|
PMCID: PMC4629451 NIHMSID: NIHMS728236 PMID: 26174708
The publisher's version of this article is available at Nat Rev Neurosci
Abstract
The choroid plexus (ChP) is the principal source of cerebrospinal fluid (CSF), which has accepted roles as a fluid cushion and a sink for nervous system waste in vertebrates. Various animal models have provided insight into how the ChP–CSF system develops and matures. In addition, recent studies have uncovered new, active roles for this dynamic system in the regulation of neural stem cells, critical periods and the overall health of the nervous system. Together, these findings have brought about a paradigm shift in our understanding of brain development and health, and have stimulated new initiatives for the treatment of neurological disease.
초록
맥락막총(ChP)은
뇌척수액(CSF)의 주요 공급원이며,
뇌척수액(CSF)은 척추동물에서 신경계 노폐물을 흡수하는 역할을 합니다.
다양한 동물 모델은
ChP-CSF 시스템이 어떻게 발달하고 성숙하는지에 대한
통찰력을 제공했습니다.
또한 최근 연구에서는
신경 줄기세포, 결정적 시기, 신경계의 전반적인 건강을 조절하는
이 역동적인 시스템의 새로운 활성 역할을 밝혀냈습니다.
이러한 발견은 함께 뇌 발달과 건강에 대한
우리의 이해에 패러다임의 변화를 가져왔고,
신경계 질환의 치료를 위한 새로운 이니셔티브를 촉진했습니다.
The choroid plexus (ChP) is a secretory tissue responsible for producing cerebrospinal fluid (CSF) in the vertebrate brain. CSF flows from the lateral to the third ventricle via the interventricular foramina (also known as the foramen of Monro), and then through the cerebral aqueduct to the fourth ventricle (FIG. 1). Subsequently, the CSF flows down the central canal of the spinal cord or circulates in the subarachnoid space, where it is resorbed by arachnoid villi and granulations1, 2 either by classical lymphatics in sinonasal tissues that underlie the cribriform plate3–5, or by the recently described meningeal-dural sinus lymphatics6 back into the systemic circulation or regional and cervical lymph nodes.
뇌실막(choroid plexus, ChP)은
척추동물의 뇌에서 뇌척수액(cerebrospinal fluid, CSF)을
생성하는 분비 조직입니다.
뇌척수액은
뇌실간공(interventricular foramina, 일명 몬로공(foramen of Monro))을 통해 옆쪽에서
세 번째 뇌실로 흘러 들어간 다음,
대뇌 수로를 통해 네 번째 뇌실로 흘러 들어갑니다(그림 1).
그 후,
CSF는 척수의 중앙관 아래로 흘러내리거나 지주막하 공간에서 순환하며,
거기서 거미막 융모와 과립에 의해 재흡수됩니다1, 2.
이것은
두개골 기저의 뇌실판 아래에 있는 부비동 조직의 고전적인 림프관3-5에 의해,
또는 최근에 설명된 경막-경막동 림프관에 의해6
전신 순환계 또는 국소 및 경부 림프절로 다시 흡수됩니다.
meningeal-dural sinus lymphatics6 back into the systemic circulation or regional and cervical lymph nodes.
Figure 1. The choroid plexus–cerebrospinal fluid system.
The choroid plexus (ChP) consists of epithelial cells that surround a core of capillaries and connective tissue. The epithelial cells are joined by tight junctions, which form the blood–cerebrospinal fluid (CSF) barrier. The ChP is located in each ventricle in the brain, and is regarded as the principal source of CSF, secreting up to 500ml of CSF per day in the adult human brain. CSF flows from the lateral to the third ventricle through the interventricular foramina, and from the third to the fourth ventricle through the cerebral aqueduct. CSF can then enter the central canal of the spinal cord or the subarachnoid space, where microscopic arachnoid villi and macroscopic arachnoid granulations (granulations are present in humans and other large mammals), together with lymphatics present in the cribriform plate–olfactory region3–5 or lining the meninges-dural sinuses (6 - Louveau), resorb CSF into the systemic circulation or into regional and cervical lymph nodes. The ChP is organized into an outer layer of cuboidal epithelial cells surrounding a core of fenestrated capillaries and other stromal cell types. Functioning as the blood-CSF barrier, the ChP is also a gateway for immune cell entry into the central nervous system (BOX 1).
The ChP–CSF system is crucial for the development and maintenance of the CNS7–9. Despite the widely disparate complexity of the CNS across species, the ChP is an evolutionarily conserved structure that is present in lower vertebrates to humans10, 11. Indeed, the function of the ChP appears to be conserved across species, as the ChP has been documented to secrete analogous signals, including growth factors, in various systems12, 13.
Landmark studies have demonstrated that appropriate ChP function is imperative for the formation and integrity of the CNS: too little CSF severely impairs brain growth, as CSF pressure is necessary for normal brain development14, whereas excess CSF — owing to overproduction, obstructed flow or limited resorption of CSF — can lead to hydrocephalus1, 15. Excessive subarachnoid CSF may be an early marker of autism spectrum disorder16. However, despite the potential for the ChP–CSF system to regulate the CNS in a global manner, it remains one of the most understudied areas of neurobiology. Indeed, although the discovery that the ChP is responsible for CSF secretion was made over a century ago, the development and regulation of the ChP–CSF system are only beginning to be understood.
In this article, we first explore the early work elucidating the structure of the ChP and organization of its cell types. We next delve into the cell-intrinsic and -extrinsic molecular mechanisms that guide the specification of ChP cells and their proliferation into a highly structured organ. Last, we explore the impact of recent findings relating to the ChP, specifically its participation in regulating neural stem cells of the embryonic and adult brain. Note that we include a brief discussion of the potential for ChP-targeted therapies in rejuvenating and repairing the CNS, as recent findings highlight these emerging possibilities. However, we refer the reader to several recent reviews on the ChP in ageing, disease and injury, and transport mechanisms in CSF production1, 8, 9, 17–20. Together, this information should promote further investigation into the regulation of the ChP and its secreted factors, and the capacity to harness the potential of the ChP to repair the aged and diseased brain.
