecological niches and act mutualistically. There are approximately 400 traditional and fermented milk products comprising a diverse group of microorganisms that give rise to different sensory properties [36]. Table 2 highlights several traditionally fermented milk products that use lactic acid bacteria along with the accompanying health derived benefits.
2.4. 발효 식품에 함유된 젖산균
젖산균은 필수적이며, 많은 식품 발효 응용 분야와 보존 활동에서 그 유용성을 아무리 강조해도 지나치지 않습니다. 많은 전통 식품이 젖산균을 사용하여 개발되었으며, 젖산균은 제품 특성을 개선하고 소비자의 수용과 호감을 높이는 특정 특성을 부여합니다. 유산균을 이용하여 개발된 대부분의 제품은 소비자에게 우수한 건강상의 이점을 제공하는데, 이는 건강한 위장 시스템을 유지하는 데 핵심적인 요소입니다.
Table 2. Beneficial properties of ethnically fermented food products and associated microorganisms.
2.5. Milk Fermentation with Lactic Acid Bacteria
Fermented milk products are classified into two groups. Group One: Bacterial lactic acid fermentation: (i) Fermentation by mesophilic bacteria (acidified milk, buttermilk, filmjolk, and langfil), (ii) fermentation by thermophilic and mesophilic bacteria (yogurt, dahi, Bulgarian buttermilk, zabadi). Group Two: Fungal and bacterial lactic acid fermentation: Fermentation by bacteria as well as fungi, e.g., alcoholic milk (Acidophilus yeast milk, Koumiss, and kefir) and moldy milk (Villi). Milk product varieties depend on the type of milk and starter culture used, sugars, and aromatic compounds [36].
These varieties are developed using primary starter cultures (which participate in primary acidification) and secondary starter cultures (which participate in generating aroma, flavor, and texture). Genera used in primary culture include Lactobacillus sp., Leuconostoc sp., Streptococcus sp. [47], whereas the genera associated with secondary starter cultures are Propionibacterium sp., Brevibacterium sp., Debaryomyces sp., Geotrichum sp., Penicillium sp., and Enterococcus sp. [36].
2.5. 유산균을 이용한 우유 발효
발효유 제품은 두 가지 그룹으로 분류됩니다.
그룹 1: 세균성 젖산 발효:
(i) 중온성 세균에 의한 발효(산성화 우유, 버터밀크, 필름요크, 랑필),
(ii) 고온성 및 중온성 세균에 의한 발효(요구르트, 다히, 불가리아 버터밀크, 자바디).
그룹 2: 곰팡이와 세균의 젖산 발효:
세균과 곰팡이에 의한 발효,
예를 들어 알코올성 우유(유산균 효모 우유, 쿠미스, 케피어)와 곰팡이가 핀 우유(빌리) 등이 있습니다.
이 품종들은 1차 발효 배양균(1차 산성화에 관여)과 2차 발효 배양균(향, 맛, 질감 생성에 관여)을 사용하여 개발되었습니다.
1차 배양에 사용되는 세균에는 락토바실러스속(Lactobacillus sp.), 레우코노스토쿠스속(Leuconostoc sp.), 연쇄상구균속(Streptococcus sp.) 등이 있으며,
2차 배양에 사용되는 세균에는 프로피오니박테리움속(Propionibacterium sp.), 브레비박테리움속(Brevibacterium sp.), 데바리요제스속(Debaryomyces sp.), 지오트리쿰속(Geotrichum sp.), 페니실리움속(Penicillium sp.), 엔테로콕쿠스속(Enterococcus sp.)등이 있습니다. [36].
2.6. Lactic Acid Bacteria as an Essential Strain in Dairy Starter Cultures
The term "starter culture" is defined as a microbial preparation of large numbers of cells of at least one microorganism added to a raw material in order to produce a fermented food, which therefore accelerates and hastens its fermentation process. Lactic acid bacteria play a pivotal role in these processes and also have an established safe history of application and consumption in the production of fermented dairy food products and beverages [2]. Lactic acid bacteria causes rapid acidification of the raw materials through the production of organic acids, primarily lactic acid. They also produce many important by-products such as acetic acid, ethanol, aroma compounds, bacteriocins, exopolysaccharides, and several enzymes. These by-products effectively enhance product shelf life, microbial safety, improve texture, and ultimately contribute to the pleasant sensory profile of the end product. Starter cultures have a multifunctional role in dairy fermentations. Notable starter cultures used for manufacturing numerous fermented milk products include lactic acid bacteria, proprionibacteria, surface-ripening bacteria, and yeasts, and molds [2].
Dairy starter cultures are unique, and their major role is fermenting lactose by producing lactic acid. This acid is responsible for developing the characteristic body and texture of the fermented milk product, thus contributing to the overall flavor of the product and consequently enhancing preservation. Lactic acid starter cultures also produce diacetyl, acetaldehyde, and acetic acid which aids in flavor and aroma development of the final product [2]. Some of the known dairy starter cultures used in fermented food productions are shown in Table 3.
2.6. 유제품 스타터 배양에 필수적인 유산균
“스타터 배양"이라는 용어는 발효식품을 생산하기 위해 원료에 첨가되는 적어도 하나의 미생물 세포의 대량 미생물 제제로 정의되며, 따라서 발효 과정을 가속화하고 촉진합니다. 유산균은 이러한 과정에서 중추적인 역할을 하며, 발효 유제품과 음료를 생산하는 데 사용되고 소비되어 온 안전한 역사를 가지고 있습니다 [2].
유산균은
주로 젖산을 비롯한 유기산을 생산함으로써
원료의 급속한 산성화 과정을 일으킵니다.
또한,
아세트산, 에탄올, 아로마 화합물, 박테리오신, 엑소다당류, 여러 가지 효소 등
많은 중요한 부산물을 생산합니다.
이러한 부산물은 제품의 유통 기한과 미생물 안전성을 효과적으로 향상시키고, 질감을 개선하며, 궁극적으로 최종 제품의 감각적 측면을 개선하는 데 기여합니다. 스타터 배양은 유제품 발효에 있어 다기능적인 역할을 합니다.
Table 3. Starter cultures for fermented dairy foods and beverages.
Some heterofermentative lactic acid bacteria also produce carbon dioxide which aids in the texturization characteristics of some fermented dairy products, a classical example being the formation of unique holes or "eyes" in cheeses. During the ripening of cheese, the development of flavor and other textural changes are due to enzymes that originate from bacterial and fungal cultures that are largely dependent on the type of cheese [2]. Many studies have also confirmed dairy starters to possess direct and indirect functional health promoting properties such as the presence of live probiotics, prebiotic exopolysaccharides and oligosaccharides, bioactive peptides and lipids. Most dairy starter cultures are selected for their desirable properties such as rapid acidification, flavor production, lack of associated off flavors, salt tolerance, exopolysaccharide production, bacteriocin production, and sensitivity to temperature [2,53]. The dairy industry also selects strains that are bacteriophage resistant. Bacteriophages are viruses that attack starter cultures and inhibit their fermentation performance [54]. Table 4 highlights some beneficial dairy starter cultures and their applications.
일부 이종발효성 유산균은 이산화탄소를 생성하여 일부 발효 유제품의 질감을 향상시키는 데 도움을 줍니다. 대표적인 예로 치즈에 독특한 구멍 또는 “눈”이 생기는 것을 들 수 있습니다.
많은 연구에서 유제품 발효균이 살아있는 프로바이오틱스, 프리바이오틱스 외다당류와 올리고당, 생체 활성 펩타이드와 지질과 같은 직접적이고 간접적인 건강 증진 기능을 가지고 있다는 사실이 확인되었습니다. 대부분의 유제품 스타터 배양균은 빠른 산성화, 풍미 생성, 관련 악취의 부재, 염분 내성, 엑소다당류 생성, 박테리오신 생성, 온도 민감성 등 바람직한 특성을 위해 선택됩니다 [2,53]. 유제품 업계는 또한 박테리오파지 저항성을 가진 균주를 선택합니다. 박테리오파지는 스타터 배양균을 공격하고 발효 성능을 저해하는 바이러스입니다 [54]. 표 4는 유익한 유제품 스타터 배양균과 그 적용 사례를 보여줍니다.
Table 4. Dairy starter cultures and their applications.
2.7. Lactobacillus delbrueckii subsp. bulgaricus
The discovery of Lactobacillus bulgaricus has been ascribed to Stamen Grigorov, a Bulgarian microbiologist who isolated the species from yogurt in 1905 in the laboratory of Professor Masole in Geneva and thereafter named the microorganism after the country of Bulgaria. “Lactobacillus bulgaricus” was formally described by Orla-Jensen in 1919 [8] and validated in 1971 with the study of Rogosa and Hansen (1971) [58]. Weiss, Schillinger, and Kandler (1983) [59], after a number of different studies, suggested the union of Lactobacillus delbrueckii, Lactobacillus leichmannii, Lactobacillus lactis and Lactobacillus bulgaricus under the name of L. delbrueckii. Thereafter, the name of the former “Lactobacillus bulgaricus” was then changed to become Lactobacillus delbrueckii subsp. bulgaricus. Sieuwerts (2009) [60], also confirmed the DNA of L. delbrueckii subsp. bulgaricus to be in ratio of 49–51% of the Guanine-Cytosine (G-C) content which is significantly higher compared to the G-C content of other lactobacilli in the genus [61]. This is primarily due to elevated G-C content in the third position in codons, which may be indicative of rapid ongoing genome evolution towards an overall higher G-C content. To further substantiate this hypothesis, the authors highlighted the unusually high number of rRNA and tRNA genes present along with a 47.5 kb inverted repeat located around the replication terminus.