맥락막 신경총(ChP)은
모세혈관과 결합조직의 핵심을 둘러싸고 있는
상피세포로 구성되어 있습니다.
상피세포는
혈액-뇌척수액(CSF) 장벽을 형성하는
단단한 접합부에 의해 연결되어 있습니다.
ChP는 뇌의 각 심실에 위치하며,
성인의 뇌에서 하루에 최대 500ml의 CSF를 분비하는
주요 CSF 공급원으로 간주됩니다.
CSF는
심실간 포르미나를 통해 옆쪽 심실에서 세 번째 심실로,
그리고 대뇌 수로를 통해 세 번째 심실에서 네 번째 심실로 흐릅니다.
CSF flows from the lateral to the third ventricle through the interventricular foramina, and from the third to the fourth ventricle through the cerebral aqueduct.
CSF는
척수의 중앙관 또는 지주막하 공간으로 들어가
미세한 거미막 융모와 거미막 과립(인간과 다른 대형 포유류에 존재하는 과립)과 함께
수막-경막동(6 - 루보)을 감싸고 있는 림프관과 함께 전신 순환계 또는
국소 및 경부 림프절로 흡수됩니다.
중배엽은
구형 상피세포의 외층으로 구성되어 있으며,
그 중심에는 구멍이 뚫린 모세혈관과 다른 기질 세포 유형이 있습니다.
혈액-뇌척수액 장벽의 역할을 하는 중배엽은
면역 세포가 중추 신경계로 들어가는 관문이기도 합니다(상자 1).
ChP-CSF 시스템은
종에 따라 CNS의 복잡성이 매우 다르지만,
ChP는 하등 척추동물에서 인간에 이르기까지 진화적으로 보존된 구조입니다10, 11.
실제로, ChP는 다양한 시스템에서 성장 인자를 포함한 유사한 신호를 분비하는 것으로 기록되어 있기 때문에,
ChP의 기능은 종에 관계없이 보존되는 것으로 보입니다12, 13.
랜드마크 연구에 따르면 적절한 ChP 기능은 중추신경계의 형성과 완전성을 위해 필수적입니다. 너무 적은 CSF는 정상적인 뇌 발달에 CSF 압력이 필요하기 때문에 뇌 성장을 심각하게 손상시킬 수14 있으며, 반대로 과도한 CSF는 과잉 생산, 흐름 방해 또는 CSF의 제한된 재흡수로 인해 뇌수종1, 15으로 이어질 수 있습니다.
과도한 지주막하강내뇌척수액은
자폐 스펙트럼 장애의 초기 징후일 수 있습니다16.
그러나,
ChP-CSF 시스템이 전신적으로 중추신경계를 조절할 수 있는 잠재력에도 불구하고,
이 시스템은 신경생물학 분야에서 가장 많이 연구되지 않은 분야 중 하나입니다.
실제로, ChP가 CSF 분비를 담당한다는 사실은
100여 년 전에 밝혀졌지만,
ChP-CSF 시스템의 발달과 조절에 대해서는
이제 막 이해하기 시작했습니다.
이 글에서는 먼저 ChP의 구조와 세포 유형의 구성을 밝힌 초기 연구들을 살펴봅니다.
그 다음에는 ChP 세포의 특성과 고도로 구조화된 기관으로의 확산을 유도하는 세포 내외부 분자 메커니즘을 자세히 살펴봅니다.
마지막으로, 최근 ChP와 관련된 연구 결과, 특히 배아와 성인의 뇌에서 신경 줄기 세포를 조절하는 데 ChP가 관여하는 것과 관련된 최근 연구 결과의 영향을 살펴봅니다.
최근의 연구 결과에서 이러한 새로운 가능성이 강조되고 있으므로, ChP를 대상으로 한 치료법이 중추신경계를 젊어지게 하고 회복시키는 데 잠재적인 가능성을 가지고 있다는 간단한 논의가 포함되어 있다는 점에 유의하시기 바랍니다.
그러나 독자들은 노화, 질병 및 부상, 그리고 CSF 생산의 수송 메커니즘에 관한 ChP에 대한 최근의 여러 리뷰를 참조하시기 바랍니다1, 8, 9, 17-20. 이 정보는 함께, ChP와 그 분비 인자의 조절에 대한 추가적인 연구와 노화 및 질병으로 손상된 뇌를 회복시키는 ChP의 잠재력을 활용하는 능력을 촉진할 것입니다.
Location and structure
The ChP is a highly vascularized tissue that is located within each ventricle of the brain (FIG. 1). It develops from several locations along the dorsal axis of the neural tube. After neural tube closure, the hindbrain ChP of the fourth ventricle is the first to appear, followed by the synchronous development of the telencephalic ChP in each lateral ventricle and, finally, the diencephalic ChP of the third ventricle21–23. The diencephalic ChP is the last to appear, but histological analyses of human brain tissues suggest it completes differentiation earlier than the other ChPs11. Although the telencephalic ChP and diencephalic ChP initially emerge as distinct entities, the diencephalic tissue bifurcates during development, sending a branch through the intraventricular foramina and ultimately fusing into one continuous tissue with the telencephalic ChP11, 21–23. The ChP is found in chordates above amphioxus (lancelet), and the order of ChP development seems to be conserved across species, despite enormous differences in gestational length21. However, although the gross appearance of the hindbrain ChP is similar among species, the appearance of the telencephalic ChP and diencephalic ChP varies considerably11. Much progress in the field stems from experiments performed in species as diverse as the spiny dogfish shark, sheep and marsupials, the latter of which confer the experimental benefit of having mostly postnatal development of the brain and thus the ChP24. However, harnessing newer technologies, including mouse genetics and proteomics, has enabled tremendous progress in our understanding of the development and specification of the ChP. Therefore, most ages referred to in this Review relate to mouse development.
The structure of the ChP reflects its secretory role. It consists of a monolayer of cuboidal epithelial cells that surrounds a stromal core of capillaries and connective tissue. Adjacent ChP epithelial cells are joined together by tight junctions to form the blood–CSF barrier that prevents paracellular free passage of molecules from the systemic circulation into the CSF. Together with adherens junctions, the tight junctions also ensure the apico-basal polarity of membrane proteins (for example, transporters) that are critical for normal epithelial cell function1. The identification of junctional, enzymatic and transporter proteins in the embryonic ChP suggests that barrier functions are present in the developing brain25, 26. Experiments using injectable tracers suggest that these barrier functions are intact early in ChP development27–29. However, transcriptome studies have also revealed dynamic expression of transporters, indicating that the blood–CSF barrier changes during the course of development and provides differential neuroprotection or regulation of CSF production in the embryonic versus the mature brain26.
Depending on the location, the ChP receives its blood supply from either the anterior or posterior circulation. The anterior choroidal artery, which branches from the internal carotid or middle cerebral artery, supplies the telencephalic ChP. The posterior choroidal artery, which branches from the posterior cerebral artery, feeds the telencephalic as well as the diencephalic choroid plexi. Finally, the anterior and posterior inferior cerebellar arteries, which originate from the basilar and vertebral arteries, supply the hindbrain ChP1. Blood flow and CSF secretion are thought to be regulated in part by sympathetic and parasympathetic innervation1, 30–32. Unlike the endothelium in the brain’s parenchyma, capillaries of the ChP are fenestrated. These endothelial fenestrae are connected by thin membranous diaphragms that are permeable to small molecules and water, thus enabling the rapid delivery of water via the blood to epithelial cells for CSF production. Solutes may cross from the blood into the stromal space by diffusion across endothelial fenestrae or by vesicular transport33. As with capillaries in other tissues, pericytes are found in the ChP and wrap around the endothelial cells. Finally, the ChP harbours various immune cells (BOX 1) and is considered a gateway for immune cell entry into the CNS34.
위치와 구조
뇌피질은 뇌의 각 심실 안에 위치한 매우 혈관이 발달된 조직입니다(그림 1). 그것은 신경관의 등축을 따라 여러 위치에서 발달합니다. 신경관이 닫힌 후, 네 번째 뇌실의 후뇌 ChP가 가장 먼저 나타나고, 그 다음으로 각 옆뇌실에 있는 대뇌피질의 ChP가 동시에 발달하며, 마지막으로 세 번째 뇌실의 중뇌 ChP가21-23번에 나타납니다.
중뇌 ChP는 가장 늦게 나타나지만, 인간 뇌 조직의 조직학적 분석에 따르면 다른 ChP보다 더 일찍 분화가 완료된다고 합니다11. 뇌의 중뇌엽과 소뇌엽은 처음에는 별개의 개체로 나타나지만, 발달 과정에서 소뇌 조직이 갈라져서 뇌실 내 포르미나를 통해 가지가 보내지고, 결국에는 뇌의 중뇌엽과11, 21-23과 하나의 연속적인 조직으로 융합됩니다. ChP는 양서류(란셀레트) 위의 척삭동물에서 발견되며, 임신 기간21의 엄청난 차이에도 불구하고 ChP 발달 순서는 종에 관계없이 보존되는 것으로 보입니다. 그러나, 종에 따라 뒷뇌 ChP의 전체적인 외형은 비슷하지만, 대뇌 ChP와 뇌간 ChP의 외형은 상당히 다릅니다11. 이 분야의 많은 발전은 가시상어, 양, 유대류 등 다양한 종에서 수행된 실험에서 비롯되었습니다. 유대류의 경우, 뇌가 대부분 출생 후 발달하므로 ChP24의 실험적 이점을 제공합니다. 그러나 마우스 유전학과 단백질체학을 포함한 새로운 기술을 활용함으로써 ChP의 발달과 특성에 대한 이해가 크게 향상되었습니다. 따라서 이 리뷰에서 언급된 대부분의 연령은 마우스 발달과 관련이 있습니다.
ChP의 구조는 분비 역할을 반영합니다. ChP는 모세혈관과 결합조직의 기질핵을 둘러싸고 있는 입방체 상피세포의 단층으로 구성되어 있습니다. 인접한 ChP 상피세포는 단단한 접합부에 의해 서로 연결되어 혈액-뇌척수액 장벽을 형성하여 분자가 전신 순환계에서 뇌척수액으로 자유롭게 통과하는 것을 방지합니다. 접합부(adherens junction)와 함께, 꽉 조이는 접합부(tight junction)는 정상적인 상피 세포 기능에 중요한 막 단백질(예를 들어, 수송체)의 정단-기저 극성을 보장합니다1. 배아 ChP에서 접합부, 효소, 수송체 단백질의 확인은 발달 중인 뇌에 장벽 기능이 존재한다는 것을 시사합니다25, 26. 주사 가능한 추적자를 이용한 실험에 따르면, 이러한 장벽 기능은 ChP 발달 초기에 그대로 유지된다고 합니다27–29. 그러나 전사체 연구에서도 수송체의 동적 발현이 밝혀졌는데, 이는 혈액-뇌척수액 장벽이 발달 과정에서 변화하고, 배아와 성숙한 뇌에서 뇌척수액 생성을 다르게 조절하거나 신경 보호 작용을 한다는 것을 의미합니다26.