These findings could be indications of recent genome reduction and a transient phase of evolution, away from other highly related GI tract bacteria like Lb. Johnsonii and Lb. acidophilus, towards the adaptation of Lb. delbrueckii subsp. bulgaricus to the environment of fermented milk [62]. The fermentation of carbohydrates by Lb. delbrueckii subsp. bulgaricus results in 99.5% D-lactic acid and 0.5 % L-lactic acid, respectively. Lb. delbrueckii subsp. bulgaricus is therefore able to encode many partial carbohydrate metabolic pathways and shows a distinct preference for growth in lactose rich media. Lb. delbrueckii subsp. bulgaricus also maintains an extensive proteolytic and amino acid transport system which is very useful, especially in the protein rich milk environment [63]. Lb. delbrueckii subsp. bulgaricus belongs to a thermophilic group of lactic acid bacteria and tolerates optimal temperatures between 43–46 °C for efficient growth. They can also survive in both anaerobic and aerobic conditions. Their ability to efficiently survive in anaerobic environments is because they do not require oxygen in metabolizing energy. Lb. delbrueckii subsp. bulgaricus can be selectively enumerated from a product using a pH modified MRS (deMann, rogosa, and sharpe) agar, with pH of 4.6 and anaerobically incubated at 43 °C [64,65].
Lactobacillus delbrueckii subsp. bulgaricus is one of the two bacteria required in yogurt production. It was originally isolated from Bulgarian yogurt [8] and is also used in conjunction with Streptococcus thermophilus on an industrial scale for the production of yogurt This bacteria plays a vital role in the development of the organoleptic [66], hygienic and perhaps probiotic properties of yogurt [67]. It has been shown to be a safe probiotic with several beneficial properties [68].
The close protocooperation between Lb. bulgaricus and S. thermophilus allows for increased acidification during milk fermentation. Cooperation in amino acid synthesis may also be a result of co-evolution and adaptation to the protein-rich milk environment. While L. bulgaricus lacks enzymes for synthesizing most amino acids, it possesses an extracellular caseinolytic protease. Streptococcus thermophilus, on the other hand, can produce almost all amino acids but lacks an extracellular protease [69].
2.7. 락토바실러스 델브루에키아이 서브스피. 불가리쿠스
락토바실러스 불가리쿠스의 발견은 불가리아의 미생물학자인 스타멘 그리고로프(Stamen Grigorov)가 1905년 제네바의 마솔레(Masole) 교수의 실험실에서 요구르트에서 이 종을 분리하고 그 후 불가리아라는 나라의 이름을 따서 이 미생물의 이름을 붙인 것으로 알려져 있습니다. “락토바실러스 불가리쿠스"는 1919년 오르라-옌센(Orla-Jensen)에 의해 공식적으로 기술되었고, 1971년 로고사(Rogosa)와 한센(Hansen)의 연구(1971) [58]를 통해 검증되었습니다. Weiss, Schillinger, and Kandler (1983) [59]는 여러 가지 연구를 거쳐 락토바실러스 델브루케키, 락토바실러스 라이히만니, 락토바실러스 락티스, 락토바실러스 불가리쿠스를 락토바실러스 델브루케키라는 이름으로 통합할 것을 제안했습니다. 그 후, 이전의 “락토바실러스 불가리쿠스”라는 이름은 락토바실러스 델브루에키이 아종 불가리쿠스로 변경되었습니다. Sieuwerts (2009) [60]도 L. delbrueckii subsp. bulgaricus의 DNA가 구아닌-시토신(G-C) 함량의 49-51%를 차지한다는 사실을 확인했는데, 이는 속의 다른 유산균의 G-C 함량에 비해 상당히 높은 비율입니다 [61]. 이는 주로 코돈의 세 번째 위치에 있는 G-C 함량이 높아졌기 때문인데, 이는 전반적으로 더 높은 G-C 함량을 향한 빠른 진행 중인 게놈 진화를 나타낼 수 있습니다. 이 가설을 더욱 뒷받침하기 위해 저자들은 복제 말단 부근에 위치한 47.5kb의 역반복과 함께 존재하는 rRNA 및 tRNA 유전자의 비정상적으로 높은 수를 강조했습니다.
이 발견은 최근의 게놈 감소와 Lb. Johnsonii 및 Lb. acidophilus와 같은 다른 고도로 관련된 위장관 박테리아로부터 멀어지고 발효유 환경에 적응하는 Lb. delbrueckii subsp. bulgaricus의 진화 단계의 일시적인 단계를 나타낼 수 있습니다 [62]. Lb. delbrueckii subsp. bulgaricus에 의한 탄수화물의 발효는 각각 99.5%의 D-락트산과 0.5%의 L-락트산을 생성합니다. 따라서 Lb. delbrueckii subsp. bulgaricus는 많은 부분 탄수화물 대사 경로를 인코딩할 수 있으며, 유당이 풍부한 배지에서 성장하는 것을 선호합니다. Lb. delbrueckii subsp. bulgaricus는 또한 단백질 분해 및 아미노산 수송 시스템을 유지하는데, 이는 특히 단백질이 풍부한 우유 환경에서 매우 유용합니다 [63]. Lb. delbrueckii subsp. bulgaricus는 고온성 유산균 그룹에 속하며, 효율적인 성장을 위해 43-46°C 사이의 최적 온도를 견뎌냅니다. 또한 혐기성 및 호기성 환경에서 생존할 수 있습니다. 혐기성 환경에서 효율적으로 생존할 수 있는 이유는 에너지를 대사하는 데 산소가 필요하지 않기 때문입니다. Lb. delbrueckii subsp. bulgaricus는 pH가 4.6인 pH가 변형된 MRS(deMann, Rogosa, and Sharpe) 한천을 사용하여 제품에서 선택적으로 세균 수를 세고, 43°C에서 혐기성 배양할 수 있습니다 [64,65].
락토바실러스 델브루케키이 서브스페시피움 불가리쿠스는 요구르트 생산에 필요한 두 가지 박테리아 중 하나입니다. 원래 불가리아 요구르트에서 분리된 것으로, [8] 산업 규모로 요구르트 생산을 위해 스트렙토코커스 테르모필러스와 함께 사용되기도 합니다. 이 박테리아는 요구르트의 관능적 특성[66], 위생적 특성, 그리고 프로바이오틱스 특성[67]을 개발하는 데 중요한 역할을 합니다. 여러 가지 유익한 특성을 지닌 안전한 프로바이오틱스로 알려져 있습니다 [68].
Lb. bulgaricus와 S. thermophilus의 밀접한 프로토콜로 인해 우유 발효 과정에서 산성화가 증가합니다. 아미노산 합성에서의 협력은 단백질이 풍부한 우유 환경에 대한 공동 진화와 적응의 결과일 수도 있습니다. L. bulgaricus는 대부분의 아미노산을 합성하는 효소가 부족하지만, 세포 외 카제인 분해성 프로테아제를 가지고 있습니다. 반면, Streptococcus thermophilus는 거의 모든 아미노산을 생산할 수 있지만, 세포 외 프로테아제가 부족합니다 [69].
3. History of Probiotics
The use of live microorganisms for beneficial purposes as probiotics such as those in fermented milk dates back to ancient times. Scientists such as Hippocrates and others considered fermented milk to be not only a food product but also medicine, and sour milk was prescribed for curing disorders of the stomach and intestines [70]. In 1908, a Russian bacteriologist, Eli Metchnikoff (Pasteur Institute, France) was the first to put forth a scientific explanation of the benefits of lactic acid bacteria in fermented milk [71,72]. Metchnikoff attributed the good health and longevity of Bulgarians to their high consumption of fermented milk called “yahourth”.
He, thus, postulated his longevity-without-aging theory based on the principle that lactic acid bacteria were displacers of toxin-producing bacteria normally present in the intestine which in essence prolonged life. Metchnikoff also confirmed that lactic acid and other products produced by lactic acid bacteria in sour milk inhibited the growth and toxicity of anaerobic and spore-forming bacteria found in the large intestine [73]. In 1899, Henry Tissier (Pasteur Institute, France) isolated bifidobacteria from the stools of breast-fed infants and discovered that these bacteria were a predominant component of the human intestinal microflora [74]. Tissier, thus, proposed the administration of bifidobacteria to infants diagnosed with diarrhea, "believing" that bifidobacteria would displace proteolytic bacteria responsible for gastric upsets while re-establishing themselves as the dominant intestinal microorganisms [72]. Tisser’s recommendation was confirmed by a study performed by El-Soud, et al. (2015) [75], whereby they supplemented milk formula with Bifidobacterium lactis for children diagnosed with acute diarrhea. It was evident that this therapy significantly decreased the frequency, sickness duration, and the hospitalization period of diagnosed children than the conventional treatment approach.
3. 프로바이오틱스의 역사
발효유에 들어 있는 것과 같은 유익한 목적으로 살아있는 미생물을 프로바이오틱스로 사용하는 것은 고대로 거슬러 올라갑니다. 히포크라테스와 같은 과학자들은 발효유를 식품뿐만 아니라 약으로 간주했으며, 신 우유는 위장과 장의 장애를 치료하는 데 처방되었습니다 [70]. 1908년, 러시아의 세균학자 엘리 메치니코프(프랑스 파스퇴르 연구소)는 발효유에 함유된 젖산균의 효능에 대한 과학적 설명을 최초로 내놓았습니다[71,72]. 메치니코프는 불가리아인의 건강과 장수의 비결이 “야호르쓰”라고 불리는 발효유를 많이 섭취하기 때문이라고 주장했습니다.
그는 젖산균이 장내에 존재하는 독소 생성 박테리아를 대체한다는 원리를 바탕으로 노화 없는 장수 이론을 가정했습니다. 이는 본질적으로 수명을 연장하는 것입니다. 메트치노프는 또한 유산과 유산균이 발효시킨 다른 제품들이 대장에서 발견되는 혐기성 세균과 포자 형성 세균의 성장과 독성을 억제한다는 것을 확인했습니다 [73].
Tisser의 추천은 El-Soud 등의 연구(2015) [75]를 통해 확인되었습니다. 이 연구에서는 급성 설사로 진단받은 어린이에게 비피도박테리움 락티스를 우유 분유에 첨가했습니다. 이 치료법이 기존의 치료 방법보다 진단받은 어린이의 빈도, 질병 지속 기간, 입원 기간을 현저하게 감소시킨다는 사실이 분명해졌습니다.
3.1. Origin of Probiotics
Probiotic lactic acid bacteria can be isolated from different sources such as fermented foods, animals, and from humans as well. However, for a probiotic strain to be considered for use by humans, it should be isolated from the human microflora system, thus having a high adhesion ability to the human intestinal cell walls. The strain must also be safe and not pose any threat to the host [34]. The most commonly used probiotics generally come from the genera Lactobacillus and Bifidobacterium. Other bacteria that could be considered and are similar include Streptococcus thermophilus, non-pathogenic strains of E. coli, Enterococcus, Bacillus, and yeasts, such as Saccharomyces boulardii [76]. Although the genus Escherichia belongs to the Gram-negative family Enterobacteriaceae, mainly known for its severely virulent serotypes (e.g., E. coli O157:H7), Escherichia coli is a very common inhabitant of the lower intestine and has a known probiotic strain: Escherichia coli Nissle 1917 (EcN). This strain together with other probiotics has been proven to effectively treat constipation and other related gastrointestinal disorders [77,78].
The genera Streptococcus and Enterococcus are considered members of the lactic acid bacteria group. Although, these bacteria contain several strains associated with severe health-care-related infections such as Streptococcus pyogenes, Streptococcus pneumoniae, and vancomycin-resistant Enterococcus faecium [79], there are other strains that form part of the commensal human microbiome of the mouth, skin, and intestine, such as Enterococcus faecium PC4.1 [80]. Moreover, some strains such as Enterococcus durans and Streptococcus thermophilus have probiotic properties [81]. The genus Bacillus includes Gram-positive spore-forming aerobic or facultative aerobic members with claimed probiotic properties including Bacillus subtilis, Bacillus coagulans, Bacillus subtilis, and Bacillus cereus [82]. Saccharomyces boulardii is used in medicine as a probiotic and forms part of the genus Saccharomyces.
3.1. 프로바이오틱스의 기원
프로바이오틱스 유산균은 발효 식품, 동물, 그리고 인간 등 다양한 출처에서 분리될 수 있습니다. 그러나 인간이 사용할 수 있는 프로바이오틱스 균주를 고려하기 위해서는 인간 미생물계에서 분리되어야 하며, 따라서 인간 장 세포벽에 대한 높은 부착력을 가져야 합니다. 또한, 이 균주는 안전해야 하며 숙주에 어떠한 위협도 가하지 않아야 합니다 [34]. 가장 일반적으로 사용되는 프로바이오틱스는 일반적으로 락토바실러스(Lactobacillus)와 비피도박테리움(Bifidobacterium) 속에 속하는 균주에서 유래합니다. 유사한 것으로 간주될 수 있는 다른 박테리아로는 스트렙토코커스 써모필러스(Streptococcus thermophilus), 비병원성 대장균(E. coli) 변종, 엔테로콕쿠스(Enterococcus), 바실러스(Bacillus), 사카로마이세스 보울라디(Saccharomyces boulardii)와 같은 효모균 등이 있습니다 [76]. 대장균(Escherichia coli)은 그람 음성 대장균과에 속하지만, 주로 심각한 독성을 가진 혈청형(예: 대장균 O157:H7)으로 알려져 있지만, 대장균은 하부 장에 매우 흔하게 서식하며, 알려진 프로바이오틱 균주인 대장균 니슬 1917(EcN)을 가지고 있습니다. 이 균주와 다른 프로바이오틱스가 변비 및 기타 관련 위장 장애를 효과적으로 치료하는 것으로 입증되었습니다 [77,78].
Streptococcus와 Enterococcus 속은 젖산균 그룹에 속하는 것으로 간주됩니다. 이 박테리아에는 Streptococcus pyogenes, Streptococcus pneumoniae, vancomycin-resistant Enterococcus faecium [79]과 같은 심각한 의료 관련 감염과 관련된 여러 가지 균주가 포함되어 있지만, Enterococcus faecium PC4.1 [80]과 같은 입, 피부, 장의 공생 인간 미생물 군집의 일부를 구성하는 다른 균주도 있습니다. 또한, 엔테로코커스 듀란스(Enterococcus durans)와 스트렙토코커스 써모필러스(Streptococcus thermophilus)와 같은 균주에는 프로바이오틱스 특성이 있습니다 [81]. 바실러스(Bacillus) 속에는 그람 양성 포자 형성 호기성 또는 통성 호기성 균이 포함되며, 바실러스 서브틸리스(Bacillus subtilis), 바실러스 코아귤란스(Bacillus coagulans), 바실러스 서브틸리스(Bacillus subtilis), 바실러스 세레우스(Bacillus cereus) 등 프로바이오틱스 특성이 있는 것으로 알려진 균이 있습니다 [82]. 사카로마이세스 불라디(Saccharomyces boulardii)는 프로바이오틱스로 의학에서 사용되며, 사카로마이세스(Saccharomyces) 속의 일부를 형성합니다.
3.2. Mechanism of Probiotics
Many studies have proposed various mechanisms underlying the action of different probiotics. However, it is pivotal to link the mechanism of action of the many different probiotics to the strain type, the dosage of probiotics consumed as well as the route of its administration. It is therefore noteworthy that the mechanisms of action cannot be generalized to all probiotics, yet, to a large extent, these actions will be depicted by many probiotics [74,83,84]. Moreover, although the mechanism by which probiotics exert biological effects on their host organisms is fairly well understood, the general non-specific terms widely used in elucidating their mode of action are colonization resistance and competitive exclusion [85]. Colonization resistance and competitive exclusion are terms that are linked to the phenomenon whereby indigenous anaerobic flora limits and impedes the concentration of potentially pathogenic flora in the gastrointestinal tract [86]. The notion of competitive exclusion first had an impact during the early 1970s when it was discovered that mixed adult intestinal microorganisms administered to newly hatched chicks conferred adult-type resistance against Salmonella infection [87].
According to Oelschlaeger (2010) [87], the effects of probiotics can be categorized under three modes of action as highlighted below:
(i)
Probiotics can modulate the host’s defenses which include the innate as well as the acquired immune system. This mode of action is most critical for prevention and therapy for infectious diseases but also for the treatment of chronic inflammation of the gastrointestinal tract.
(ii)
Probiotics could also directly impact other microorganisms, commensal, and/or pathogenic ones in general. This property could be of immense benefit and vital in prevention and therapy for infections and the overall restoration of the microbial equilibrium in the gut.
(iii)
Additionally, probiotic effects may be linked to actions affecting microbial products such as toxins and host products, e.g., bile salts and food ingredients. This property may result in the inactivation of toxins and aids in detoxification in the gastrointestinal gut. It is also worth noting that the kind of effects depicted by certain strains of probiotics largely depends on the strain’s metabolic properties, the molecules presented on their surfaces or on their secreted components.