위치에 따라, ChP는 전방 순환계나 후방 순환계에서 혈액 공급을 받습니다. 내경동맥 또는 중대뇌동맥에서 갈라져 나오는 전방 맥락막동맥은 뇌의 후뇌에 있는 ChP에 혈액을 공급합니다. 후대뇌동맥에서 갈라져 나오는 후방 맥락막동맥은 뇌의 후뇌와 뇌간 맥락막총에 혈액을 공급합니다. 마지막으로, 기저동맥과 척추동맥에서 갈라져 나오는 전방 및 후방 소뇌동맥은 뇌의 후뇌에 있는 ChP1에 혈액을 공급합니다. 혈류와 뇌척수액 분비는 부분적으로 교감신경과 부교감신경의 신경 분포에 의해 조절되는 것으로 여겨집니다1, 30-32. 뇌 실질의 내피와 달리, ChP의 모세혈관은 창모양으로 되어 있습니다. 이러한 내피 창모양은 작은 분자와 물에 투과성이 있는 얇은 막질 격막으로 연결되어 있어, 혈액을 통해 물이 상피 세포로 빠르게 전달되어 뇌척수액이 생성될 수 있도록 합니다. 용해물은 내피 세포의 투과성 창을 통해 확산되거나 소포 운반을 통해 혈액에서 간질 공간으로 이동할 수 있습니다33. 다른 조직의 모세혈관과 마찬가지로, 페리사이토는 ChP에서 발견되며 내피 세포를 감싸고 있습니다. 마지막으로, ChP는 다양한 면역 세포(박스 1)를 보유하고 있으며, 면역 세포가 중추신경계로 들어가는 관문으로 간주됩니다34.
Box 1. Immune cells in the choroid plexus.
The choroid plexus (ChP) is home to a variety of immune cells, including ChP macrophages, dendritic cells and Kolmer’s epiplexus cells, and also provides a port of entry for immune cells into the CNS. Macrophages and dendritic cells are located primarily in the ChP stroma, whereas Kolmer’s epiplexus cells reside along the apical, ventricular side of the ChP epithelium, where they probably function as local antigen-presenting cells to lymphocytes34. ChP macrophages are thought to derive from the haematopoietic stem cell-derived myeloid cells that are produced at mouse embryonic day 10.5 (E10.5) in the aorta-gonad-mesonephros region or by E12.5 in the fetal liver141. Although immune cell function in the developing ChP has not been extensively investigated to date, the ChP may serve as a port for microglia to enter first the cerebrospinal fluid (CSF) and then the brain at the ventricular surface. In human fetal brain, ionized calcium binding adaptor molecule 1 (IBA1)-expressing microglia are found in close proximity to the developing ChP as early as 5.5 gestational weeks142. Once in the developing brain, microglia regulate several important processes including cortical progenitor cell numbers, neuronal plasticity and circuit function143–145.
Although the mechanisms regulating immune cell passage across the developing ChP are not well understood, it is a task that probably involves the tight regulation of numerous intercellular signalling events, as has been shown for adult tissues. For example, in the adult ChP, infiltrating immune cells first migrate from the blood across the fenestrated endothelium into the stromal space. They then move along the basolateral surface of the ChP epithelium, from where they gain passage across the epithelium into the CSF-filled ventricles34. Indeed, recent studies show that the ChP expresses adhesion molecules and chemokines including intercellular adhesion molecule 1 and interferons, which facilitate the transepithelial passage of leukocytes into the CSF146–150. Secreted signals distributed in the CSF (for example. interleukin-13, interleukin-10 and transofmring growth factor-β) then serve as instructive cues to attract macrophages to sites of injury such as the spinal cord149. In the developing brain, the sources and signals that instruct immune cells to cross the ChP and enable them to identify target sites of action remain to be elucidated.
Historically, the CNS has been considered immune privileged. The immune cell content of healthy CSF is estimated to consist of approximately 90% T cells, 5% B cells, 5% monocytes, and <1% dendritic cells34. We now know that immune cells in the CSF patrol the CNS, antigens in the CNS can trigger adaptive immune responses, and unbridled immune responses in the CNS can develop into chronic immunopathological conditions such as multiple sclerosis. An improved understanding of the mechanisms underlying immune–ChP interactions in the developing and mature brain should enable the development of new therapies for a wide range of nervous system disorders.
박스 1. 맥락막 신경총의 면역 세포.
맥락막 신경총(ChP)은 맥락막 대식세포, 수지상 세포, 콜머의 맥락막 신경총 세포를 포함한 다양한 면역 세포의 서식지이며, 또한 면역 세포가 중추신경계로 들어가는 입구 역할을 합니다. 대식세포와 수지상 세포는 주로 ChP 기질에 위치하는 반면, 콜머의 상피돌기 세포는 ChP 상피의 심실 쪽 정점 부위에 위치하며, 이 부위에서 림프구에 국소 항원 제시 세포로 작용할 가능성이 있습니다34. ChP 대식세포는 생쥐 배아 10.5일(E10.5)에 대동맥-생식선-중뇌부위 또는 태아 간에서 E12.5에 생성되는 조혈모세포 유래 골수성 세포에서 유래한다고 여겨집니다141. 발달 중인 ChP의 면역세포 기능에 대한 연구는 아직까지 충분히 이루어지지 않았지만, ChP는 미세아교세포가 뇌척수액(CSF)에 먼저 들어간 다음 심실 표면의 뇌에 들어가는 통로 역할을 할 수 있습니다. 인간 태아의 뇌에서, 이온화된 칼슘 결합 어댑터 분자 1(IBA1)을 발현하는 미세아교세포는 임신 5.5주 142에 발달 중인 ChP 근처에서 발견됩니다. 발달 중인 뇌에 들어가면 미세아교세포는 대뇌 피질의 전구세포 수, 신경 가소성, 회로 기능 등 여러 가지 중요한 과정을 조절합니다143-145.