In relation to the above mechanisms of action of probiotics as highlighted, many researchers have also generalized the mechanisms of probiotics which can be summarized as follows:
3.2. 프로바이오틱스의 작용 기전
많은 연구에서 다양한 프로바이오틱스의 작용 기전을 뒷받침하는 다양한 메커니즘을 제안했습니다. 그러나 다양한 프로바이오틱스의 작용 기전을 균주 유형, 섭취하는 프로바이오틱스의 용량, 투여 경로와 연결하는 것이 중요합니다. 따라서 작용 기전이 모든 프로바이오틱스에 일반화될 수 없다는 점은 주목할 만하지만, 이러한 작용은 많은 프로바이오틱스에 의해 설명될 수 있습니다 [74,83,84]. 또한, 프로바이오틱스가 숙주 유기체에 생물학적 영향을 미치는 기전은 상당히 잘 알려져 있지만, 작용 기전을 설명하는 데 널리 사용되는 일반적인 비특이적 용어는 식민지 저항과 경쟁 배제입니다 [85]. 식민지화 저항성과 경쟁 배제는 토착 혐기성 세균총이 위장관에 잠재적으로 병원성 세균의 농도를 제한하고 방해하는 현상과 관련된 용어입니다 [86]. 경쟁 배제 개념은 1970년대 초에 새로 부화한 병아리에 혼합 성인 장내 미생물을 투여했을 때 살모넬라 감염에 대한 성인형 저항성을 부여한다는 사실이 밝혀지면서 처음 주목을 받았습니다 [87].
Oelschlaeger(2010) [87]에 따르면, 프로바이오틱스의 효과는 아래에 강조된 바와 같이 세 가지 작용 양식으로 분류될 수 있습니다.
(i)
프로바이오틱스는 선천성 면역 체계와 후천성 면역 체계를 포함하는 숙주의 방어 체계를 조절할 수 있습니다. 이 작용 양식은 감염성 질환의 예방과 치료에 가장 중요하지만, 위장관의 만성 염증 치료에도 중요합니다.
(ii)
프로바이오틱스는 다른 미생물, 공생 미생물, 병원성 미생물 등에도 직접적인 영향을 미칠 수 있습니다. 이러한 특성은 감염 예방과 치료, 그리고 장내 미생물 균형의 전반적인 회복에 매우 유용하고 중요할 수 있습니다.
(iii)
또한, 프로바이오틱스의 효과는 독소와 담즙산염, 식품 성분 등 미생물 생성물과 숙주 생성물에 영향을 미치는 작용과 관련이 있을 수 있습니다. 이 성질은 독소의 비활성화를 초래할 수 있으며, 위장 내 독소 제거를 돕습니다. 또한, 특정 종류의 프로바이오틱스가 나타내는 효과의 종류는 주로 그 균주의 대사적 특성, 표면에 존재하는 분자 또는 분비된 성분에 따라 달라진다는 점도 주목할 만합니다.
위에서 강조된 프로바이오틱스의 작용 메커니즘과 관련하여, 많은 연구자들이 프로바이오틱스의 메커니즘을 다음과 같이 요약할 수 있다고 일반화했습니다.
프로바이오틱스는 뮤신 생성을 증가시키고, 병원성 박테리아가 상피에 손상을 입히는 것을 방지하며, 세포 투과성을 감소시킴으로써 장 상피 장벽 기능을 향상시킵니다. 또한, 프로바이오틱스는 디펜신과 같은 항균성 펩타이드의 발현을 유도함으로써 점막 장벽 기능을 향상시킵니다 [86].
프로바이오틱스는 바테리오신과 루테린과 같은 항균성 펩타이드의 분비를 통해 병원성 박테리아의 성장을 억제합니다. 예를 들어, 유산균은 유기산을 생성하여 산성 환경을 조성함으로써 병원균의 성장을 억제합니다 [86].
프로바이오틱스는 또한 혈청 면역글로불린 A(IgA)의 생성을 촉진하고 장의 체액성 면역에 중요한 역할을 하는 IgA를 분비합니다 [86].
프로바이오틱스는 식세포 작용을 강화하고, 자연살해세포의 활동을 증가시키며, 세포 매개 면역을 촉진하고, 병원체에 대한 다양한 비특이적 면역 반응을 자극합니다 [86].
프로바이오틱스는 염증 유발 사이토카인의 생성을 억제하고, 세포 사멸을 방지하며, T세포의 증식을 억제함으로써 다양한 염증 상태를 예방합니다 [86].
The general effectiveness of probiotics is associated with their ability to survive and withstand both the acidic and alkaline environment in the gastrointestinal environment as well as their ability to adhere and colonize the colon [28]. Improved mucosal barrier mechanisms of the gut are achieved by factors such as pH, redox potential, hydrogen sulphide production, and antimicrobial compounds/molecules produced in response to enteric pathogens. Furthermore, the mucosal barrier is also secured by several interrelated systems such as mucous secretion, chloride and water secretion, and the binding together of epithelial cells [86].
프로바이오틱스의 일반적인 효과는 위장 환경의 산성 및 알칼리성 환경에서 생존하고 견딜 수 있는 능력과 결장에 부착하고 정착하는 능력과 관련이 있습니다 [28]. 장의 점막 장벽 메커니즘의 개선은 pH, 산화 환원 전위, 황화수소 생성, 장내 병원체에 대한 반응으로 생성되는 항균 화합물/분자와 같은 요인에 의해 달성됩니다. 또한, 점막 장벽은 점액 분비, 염화물 및 수분 분비, 상피 세포의 결합과 같은 여러 상호 관련된 시스템에 의해 보호됩니다 [86].
3.3. Probiotics and Human Health
Probiotic microorganisms colonize the mammalian gut and the intestinal system as confirmed by many research studies. The gastrointestinal tract has been ascribed to provide conducive environmental conditions for the proliferation and existence of probiotic bacteria. These essential microflorae directly confer immense health benefits to their host and in general are very vital for human health and nutrition. The most extensively isolated probiotic microorganisms from fermented foods, and from both the animal and human gut system, include Lactobacillus, Pediococcus, Bifdobacterium, Lactococcus, Streptococcus, and Leuconostoc [4,89]. Bifidobacterium lactis is one of the most studied probiotic strains as it has been used in many research studies to demonstrate its probiotic ability [90].
Presently, there are many diverse well-characterized strains of Lactobacilli and Bifidobacteria that are uniquely disposed for human use in the prevention and risk reduction for gastrointestinal (GI) infections or for treatment of infections [91].
The pivotal objective of the clinical application of probiotics is solely for the purposes of prevention and treatment of GI infections and diseases [9,34]. Some therapeutic applications of probiotics also include the prevention of urogenital diseases, alleviation of constipation, protection against traveler’s diarrhea, reduction of hypercholesterolaemia, protection against colon and bladder cancer, and prevention of osteoporosis and food allergies [73,89]. The ingestion of lactic acid bacteria has been suggested to confer an array of health benefits including immune system modulation and increased resistance to malignancy and infectious illness [92,93]. These beneficial results were confirmed by a study conducted by Maldonado Galdeano et al., (2009) [94] on the effect of fermented milk containing Lactobacillus casei DN114001. This probiotic induced mucosal immune stimulation reinforcing the non-specific barrier and modulating the innate immune response in the gut of the host with the maintenance of intestinal homeostasis. The immune modulation of the host has been confirmed as one of the primary health benefits derived from the consumption of probiotic functional food [95]. One of the most challenging human health problems faced around the world is the mitigation of infectious diseases. Many recorded deaths are linked to intestinal infection as a result of the consumption of contaminated food and water containing pathogenic microorganisms. The advent of probiotics is a key solution for foodborne diseases, as the efficacy of probiotics for the treatment of these diseases has been confirmed by several scientific studies [95]. According to a study by Shu and Gill (2001) [96], B. lactis HN019 was shown to reduce the severity of infection caused by enterohemolytic pathogen Escherichia coli O157: H7, and it was thus inferred that this reduction may be associated with the enhanced immune protection conferred by the probiotic.
A summary of some of the salient and major health benefits conferred by probiotics and their proposed mechanisms are highlighted in Table 5.
3.3. 프로바이오틱스와 인간의 건강
많은 연구에 의해 확인된 바와 같이, 프로바이오틱스 미생물은 포유류의 장과 장내 시스템에 서식합니다. 위장관은 프로바이오틱스 박테리아의 증식과 생존에 유리한 환경 조건을 제공하는 것으로 알려져 있습니다. 이러한 필수 미생물은 숙주에게 직접적으로 엄청난 건강상의 이점을 제공하며, 일반적으로 인간의 건강과 영양에 매우 중요합니다. 발효 식품과 동물 및 인간의 장에서 가장 광범위하게 분리된 프로바이오틱 미생물에는 락토바실러스, 페디오코쿠스, 비피도박테리움, 락토코커스, 연쇄상구균, 레우코노스톡 등이 있습니다 [4,89]. 비피도박테리움 락티스는 프로바이오틱 능력을 입증하기 위해 많은 연구에서 사용되어 왔기 때문에 가장 많이 연구된 프로바이오틱 균주 중 하나입니다 [90].
현재, 위장(GI) 감염 예방 및 위험 감소 또는 감염 치료를 위해 인간에게 사용하도록 특별히 배합된 다양한 종류의 락토바실러스(Lactobacilli)와 비피도박테리아(Bifidobacteria) 균주가 있습니다 [91].
프로바이오틱스의 임상적 적용의 핵심 목표는 위장관 감염과 질병의 예방과 치료에 있습니다 [9,34]. 프로바이오틱스의 일부 치료적 적용에는 비뇨생식기 질환의 예방, 변비 완화, 여행자 설사 예방, 고콜레스테롤혈증 감소, 대장암과 방광암 예방, 골다공증과 음식 알레르기 예방 등이 포함됩니다 [73,89]. 유산균 섭취는 면역 체계 조절, 악성 종양 및 전염병에 대한 저항력 증가 등 다양한 건강상의 이점을 제공하는 것으로 알려져 있습니다 [92,93]. 이러한 유익한 결과는 Lactobacillus casei DN114001을 함유한 발효유의 효과에 대한 Maldonado Galdeano 등의 연구(2009) [94]를 통해 확인되었습니다. 프로바이오틱스가 유발하는 점막 면역 자극은 비특이적 장벽을 강화하고 장내 항상성 유지를 통해 숙주의 장에서 선천성 면역 반응을 조절합니다. 숙주의 면역 조절은 프로바이오틱스 기능성 식품 섭취로 얻을 수 있는 주요 건강상의 이점 중 하나로 확인되었습니다 [95]. 전 세계적으로 가장 어려운 인간 건강 문제 중 하나는 전염병의 완화입니다. 기록된 사망자 중 상당수는 병원성 미생물이 포함된 오염된 음식과 물을 섭취한 결과로 발생한 장 감염과 관련이 있습니다. 프로바이오틱스의 효능은 여러 과학적 연구에서 확인되었기 때문에, 프로바이오틱스의 출현은 식중독에 대한 핵심적인 해결책입니다 [95]. Shu와 Gill(2001)의 연구에 따르면, B. lactis HN019는 장내 용혈성 병원균인 대장균 O157:H7에 의한 감염의 심각성을 감소시키는 것으로 나타났습니다. 따라서 이러한 감소는 프로바이오틱스가 제공하는 향상된 면역 보호와 관련이 있을 수 있다고 추측할 수 있습니다.
프로바이오틱스가 제공하는 두드러진 주요 건강상의 이점과 그 제안된 메커니즘에 대한 요약은 표 5에 강조 표시되어 있습니다.
Table 5. Health benefits of probiotic bacteria and speculated mechanisms involved.
Although the therapeutic properties of probiotics have been confirmed and are vital for human health, it is critical that probiotics conform to international standards and accepted norms for usage. According to the Joint FAO/WHO (2002) [97] guidelines on probiotics, the use of probiotic microorganisms to confer health benefits on the host must indicate the dosage regimens and duration of use as recommended by the manufacturer of each individual strain or product based on scientific evidence, and as approved in the country of sale. Moreover, each probiotic product should prescribe the minimum daily amount that is necessary in order for the product to confer a specific health benefit or benefits. Evidence of this purpose should be clear and, where possible, should result from in vitro, animal, or human clinical studies.
Probiotics confer an array of human health benefits including the following: (1) Maintains the healthy microbiota balance of the intestine by competing and excluding harmful pathogens, as well as adheres to the gastrointestinal gut [98,99]; (2) Stimulate and enhance the immune response by increasing the release of serum antibodies (Immunoglobulin M (IgM), Immunoglobulin G (IgG), and Immunoglobulin A (IgA) and balancing pro-inflammatory and anti-inflammatory cytokines [28,100]. Probiotics also help to prevent or decrease the duration of intestinal diseases such as Inflammatory bowel disease, diarrhea, and constipation by colonizing and modulating the gut microflora, synthesizing antimicrobial compounds, and enhancing the immune response and secretion of mucus [101]. Additionally, probiotics are important in the prevention of metabolic disorders such as obesity, diabetes, and cardiovascular diseases by enhancing gut microbiota, restoring the antioxidant systems and decreasing insulin resistance and inflammation [9]. Probiotics inhibit the growth of Candida and Helicobacter pylori, thus preventing intestinal infection by competing and adhering to the mucosal surface and enhancing immune responses [28]. They also help to prevent the growth of cancer by acting as a therapeutic agent for cancer treatment by detoxification of chemical carcinogens, decreasing the release of toxic metabolites, enhancing the antioxidant system, modulating the immune response to inhibit self-proliferation of cancer and generating metabolites like butyrate which increases cancer cell death (apoptosis) and produces anti-mutagenic effects. Probiotics assist in the maintenance and alleviation of lactose intolerance by providing β-galactosidase (lactase) enzyme which breaks down lactose into simple sugars [28].
Another key benefit from probiotics includes the lowering of cholesterol levels by precipitating cholesterol with free bile salts into bile acids and thereby reducing cholesterol absorption [102]. Additionally, probiotics enhance the absorption of minerals such as calcium to help to prevent mineral deficiency diseases such as osteoporosis. They also enhance nutritional value by synthesizing cofactors and vitamins (K and B) and by producing various enzymes that are useful in the digestion of food [89]. A schematic display of how probiotics exert their beneficial roles in the gastrointestinal tract and in the intestines is shown in Figure 1.
프로바이오틱스의 치료 효과가 확인되었고 인체 건강에 필수적이라는 사실이 밝혀졌지만, 프로바이오틱스가 국제 표준과 사용에 대한 허용 규범을 준수하는 것이 중요합니다. FAO/WHO 합동 지침(2002) [97]에 따르면, 프로바이오틱스 미생물을 사용하여 숙주에게 건강상의 이점을 부여하는 경우, 각 개별 균주 또는 제품의 제조업체가 권장하는 용량 요법과 사용 기간을 과학적 증거에 근거하여 판매 국가에서 승인된 대로 표시해야 합니다. 또한, 각 프로바이오틱스 제품은 특정 건강상의 이점을 부여하는 데 필요한 최소 일일 섭취량을 명시해야 합니다. 이 목적을 입증하는 증거는 명확해야 하며, 가능하면 체외, 동물 또는 인간 임상 연구에서 나온 것이어야 합니다.
프로바이오틱스는 다음과 같은 다양한 인체 건강상의 이점을 제공합니다: (1) 유해한 병원균과 경쟁하고 배제함으로써 장의 건강한 미생물군유전체 균형을 유지하고, 위장관에 부착합니다 [98,99]; (2) 혈청 항체(면역글로불린 M(IgM), 면역글로불린 G(IgG), 면역글로불린 A(IgA), 그리고 전염증성 사이토카인과 항염증성 사이토카인의 균형 [28,100]. 프로바이오틱스는 또한 장내 미생물을 식민지화하고 조절하고, 항균성 화합물을 합성하고, 면역 반응과 점액 분비를 강화함으로써 염증성 장 질환, 설사, 변비 등의 장 질환을 예방하거나 그 기간을 단축하는 데 도움이 됩니다 [101]. 또한 프로바이오틱스는 장내 미생물총을 강화하고, 항산화 시스템을 복원하며, 인슐린 저항성과 염증을 감소시킴으로써 비만, 당뇨병, 심혈관 질환과 같은 대사 장애를 예방하는 데 중요한 역할을 합니다 [9]. 프로바이오틱스는 칸디다와 헬리코박터 파일로리의 성장을 억제하여 점막 표면에 부착하고 경쟁함으로써 면역 반응을 강화함으로써 장 감염을 예방합니다 [28]. 또한 화학 발암 물질의 해독 작용을 통해 암 치료에 도움이 되는 치료제로 작용하여 암의 성장을 예방하고, 독성 대사 산물의 방출을 줄이고, 항산화 시스템을 강화하고, 암의 자가 증식을 억제하기 위한 면역 반응을 조절하고, 암세포 사멸(세포 자멸사)을 증가시키고 항돌연변이 유발 효과를 생성하는 부티레이트와 같은 대사 산물을 생성합니다. 프로바이오틱스는 β-갈락토시다아제(락타아제) 효소를 제공하여 유당을 단순 당으로 분해함으로써 유당 불내증의 유지와 완화에 도움을 줍니다 [28].
프로바이오틱스의 또 다른 주요 이점으로는 콜레스테롤을 유리 담즙산으로 침전시켜 담즙산으로 만들어 콜레스테롤 흡수를 감소시킴으로써 콜레스테롤 수치를 낮추는 것이 있습니다 [102]. 또한, 프로바이오틱스는 칼슘과 같은 미네랄의 흡수를 촉진하여 골다공증과 같은 미네랄 결핍 질환을 예방하는 데 도움이 됩니다. 또한, 코팩터와 비타민(K와 B)을 합성하고 음식물 소화에 유용한 다양한 효소를 생성함으로써 영양가를 향상시킵니다 [89]. 프로바이오틱스가 위장관 및 장에서 유익한 역할을 하는 방식에 대한 도식적 표현이 그림 1에 나와 있습니다.