발달 중인 ChP를 가로지르는 면역세포의 통과를 조절하는 메커니즘은 잘 알려져 있지 않지만, 성체 조직에서와 마찬가지로 수많은 세포 간 신호 전달 과정의 엄격한 조절이 관여하는 작업일 가능성이 큽니다. 예를 들어, 성체 ChP에서 침투하는 면역세포는 먼저 혈액에서 투과성 내피를 가로질러 기질 공간으로 이동합니다. 그런 다음, 그들은 ChP 상피의 기저 표면을 따라 이동하여, 상피를 통과하여 CSF가 채워진 뇌실로 들어갑니다34. 실제로, 최근 연구에 따르면, ChP는 세포간 부착 분자 1과 인터페론을 포함한 부착 분자와 케모카인을 발현하여, 백혈구가 상피를 통과하여 CSF로 들어가는 것을 촉진합니다146-150. CSF에 분포되어 있는 분비 신호(예를 들어, 인터루킨-13, 인터루킨-10, 트랜스포밍 성장 인자-β)는 척수 등 손상 부위에 대식세포를 유인하는 유익한 신호로 작용합니다149. 발달 중인 뇌에서, 면역세포가 ChP를 통과하도록 지시하고, 그들이 작용의 대상 부위를 식별할 수 있도록 하는 원인과 신호는 아직 밝혀지지 않았습니다.
역사적으로,
중추신경계는 면역 특권을 가진 것으로 간주되어 왔습니다.
건강한 뇌척수액의 면역 세포 함량은
대략 90%의 T세포,
5%의 B세포,
5%의 단핵구,
그리고 1% 미만의 수지상 세포로 구성되어 있는 것으로 추정됩니다34.
우리는
이제 뇌척수액의 면역 세포가 중추신경계를 순찰하고,
중추신경계의 항원이 적응성 면역 반응을 유발할 수 있으며,
중추신경계의 무제한 면역 반응이 다발성 경화증과 같은
만성 면역 병리학적 상태로 발전할 수 있다는 것을 알고 있습니다.
발달 및 성숙 단계의 뇌에서
면역-ChP 상호작용의 기전에 대한 이해가 향상되면
광범위한 신경계 장애에 대한 새로운 치료법 개발이 가능해질 것입니다.
Lineage specification and progenitors
Studies of the molecular mechanisms that guide ChP development have typically focused on either the hindbrain or the telencephalic region. The diencephalic ChP has frequently been omitted, perhaps due to its relatively smaller size and/or more challenging dissection. It consists of three parts, and historically, the nomenclature for these parts has varied considerably. We refer to the work of Netsky and Shuangshoti11 in calling these three parts as the velum transversum (the anterior portion of the third ventricle), and the dorsal and ventral diencephalic plexus. Recent gene expression studies in rodent and primate tissues show that the hindbrain ChP and telencephalic ChP are spatially heterogeneous, and that their positional identities reflect their developmental origins along the rostral-caudal axis of the developing nervous system35. Nevertheless, the limited number of ultrastructural studies that have been performed on the ChPs from all four ventricles suggest that they all undergo identical developmental stages and the mature ChP epithelia are morphologically indistinguishable27, 36, 37.
Evidence from murine and avian systems indicate that ChP cell fate decisions are made early in development. In the murine brain, ChP specification occurs between embryonic day 8.5 (E8.5) and E9.538, 2–3 days before overt differentiation is evident. Indeed, engraftment studies between chicken and quail show that ChP fate is determined up to 3 days before the anatomical appearance of the ChP39. Developmentally regulated proliferation in the hindbrain ChP is thought to be complete by the end of embryonic development40, 41; however, it is not known whether proliferation in the telencephalic ChP and diencephalic ChP follows a similar developmental time course. As mature ChP epithelial cells are post-mitotic, the rate of ongoing proliferation in the ChP diminishes dramatically in the adult brain24. Nevertheless, there is evidence for proliferative cells in the adult ChP in rodents and in human patients following acute injury42, 43 and in cancer44 (BOX 2).
계보 사양과 조상
ChP 발달을 유도하는 분자 메커니즘에 대한 연구는 일반적으로 후뇌 또는 중뇌 영역에 초점을 맞추고 있습니다. 이중뇌교는 상대적으로 크기가 작거나 해부하기가 까다롭기 때문에 자주 생략되었습니다. 이중뇌교는 세 부분으로 구성되어 있으며, 역사적으로 이 부분의 명칭은 상당히 다양했습니다. 우리는 넷스키와 슈앙쇼티의 연구에서 이 세 부분을 횡격막(제3뇌실의 앞부분)과 등쪽 및 배쪽 이중뇌교로 지칭한 것을 참고하여 이 세 부분을 횡격막(제3뇌실의 앞부분), 등쪽 및 배쪽 이중뇌교라고 부릅니다. 설치류와 영장류 조직의 최근 유전자 발현 연구에 따르면, 후뇌 ChP와 전뇌 ChP는 공간적으로 이질적이며, 그 위치적 정체성은 발달 중인 신경계의 전두엽-꼬리축을 따라 발달 기원을 반영합니다35. 그럼에도 불구하고, 네 개의 심실에서 발생하는 ChP에 대한 제한된 수의 초구조적 연구에 따르면, 그것들은 모두 동일한 발달 단계를 거치고 성숙한 ChP 상피는 형태학적으로 구별할 수 없다고 합니다27, 36, 37.
쥐와 새의 시스템에서 얻은 증거는 ChP 세포의 운명이 발달 초기에 결정된다는 것을 보여줍니다. 쥐의 뇌에서 ChP 특성은 명백한 분화가 나타나기 2-3일 전인 배아 8.5일(E8.5)과 9.5일38일 사이에 발생합니다. 실제로, 닭과 메추라기 사이의 생착 연구에 따르면 ChP의 운명은 ChP가 해부학적으로 나타나는 3일 전까지 결정됩니다39. 발달적으로 조절되는 배후뇌 ChP의 증식은 배아 발달 말기40, 41에 완료되는 것으로 여겨지지만, 전뇌 ChP와 뇌간 ChP의 증식이 유사한 발달 시간 과정을 따르는지는 알려지지 않았습니다. 성숙한 ChP 상피 세포는 유사분열 후이기 때문에, 성인의 뇌에서 ChP의 지속적인 증식 속도는 극적으로 감소합니다24. 그럼에도 불구하고, 설치류와 인간 환자에서 급성 손상42, 43, 암44에 따른 성인 ChP의 증식 세포에 대한 증거가 있습니다(박스 2).
Box 2. Pathologies of the human choroid plexus.