Figure 1. Schematic displaying different ways by which probiotics exert their beneficial roles in the intestine. Lactic acid bacteria isolated from dairy product are responsible for the competitive exclusion of pathogens, secretion of important metabolites and molecules such as bacteriocins. These probiotics create a mucus barrier by stimulating the goblet cells. The interaction of Lactobacillus with intestinal epithelial cells also differentiates immune cells and regulates the barrier function of intestinal epithelial cells [36].
그림 1. 프로바이오틱스가 장에서 유익한 역할을 하는 다양한 방식을 보여주는 도식. 유제품에서 분리된 젖산균은 병원균의 경쟁적 배제, 중요한 대사 산물 및 박테리오신과 같은 분자의 분비를 담당합니다. 이러한 프로바이오틱스는 잔세포를 자극하여 점액 장벽을 만듭니다. 락토바실러스와 장 상피 세포의 상호 작용은 또한 면역 세포를 분화하고 장 상피 세포의 장벽 기능을 조절합니다 [36].
3.4. Health Benefits of Probiotics in Some Disease Conditions
3.4.1. Lactose Intolerance
Lactose is a disaccharide and an important nutrient in all mammalian neonates and is broken down into glucose and galactose. In most human populations, the activity of lactase diminishes during mid-childhood (about five years of age), leading to low lactase levels from that period thereafter [113]. Many people, however, retain high levels of lactate activity throughout their adult life. It is worthy to note that the inherited trait of being lactase persistent (adults retain their ability to digest lactose) in humans is dominant while lactase-non persistent (adults lose their ability to digest lactose) is recessive [114]. The failure of the small intestine to produce adequate lactase when milk is ingested results in the condition known as lactose intolerance or lactose malabsorption [115,116]. The metabolism of lactose in the small intestine is shown in Figure 2. Lactose intolerance is thus defined as the pathophysiological situation in which the small intestinal digestion and or colonic fermentation is altered, which leads to clinical symptoms [117].
3.4. 질병 상태에 따른 프로바이오틱스의 건강상의 이점
3.4.1. 유당 불내증
유당은 이당류이며 모든 포유류 신생아에게 중요한 영양소이며, 포도당과 갈락토오스로 분해됩니다. 대부분의 인류 집단에서, 락타아제의 활동은 아동기 중반(약 5세)에 감소하여, 그 이후부터 락타아제 수치가 낮아집니다 [113]. 그러나 많은 사람들은 성인기에 걸쳐 높은 수준의 락타아제 활성을 유지합니다. 유전적으로 락타아제 지속성(성인이 락토스를 소화할 수 있는 능력을 유지함)을 가진 특성이 우성인 반면, 락타아제 비지속성(성인이 락토스를 소화할 수 있는 능력을 상실함)은 열성이라는 사실에 주목할 필요가 있습니다 [114]. 소장이 우유를 섭취할 때 적절한 락타아제를 생성하지 못하면 유당 불내증 또는 유당 흡수 장애로 알려진 상태가 발생합니다 [115,116]. 소장에서의 유당 대사는 그림 2에 나와 있습니다. 따라서 유당 불내증은 소장의 소화 및/또는 결장의 발효가 변화되어 임상 증상을 유발하는 병리 생리학적 상황으로 정의됩니다 [117].
Figure 2. Small intestine metabolism of lactose. Lactose enters the small intestine (1) and is then converted by lactase from the host (2) or by probiotics (3). Excess amounts of lactose spill over into the colon (4). (Adapted from [117]).
The unabsorbed lactose or lactose that is spilled over into the colon will thus be hydrolyzed β-galactosidase, the colonic bacterial enzyme (mostly produced by probiotics) through metabolism resulting in the formation of glucose and galactose. Consequently, glucose and galactose are transformed into lactate and short chain fatty acids (SCFA) hydrogen, acetate, methane, propionate, and butyrate as shown in Figure 3. Osmotic load thus occurs in the colon that is due to the formation of microbial biomass, the original substrate (lactose), and the intermediate and final products glucose and galactose. This phenomenon might increase transit time in the colonic, alter fermentation profiles and ultimately result in diarrhea [116,117].
흡수되지 않은 락토오스 또는
결장으로 흘러들어간 락토오스는
대장에서 β-갈락토시다아제(주로 프로바이오틱스에 의해 생성되는 대장 내 세균 효소)에 의해 가수분해되어
Lactose enters the colon (1) and is fermented by the microbiota into glucose and galactose. Gases such as hydrogen, methane, and carbon dioxide are formed (2). Lactate is also formed and converted into short chain fatty acids (SCFA) (3,4). In this stage, gasses are also formed (2). SCFAs can be taken up by epithelial cells (5) or can be used by the microbiota (6) or excreted in the faeces (7). (Adapted from [117]).
Some lactose intolerance symptoms include abdominal pain, bloating, flatulence, and diarrhea. The administration of probiotic supplements or use of lactase tablets is highly recommended for conditions of low lactase activity in humans [113]. β-galactosidase mutants that were overproduced, alleviated the symptoms of lactose malabsorption as confirmed by Ibrahim and O’Sullivan (2000) [118] in their study (Ibrahim et al., 2010, [119]). Moreover, lactose absorption in lactose-intolerant individuals was improved with milk containing L. acidophilus [120]. The administration and usage of probiotics has been confirmed to change and improve the population of the colonic microbiota; thereby, a potential therapy for lactose-intolerant subjects [121,122]. Recently, Gyawali et al. (2020) [123] demonstrated L. bulgaricus strains can produce maximum amount of β-galactosidase further supporting the use of lactic acid bacteria as probiotics in the treatment of lactose intolerance.
최근에, Gyawali 외. (2020) [123]은 L. bulgaricus 균주가 최대량의 β-갈락토시다아제를 생산할 수 있다는 것을 입증하여, 유당 불내증 치료에 유산균을 프로바이오틱스로 사용하는 것을 더욱 뒷받침했습니다.
3.4.2. Diabetes and Obesity
According to Ley et al. (2005) [124], gut microbiota plays a vital role in the pathology of insulin resistance (type 2 diabetes) and obesity. Furthermore, many human and animal studies have also suggested that gut microbiota enhances body weight gain and increases insulin resistance, and these phenotypes are thus transmittable with gut microbiota as observed in the implantation studies of microbiota from obese to normal and germ-free mice [125,126]. The established mechanism associated with gut microbiota-mediated pathology of obesity and diabetes is through, (1) increased energy harvest, (2) increased blood LPS levels (endotoxemia), and (3) low-grade inflammation [127]. Evidence-based knowledge has therefore confirmed that probiotic use has the potential to modulate gut microbiota, and is thus considered as a potential target to treat against diabetes and obesity [28].
There are two distinct bacterial phyla, the Gram-negative bacteroidetes and the Gram-positive firmicutes which are significantly dominant in the gut microenvironment. These two bacteria have an impact in metabolic diseases such as obesity and diabetes. Recent studies have confirmed that, an increased number of Bacteroidetes with a decrease in the levels of firmicutes over time has been linked to obesity [128,129]. It has also been proven that type 2 diabetes patients relatively have decreased levels of Firmicutes species than Bacteroidetes, thus increasing the bacteroidetes/firmicutes ratio which correlates positively with glucose concentration in the plasma [130]. Probiotic strains Bifidobacterium longum, L. casei and Lactobacillus acidophilus have also been credited with the prevention of obesity as they possess hypocholesterolemic properties [131].
3.4.2. 당뇨병과 비만
Ley 외. (2005) [124]에 따르면, 장내 미생물총은 인슐린 저항성(제2형 당뇨병)과 비만의 병리학에서 중요한 역할을 합니다. 또한, 많은 인간과 동물 연구에서 장내 미생물총이 체중 증가와 인슐린 저항성을 증가시킨다는 사실이 밝혀졌습니다. 따라서 이러한 표현형은 비만에서 정상 및 무균 생쥐의 미생물총 이식 연구에서 관찰된 바와 같이 장내 미생물총을 통해 전달될 수 있습니다 [125,126].
따라서 증거 기반 지식에 따르면 프로바이오틱스 사용이 장내 미생물총을 조절할 수 있는 잠재력을 가지고 있으며, 따라서 당뇨병과 비만 치료의 잠재적 대상으로 간주됩니다 [28].
장내 미생물 군집에는 그람 음성 박테로이데테스(Gram-negative bacteroidetes)와 그람 양성 퍼미쿠테스(Gram-positive firmicutes)라는 두 가지 뚜렷한 박테리아 문(phylum)이 있으며, 이 두 박테리아는 장내 미생물 군집에서 상당히 우세한 박테리아입니다. 이 두 박테리아는 비만과 당뇨병과 같은 대사성 질환에 영향을 미칩니다.