Although not particularly well studied, human choroid plexus (ChP) pathologies are not uncommon. During development, ChP pathologies include cysts (see the figure), haemorrhages, diffuse villous hyperplasia and tumours. ChP cysts are common in the developing fetus (estimated 1–2% incidence) but generally resolve on their own. These cysts occur with increased frequency in trisomies, particularly trisomy 18 (33–50% incidence), and in certain syndromes, such as Aicardi syndrome (see the figure). When a ChP cyst is seen in the absence of other trisomy-associated stigmata, the risk of trisomy for pregnant women under 35 is extremely low151. ChP haemorrhages (see the figure) tend to occur in term rather than premature infants (>35 weeks gestation)152. Although these can be seen in otherwise uncomplicated term deliveries153, ChP haemorrhages are often associated with perinatal stress or hypoxia-ischaemia, in addition to factors such as trauma and anticoagulation therapy. Vascular malformations can also cause ChP haemorrhage154. In infants and children, microorganisms (for example, bacteria in neonatal meningitis) can use the ChP for primary colonization and CNS entry via the cerebrospinal fluid (CSF) and ventricular system152.
Abnormal ChP proliferative lesions take the form of diffuse villous hyperplasia, benign papillomas and malignant carcinomas. Although ChP tumours represent less than 1% of brain tumours overall, they represent 2–4% of brain tumours in children and 10–20% of tumors in the first year of life. ChP carcinomas (see the figure) are seen mainly in the lateral ventricles of children (mostly between 2–4 years of age)155, whereas adult ChP tumours are most often papillomas of fourth ventricle. ChP papillomas and carcinomas156 have relatively complex cytogenetic abnormalities (multiple chromosome gains and losses) but display different cytogenetic patterns, suggesting distinct pathways in the pathogenesis of papillomas versus carcinomas. Diffuse villous hyperplasia and ChP tumours can lead to hydrocephalus because of CSF overproduction, which can be treated by cauterization or resection157–159. Other tumours seen in the ChP include meningiomas, lipomas, xanthogranulomas and rare metastases. Although meningiomas (which arise from meningeal arachnoidal cells) occur commonly on the surface of the brain, meningiomas can also occur in the ChP, presumably arising from tela choroidea where meningeal cells abut the ventricular lining.
박스 2. 인간 맥락막 신경총의 병리.
특별히 잘 연구된 것은 아니지만, 인간 맥락막 신경총(ChP)의 병리는 드물지 않습니다. 발달 과정에서 ChP의 병리에는 낭종(그림 참조), 출혈, 확산성 융모 과형성 및 종양이 포함됩니다. ChP 낭종은 발달 중인 태아에게 흔히 발생하지만(발생률 1-2% 추정), 일반적으로 저절로 해결됩니다. 이러한 낭종은 삼염색체증, 특히 삼염색체 18번(33-50% 발생률)과 아이카르디 증후군(그림 참조)과 같은 특정 증후군에서 더 자주 발생합니다. 다른 삼염색체증과 관련된 징후가 없는 상태에서 ChP 낭종이 발견되는 경우, 35세 미만의 임산부의 삼염색체증 위험은 매우 낮습니다151. 제대혈 출혈(그림 참조)은 조산아보다는 만삭아에서 더 자주 발생합니다(임신 35주 이상)152. 이러한 출혈은 다른 조건이 복잡하지 않은 만삭 출산에서도 볼 수 있지만153, 제대혈 출혈은 외상이나 항응고제 치료와 같은 요인 외에도 주산기 스트레스나 저산소증-허혈과 관련이 있는 경우가 많습니다. 혈관 기형은 또한 ChP 출혈을 유발할 수 있습니다154. 영아와 어린이의 경우, 미생물(예를 들어, 신생아 수막염의 박테리아)이 ChP를 통해 뇌척수액(CSF)과 심실 시스템을 통해 1차적으로 집락화하고 중추신경계(CNS)에 침입할 수 있습니다152.
비정상적인 ChP 증식성 병변은 확산성 융모 과형성, 양성 유두종, 악성 암종 등의 형태로 나타납니다. 비록 ChP 종양은 전체 뇌종양의 1% 미만을 차지하지만, 소아 뇌종양의 2-4%, 생후 첫해 종양의 10-20%를 차지합니다. ChP 암종(그림 참조)은 주로 소아(주로 2-4세)의 측두엽에서 발견되며155, 성인 ChP 종양은 대부분 제4뇌실의 유두종입니다. 유두종과 암종156은 상대적으로 복잡한 세포유전학적 이상(여러 염색체의 증가와 감소)을 보이지만, 다른 세포유전학적 패턴을 보여 유두종과 암종의 병인에 뚜렷한 경로를 제시합니다. 확산성 융모 과형성과 유두종 종양은 뇌척수액의 과잉 생산으로 인한 뇌수종으로 이어질 수 있으며, 이는 소작이나 절제술로 치료할 수 있습니다157-159. ChP에서 발견되는 다른 종양으로는 수막종, 지방종, 황색 육아종, 희귀한 전이 등이 있습니다. 수막종(수막의 거미류 세포에서 발생)은 뇌 표면에서 흔히 발생하지만, ChP에서도 발생할 수 있습니다. 아마도 수막 세포가 심실 내벽에 인접한 망막에서 발생하기 때문일 것입니다.
ChP pathology is increasingly implicated in cognitive and neurodegenerative disorders as well. Unlike blood, which has three major carrier–distributor proteins for thyroid hormone, the CNS has only one major thyroid hormone carrier–distributor, namely ChP-derived transthyretin. Accordingly, CNS deficiencies in thyroid hormone — which are linked to abnormal brain development, adult dementia, depression and other cognitive problems160,161 — can be due to systemic hypothyroidism or ChP transthyretin defects. The ChP is also central to at least three different mechanisms for clearing amyloid-β (Aβ) peptides, which are implicated in the pathophysiology of Alzheimer disease (AD): CSF-mediated Aβ clearance, direct Aβ absorption, and Aβ chaperone and protease production. AD is associated with accelerated atrophy of the ChP19,162,163, which plausibly leads to decreased Aβ clearance via these three mechanisms. This possibility has led multiple groups to suggest a causal role for ChP atrophy in AD.
ChP 병리학은
인지 및 신경 퇴행성 장애와도 점점 더 관련이 있습니다.
갑상선 호르몬을 운반하는 세 가지 주요 단백질이 있는 혈액과 달리,
중추신경계에는 ChP에서 유래된 트랜스티레틴이라는
하나의 주요 갑상선 호르몬 운반체가 있습니다.
따라서,
갑상선 호르몬의 CNS 결핍은
비정상적인 뇌 발달, 성인 치매, 우울증 및 기타 인지 문제와 관련이 있으며160,161,
전신성 갑상선 기능 저하증 또는
ChP 트랜스티레틴 결함으로 인해 발생할 수 있습니다.
ChP는
또한 알츠하이머병(AD)의 병태 생리학에 관여하는
아밀로이드-β(Aβ) 펩티드를 제거하는 최소 세 가지 다른 메커니즘의 중심입니다.
Notably, accelerated ChP atrophy has also been described in stroke, multiple sclerosis, schizophrenia and other CNS diseases, raising the possibility that accelerated ChP atrophy exacerbates multiple CNS diseases. Viral-mediated gene delivery to the ChP and ChP epithelial cell generation from human embryonic stem cells68 provides hope for ChP-targeted therapies and drug screens to combat ChP pathologies and to enable ChP–CSF-based delivery of therapeutic compounds throughout the CNS.
ChP epithelium is derived from neuroepithelial cells, which are the multipotent stem cells of the nervous system, whereas the stromal component of the ChP is thought to be derived from head mesenchymal cells39. Specification of ChP epithelium from neuroepithelial cells seems to require the repression of neural cell fate. The antagonistic expression of Hes1, Hes3 and Hes5, which encode basic helix–loop–helix (bHLH) transcription factors, versus neurogenin-2 (Ngn2; also known as Neurog2), leads to the specification of ChP epithelium versus Cajal-Retzius cells, respectively45. The inactivation of Hes1, Hes3 and Hes5 leads to a failure in the development of telencephalic ChP and hindbrain ChP, potentially through abrogation of bone morphogenetic protein (BMP) signalling45, 46. In the absence of Hes expression, upregulation of the proneural Ngn2 inhibits ChP specification, instead increasing the production of Cajal-Retzius cells from the dorsal midline of the telencephalon45.
Similar observations have been made for other transcription factors that function to maintain ChP epithelial cell fate. LIM-homeobox protein LMX1A is expressed in the hindbrain rhombic lip and telencephalic cortical hem and functions in the normal specification of the roof plate47. In Lmx1a−/− Dreher mice, the hindbrain roof plate does not form, leading to a failure of hindbrain ChP development48. In addition, LMX1A can also regulate later cell-fate decisions, preventing ChP-specified cells from acquiring the fates of neighbouring cells47. LMX1A, in conjunction with BMP signalling, may repress LIM-homeodomain transcription factor 2 (Lhx2) expression in the dorsal midline, thus excluding Lhx2 from the cortical hem and telencephalic ChP. By contrast, LHX2 is expressed in the cerebral cortex in a graded manner, and loss of Lhx2 expression in this region converts the cortex into expanded cortical hem and ChP49.
Other transcription factors have been implicated in the repression of ChP cell fate and regulation of ChP maintenance and survival. For example, overexpression of EMX2 in chicks suppresses telencephalic ChP development, which is consistent with the normal absence of EMX2 from ChP progenitors50. However, deletion of Otx2 at E9 in mice leads to failure of the development of all ChPs, but its deletion at E15 affects only development of the hindbrain ChP, suggesting that OTX2 has multiple, temporally regulated functions in the ChP51.
Additional markers of the presumptive ChP region include tropomyosins, which are actin regulatory proteins that demarcate the sites of ChP formation at least 2 days before its appearance52. Tropomyosin-expressing neuroepithelial cells and microtubule-associated protein 2-expressing neuroepithelial cells, which are destined to become neurons, are mutually exclusive, suggesting that neuroepithelial cells with ChP cell fate are segregated by E15 in rats. Tropomyosin expression is concentrated in cells forming the segmental boundaries between prosomeres, rhombomeres and other neuroepithelial regions undergoing evagination, suggesting that tropomyosins may function to modulate cell shape and motility52.
CSF 매개 Aβ 제거, 직접적인 Aβ 흡수, Aβ 샤페론과 프로테아제 생산.
알츠하이머병은 ChP19,162,163의 위축을 가속화시키는 것과 관련이 있으며, 이 세 가지 메커니즘을 통해 Aβ 제거가 감소하는 것으로 추측할 수 있습니다. 이러한 가능성 때문에 여러 연구 그룹이 알츠하이머병에서 ChP 위축의 인과적 역할을 제안했습니다. 특히, 뇌졸중, 다발성 경화증, 정신분열증 및 기타 중추신경계 질환에서 ChP 위축이 가속화된다는 사실이 밝혀졌으며, 이로 인해 ChP 위축이 가속화되면 여러 중추신경계 질환이 악화될 가능성이 높아졌습니다. 인간 배아 줄기세포에서 ChP로 바이러스 매개 유전자 전달 및 ChP 상피세포 생성68은 ChP 병리를 퇴치하고 중추신경계 전체에 ChP-CSF 기반 치료 화합물을 전달할 수 있는 ChP 표적 치료 및 약물 스크리닝에 대한 희망을 제공합니다.