최근 연구에 따르면, 시간이 지남에 따라 퍼미쿠테스 수치가 감소하고 박테로이데테스 수가 증가하면 비만과 관련이 있는 것으로 확인되었습니다 [128,129].
또한 제2형 당뇨병 환자의 경우,
상대적으로 박테로이데테스보다 피막균의 수치가 감소하는 것으로 밝혀졌으며,
따라서 혈장 내 포도당 농도와 양의 상관관계가 있는 박테로이데테스/피막균 비율이 증가합니다 [130].
비피도박테리움 롱검, 락토바실러스 카세이, 락토바실러스 애시도필러스와 같은 프로바이오틱 균주도 콜레스테롤 저하 특성을 가지고 있어 비만 예방에 도움이 되는 것으로 알려져 있습니다 [131].
3.4.3. Acute Diarrheal Disease
The application of probiotics in the treatment of acute diarrhea in both children and adults has been effective due to enough growing evidence in this regard. A meta-analysis confirmed that probiotics reduced the mean duration of diarrhea by 13 h, reduced treatment failure by 38%, and thus was effective in preventing diarrhea in children [132]. Moreover, a recent Cochrane review of 63 randomized and quasi-randomized controlled trials, 56 of which involved infants and children, concluded that probiotics were very effective in reducing the mean duration of diarrhea by about 25 h. Therefore, the likelihood of diarrhea lasting ≥4 days was also reduced by 59%, the stool frequency also decreased approximately by one less bowel movement on day 2 after probiotic treatment which resulted in no adverse events [133].
The administration of Lactobacillus reuteri in a meta-analysis that consisted of eight randomized control trials with 1229 children as participants proved that it was effective in reducing the duration of diarrhea (25 fewer hours; 95% Confidence Interval (CI), 11 to 39 fewer hours) and significantly increased the rate of therapy on the first and second day [134]. Another meta-analysis of two randomized control trials involving 201 children diagnosed with diarrhea from rotavirus confirmed the efficacy of L. rhamnosus GG versus placebo (two fewer days; 95% CI, 0.6 to 3.6 fewer days) as there was a significant decrease in the disease condition [135].
3.4.4. Inflammatory Bowel Diseases and Irritable Bowel Syndrome
Inflammatory bowel diseases, such as pouchitis and Crohn’s disease, as well as irritable bowel syndrome, has been confirmed to be due to aggravations or alterations of the normal intestinal microflora in the gastrointestinal gut [76]. Many research studies have proposed the administration of probiotics as a potential remedy in the treatment of these conditions as probiotics replenish or modify the gut microflora ensuring it, being healthy to support the host [76,136,137]. Globally, the intestinal microbioto plays a critical role in gut inflammatory conditions, probiotics thus have been recommended as potential support for treatment as they could remediate such conditions through modulation of the gut microbiota [97].
3.4.5. Cancer
There is scientific evidence proving that probiotic microorganisms can prevent or delay the onset of certain cancers. This stems from the fact that members of the gut microflora could produce carcinogens such as nitrosamines. Knowledge of this phenomenon thus is important as the administration of lactobacilli and bifidobacteria reduce the absorption of harmful mutagens as well as decrease β-glucuronidase and carcinogen levels through modification of the gastrointestinal flora [138]. There is ample evidence that cancer recurrences at other sites, such as the urinary bladder could be reduced by intestinal instillation of probiotics including L. casei Shirota [139].
3.4.6. Cardiovascular Diseases
There is scientific evidence buttressing the use of probiotics for the treatment of cardiovascular diseases. It has been established that the use of probiotic lactobacilli and metabolic by-products potentially confer benefits to the heart, which also pertains to the prevention and therapy of various ischemic heart syndromes [140] and lowering serum cholesterol [141].
Therapeutic benefits of probiotics in the management of cardiovascular diseases has been substantiated by recent clinical studies notably in the treatment of hypertension. Probiotics were reported to reduce systolic and diastolic pressures (estimatedly 14–6.9 mm drop) in patients diagnosed with hypertension [142]. Notable probiotic strains that have been clinically proven to alleviate the condition of hyperternsion are L. plantarum, L. casei, L. plantarum, L. helveticus, and Streptococcus thermophilus [143]. The decreasing effect of the blood pressure is linked to a reduction in the synthesis of nitrogen oxide in the macrophages, thus decreasing reactive oxygen species and promoting dietary calcium absorption via a different mechanism. This related mechanism is as a result of the synthesis of certain metabolites such as conjugated linoleic acids (CLA), angiotensin-converting enzyme (ACE) inhibitor peptides, and short chain fatty acids (SCFAs) [142].
3.4.7. Urogenital Infections
It is estimated that more than one billion women globally, have been diagnosed with non- sexually transmitted urogenital infections ranging from urinary tract infection (UTI), bacterial vaginosis (BV), and many other yeast infections [144]. Some notable species that are reported as causative agents of BV are Ureaplasma urealyticum, Mycoplasma hominis and Gardnerella vaginalis [145]. The vaginal microbial composition is described as a habitat that supports the growth and existence of more than 50 different beneficial species with the lactobacillus group regarded as an essential and critical regulator of the microbial ecosystem in the vagina. Some of the predominant lactic acid bacteria species include Lactobacillus vaginalis, Lactobacillus casei, Lactobacillus reuteri, Lactobacillus salivarius, Lactobacillus brevis, Lactobacillus rhamnosus and Lactobacillus delbrueckii subsp. bulgaricus [146]. Thus, an imbalance in the microbial composition greatly affects the health of the vaginal microbial ecosystem that increases the risk of contracting urogenital tract infections and the potential risk of bacterial vaginosis. The administration of probiotics can adequately restore the microbial ecosystem by balancing the number of lactic acid bacteria species [146].
3.4.8. Allergy
The benefits derived from probiotics cannot be overemphasized, and thus probiotics have been credited with the management and protection of allergic diseases in recent times as proven by many clinical trials. For example, in vitro studies using Lactobacillus plantarum L67, has proven to be effective in preventing allergy-linked disorders which thus promotes the synthesis of interleukin-12 and interferon-g in the host [147]. Lb. plantarum 06CC2 used in another study confirmed its efficacy in alleviating allergic symptoms which resulted in decreasing the levels of total Immunoglobulin E, histamine and, ovalbumin-specific immunoglobulin E as observed in the sera of ovalbumin-sensitized mice [146]. According to Kukkonen et al. [148], the administration of a complex probiotic which comprised of Bifidobacterium breve, Lactobacillus rhamnosus GG, and Propionibacterium freudenreichii to pregnant women were highly effective and decreases the risk of atopic dermatitis in children below the age of two years. Thus, administering probiotics to children helps in remedying and preventing eczema. Another study confirmed the efficacy of probiotics in the prevention of allergic reactions to dairy milk. Three strains (Bifidobacterium longum subsp. infantis LA308, Lactobacillus rhamnosus LA305, and Lactobacillus salivarius LA307) were used in this study and have thus been successful in preventing this allergic condition [149].
3.4.9. Gut–Brain Axis
The therapeutic application of probiotics has been acknowledged as a great benefit for human health. Although the mechanism of probiotics has a major role in the colonization of the gastrointestinal tract, which helps to prevent or treat many gastrointestinal disorders, attention has however been given to many studies that seek to elucidate the influence of the gut microbiota on the brain and the entire central nervous system (CNS) [146]. The connection between the gut microbiota and the brain has been established to be a bi-directional, interactive system by which regulatory signals are exchanged between the gut and the CNS. To buttress the effect of probiotics on the brain, many clinical studies have been conducted such as the administration of a daily dose of L. plantarum WCFS1 (4.5 × 1010 CFU/day) to children diagnosed with autism spectrum disorder. The administered probotic significantly improved their performance in school and their attitude towards eating [150]. Another study confirmed a significant decrease in the cognitive reaction to the mood of sadness in healthy humans, when doses of a mix of different species consisting of L. acidophilus W37, L. brevis W, L. casei W5, Bifidobacterium bifidum W2, B. lactis W, Lactococcus lactis (W19 and W58), and L. salivarius W2 were administered [151].
3.5. Antiviral Activity of Lactic Acid Bacteria
The benefits derived from lactic acid bacteria cannot be overemphasized, as many studies have confirmed the potential use of lactic acid bacteria for the treatment of viral diseases and infections. It is also worth noting that there are diverse probiotic lactic acid bacteria with health-promoting antiviral properties. Some of these probiotic lactic acid bacteria s are endowed with anti-influenza properties and have been confirmed to modulate and exert antagonistic effects on influenza virus in mice [152,153]. Lactic acid bacteria are therefore regarded as potent antidotes for many viral infections. Moreover, the emergence of viral infections such as the recent COVID-19 has presented a daunting challenge to scientists as they scramble to find a potent drug to combat this global menace. A natural alternative viral infection treatment approach such as the use of probiotics and lactic acid bacteria is thus highly warranted as the conventional prophylactic antiviral drugs and medications are often accompanied by many adverse side effects.
One of the greatest causes of mortality globally is the influenza virus which primarily results in an acute respiratory viral infection [154]. The most sensitive part of the human system to viral invasion is the immune system. The immune systems of high-risk populations, especially the elderly and children, are highly susceptible to viral attack as a result of poor immune function. In addressing immune function challenges in humans, it is important to consider boosting the natural immune defenses by adopting probiotic lactic acid bacteria as a tool against viral diseases. The need to embrace probiotic microorganisms and their derived metabolic products is thus a promising approach in the fight against many viral diseases and essentially vital in protecting public health.
The mechanisms by which probiotics and lactic acid bacteria exert their antiviral properties are varied. Some of the well-known probiotic antiviral mechanisms include direct viral interaction, synthesis of antiviral inhibitory compounds, immune system modulation, and stimulation. Many research studies have confirmed the antiviral property of probiotic lactic acid bacteria to be strain-specific and dependent [155].
3.5.1. Mechanisms of Probiotic Action on Viruses
Probiotic virus interaction: The most widely conceptualized mechanism of action of probiotic lactic acid bacteria has been linked to the interaction between the virus and probiotic lactic acid bacteria. The chain of reaction between the pair is perceived to be due to an adsorptive interaction [155]. This interactive property between probiotics and viruses was confirmed by Botic et al., (2007) [156] where they showed that probiotics had the ability to block and capture vesicular stomatitis virus (VSV) through direct cooperation between lactic acid bacteria cells comprised of Lb. paracasei A14, Lb. paracasei F19, Lb. paracasei/rhamnosus Q8, Lb. plantarum M1.1, and Lb. reuteri DSM12246 and VSV envelope. Another study conducted by Wang et al. (2013) [157] gave credence to the antiviral potential of E. faecium NCIMB 10415 in impeding the activity of influenza viruses during cooperation. A study by Al Kassaa et al., (2014) [158] demonstrated that L. gasseri CMUL57 a vaginally isolated microbiome, was also capable of impeding enveloped herpes simplex type 2 (HSV-2). However, this microbiome was not successful and capable of inhibiting coxsackie virus (CVB4E2).
Immune system induction: Modulation of the host immune system is a characteristic feature of probiotic lactic acid bacteria as they are strong promoters of antimicrobial and antiviral activity. Higher levels of interleukin 12-inducing activity were found in peritoneal macrophages of mice after isolating the strain L. plantarum YU from food products [158]. Strain L. plantarum YU was also confirmed to possess a superior and intensified activity of natural killer cells resident in spleen cells as well as a good level of IgA production from cells of Peyers’ patch. Another confirmed characteristic property was the stimulation of Th1 immune responses and IgA production induced anti-influenza H1N1 virus activity [158].
There are various research studies on probiotic lactic acid bacteria that have confirmed their possessing superior antiviral properties. Some of these lactic acid bacteria are Lb. casei MEP221106 or MEP221114, Lb. rhamnosus CRL1505 [159]. Another strain of interest is Lb. rhamnosus (LGG) that has been classified as safe and has also been found to be an enhanced immune system booster, particularly in HIV-infected patients [160]. L. rhamnosus GG has also been confirmed through several clinical studies as therapeutically safe for use by neonates and infants in the prevention of viral infections [161]. A general schematic illustration of the mechanisms of probiotic action against viral infection is shown in Figure 4.
Figure 4. Mechanisms of probiotic action in the inhibition of viral infections (adapted from [162]).
A summary highlighting the probiotic mechanisms in Figure 4 is as follows [162]:
3.5.2. Strain-Specific Antiviral Properties of Lactic Acid Bacteria
Many research studies have confirmed the antiviral characteristics of probiotic lactic acid bacteria to be strain-dependent. It is thus essential to know the different species of lactic acid bacteria and understand their mode of action in relation to inhibition of viral diseases and other related infections. A summary of some of the key antiviral characteristics is highlighted in Table 6.
Table 6. Some probiotic strains endowed with antiviral properties.
3.5.3. Antiviral Properties of Bacteriocins
Bacteriocins have been regarded as a promising antiviral alternative as compared to conventional antiviral agents. This has been necessitated as a result of the surge in increased resistance against commercially available antiviral agents [174]. Many scientists thus have explored the potential of bacteriocins largely produced from probiotic bacteria. Bacteriocins possess antiviral properties and generally enhances the immunomodulatory mechanism of the host against viral infections [175]. Bacteriocins have therefore been exploited in the treatment of many viral infections and diseases, and have thus proven to be successful in remedying these disease conditions [175]. Bacillus subtilis and Bacillus amyloliquefaciens are both associated with the production of a cyclic bacteriocin known as subtilisin, which has been confirmed to be effective against Herpes Simplex Virus (HSV) Type 1 and II [155,176]. Influenza virus activity has also been inhibited by a bacteriocin linked to Lb. delbrueckii subsp. bulgaricus 1043 [177]. Other known antiviral bacteriocins include enterocin ST5HA produced by Enterococcus faecium, Enterocin AAR-74 and Enterocin AAR-71 with both produced by Enterococcus faecalis, Enterocin CRL35 and Enterocin ST4V produced from Enterococcus mundtii, and a peptide, considered as a bacteriocin produced by Lb. delbrueckii subsp. bulgaricus [178]. Enterocin AAR-74 is reported to have decreased the proliferation of coliphage HSA significantly, by 10-fold; however, Enterocin AAR-71 was reported to have had no significant effect on phage HSA. Herpes viruses HSV-1 and HSV-2 were also inhibited by Enterocin ST4V in a dose-dependent system [178].
4. Conclusions
Lactic acid bacteria are a group of ubiquitous, heterogeneous, and ecologically diverse bacteria with significance in food fermentation processes. Lactic acid bacteria are also therapeutically useful as an antidote for many foodborne related diseases. The impact of lactic acid bacteria is therefore critical in promoting a healthy microbiota and increased immunity against diseases and infections. In addition, probiotics supplementation in human diets cannot be overemphasized based on the countless derived therapeutic health benefits. Probiotics and the advent of lactic acid bacteria are underpinned in the One Health Concept because stable-to-optimum health status requires a well-balanced microbiota composition and a strong immune system. The enlightened culture of food safety now advocates natural remedies that are environmentally friendly while inhibiting pathogens and food spoilage organisms. Thus, the concept of bio-preservation through lactic acid fermentation is a highly recommended alternative for product shelf life extension.
The COVID-19 pandemic has resulted in a greater focus on preventive health and innate immunity as pro-active approaches to dealing with this novel coronavirus. As a result, it has been suggested that the augmented use of probiotics and greater consumption of lactic acid fermented foods could be among the best ways to boost the immune system and ward off viral infection. As it is widely accepted that probiotics and lactic acid fermented foods are capable of boosting the body’s immune system, the augmented use of these natural food products could be among the best ways to boost immunity and build the first line of defense as the virus [179]. Thus, another potential application of this immune system enhancement would be to explore the use of lactic acid bacteria as a live vaccine prophylaxis against COVID-19 [179]. Because lactic acid bacteria are capable of delivering antigens to the mucosal and systemic immune systems and generating specific antibody responses in serum and secretions, lactic acid bacteria as a live vaccine could build an effective immune response. It is also possible to construct biologically contained food grade strains for such a vaccine. This could be a promising vehicle not only for antigens but also for other biologically active compounds such as immunomodulators, antibodies, enzymes, or peptides [179]. In summary, lactic acid bacteria, probiotics, and fermented foods could help to serve as an effective, ongoing prophylaxis regimen during the current COVID-19 pandemic and beyond. However, additional clinical investigation and studies are warranted.
Author Contributions
Conceptualization: R.D.A. and A.K.; Formal analysis, Investigation, Methodology: R.D.A. and S.A.I.; Writing—original draft: R.D.A.; Writing—review and editing: R.D.A., A.K., R.G., S.O.A., M.W., R.T., R.C.d.S. and S.A.I.; All authors have read and agreed to the published version of the manuscript.
Funding
This research was funded by Grant or project Number NC.X308-5-18-170-1 from the National Institute of Food and Agriculture (NIFA). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of NIFA.
Acknowledgments
Authors would also like to acknowledge the support of the Department of Family and Consumer Sciences and the Agricultural Research Station at North Carolina Agricultural and Technical State University (Greensboro, NC 27411, USA).
Conflicts of Interest
The authors declare no conflict of interest.
References
Bintsis, T. Lactic acid bacteriaas starter cultures: An update in their metabolism and genetics. Aims Microbiol. 2018, 4, 665–684. [Google Scholar] [CrossRef] [PubMed]
Hati, S.; Mandal, S.; Prajapat, J.B. Novel Starters for Value Added Fermented Dairy Products. Curr. Res. Nutr. Food Sci. J. 2013, 1, 83–91. [Google Scholar] [CrossRef]
Perez, R.H.; Zendo, T.; Sonomoto, K. Novel bacteriocins from lactic acid bacteria (LAB), various structures and applications. Microb. Cell Factories 2014, 13 (Suppl. 1), S3. [Google Scholar] [CrossRef] [Green Version]