중배엽 상피는 신경계의 다능성 줄기세포인 신경상피세포에서 유래하는 반면, 중배엽의 기질 구성 요소는 두개골 중간엽세포에서 유래하는 것으로 여겨집니다39. 신경상피세포로부터의 ChP 상피의 특성은 신경세포의 운명을 억제하는 것으로 보인다. 기본 나선-고리-나선(bHLH) 전사 인자를 암호화하는 Hes1, Hes3, Hes5의 길항적 발현과 신경원-2(Ngn2; Neurog2라고도 함)의 길항적 발현은 각각 ChP 상피와 Cajal-Retzius 세포의 특성에 영향을 미친다45. Hes1, Hes3, Hes5의 비활성화는 잠재적으로 BMP(bone morphogenetic protein) 신호 전달의 폐지를 통해 중뇌 ChP와 후뇌 ChP의 발달에 실패를 초래합니다45, 46. Hes 발현이 없는 경우, proneural Ngn2의 상향 조절은 ChP 특이성을 억제하는 대신 중뇌의 등쪽 중앙선에서 Cajal-Retzius 세포의 생성을 증가시킵니다45.
ChP 상피세포의 운명을 유지하는 다른 전사 인자들에 대해서도 유사한 관찰이 이루어졌습니다. LIM-homeobox 단백질 LMX1A는 후뇌 마름모꼴 입술과 뇌피질 반구에서 발현되며, 정상적인 지붕판의 규격에 작용합니다47. Lmx1a−/− Dreher 마우스에서는 후뇌 지붕판이 형성되지 않아, 후뇌 ChP 발달에 실패하게 됩니다48. 또한, LMX1A는 이후의 세포 운명 결정도 조절할 수 있어, ChP가 지정한 세포가 이웃한 세포의 운명을 획득하는 것을 방지할 수 있습니다47. LMX1A는 BMP 신호 전달과 함께 등쪽 중앙선에서 LIM-homeodomain 전사 인자 2(Lhx2)의 발현을 억제할 수 있어, Lhx2가 대뇌 피질과 대뇌 ChP에서 제외됩니다. 반면, LHX2는 대뇌 피질에서 단계적으로 발현되며, 이 영역에서 LHX2 발현이 사라지면 피질이 확장된 피질 반과 ChP49로 변합니다.
다른 전사 인자는 ChP 세포의 운명 억제와 ChP 유지 및 생존의 조절에 관여합니다. 예를 들어, 병아리에서 EMX2의 과발현은 전뇌 ChP의 발달을 억제하는데, 이는 ChP 전구세포에서 EMX2가 정상적으로 결여되어 있다는 사실과 일치합니다50. 그러나 생쥐의 E9에 Otx2를 결손시키면 모든 ChP의 발달이 실패하게 되지만, E15에 결손시키면 후뇌 ChP의 발달에만 영향을 미칩니다. 이는 OTX2가 ChP에서 시간적으로 조절되는 여러 기능을 가지고 있음을 시사합니다51.
추정 ChP 영역의 추가 표지에는 트로포미오신(tropomyosin)이 포함되는데, 트로포미오신은 ChP가 출현하기 최소 2일 전에 ChP 형성 부위를 구분하는 액틴 조절 단백질입니다52. 트로포미오신을 발현하는 신경상피세포와 미세소관 관련 단백질 2를 발현하는 신경상피세포는 상호 배타적이며, 이는 ChP 세포 운명을 가진 신경상피세포가 쥐의 E15에 분리됨을 시사합니다. 트로포미오신의 발현은 프로소메레, 마름모꼴 소체, 그리고 배설을 겪는 다른 신경상피 영역 사이의 분절 경계를 형성하는 세포에 집중되어 있으며, 이는 트로포미오신이 세포의 형태와 운동성을 조절하는 기능을 할 수 있음을 시사합니다52.
Hindbrain choroid plexus progenitors
The hindbrain ChP is the first to develop: it emerges as bilateral crests from the roof of the hindbrain that connect at the midline by E14.5 in mice41. The primary progenitor domain for the hindbrain ChP is the rhombic lip, which is a germinal matrix that initially appears as a thin strip of cells along the dorsal midline of the neural tube following neural tube closure and that flares out and expands as the neural tube bends.
The rhombic lip can be subdivided into upper and lower structures40, 53, 54 (FIG. 2). The upper rhombic lip contributes largely to cerebellar development, but the lower rhombic lip, which is located between the medulla and the developing ChP, generates a diverse set of cell types, including the epithelial cells of the hindbrain ChP. Rhombic lip progenitor cells display graded Wnt1 expression, and it is the cells expressing high levels of Wnt1 that give rise to the hindbrain roof plate epithelium (hRPe), a transient pseudostratified epithelium that covers the roof of the fourth ventricle40, 53. Early studies suggested a model in which ChP development followed a linear progression of differentiation. Rhombic lip progenitors were thought to produce a non-mitotic population of hRPe cells, which then underwent a series of stereotyped morphological changes (stages I–IV; see below and FIG. 3), without the addition of more cells, to ultimately transform into the mature hindbrain ChP epithelium21, 22, 38, 39, 55. Although epithelial transformation is an important aspect of ChP development, recent studies have elucidated molecularly and temporally distinct fields of cells in the lower rhombic lip and hRPe that contribute to hindbrain ChP development40, 53.
뇌 뒤쪽의 뇌실막 신경세포
뒷뇌 ChP는 가장 먼저 발달합니다: 뒷뇌의 지붕에서 E14.5에 양측의 융기 부분으로 나타나 중앙선에서 연결됩니다41. 뒷뇌 ChP의 주요 전구 영역은 마름모꼴 입술로, 신경관 폐쇄 후 신경관의 중앙선을 따라 얇은 세포 띠로 처음 나타나는 배아 기질이며, 신경관이 구부러지면서 팽창합니다.
마름모꼴 입술은 상부 구조와 하부 구조로 나눌 수 있습니다40, 53, 54 (그림 2). 상부 마름모꼴 입술은 소뇌 발달에 크게 기여하지만, 수질과 발달 중인 ChP 사이에 위치한 하부 마름모꼴 입술은 후뇌 ChP의 상피 세포를 포함한 다양한 세포 유형을 생성합니다. 마름모꼴 입술의 전구 세포는 등급에 따라 Wnt1 발현이 나타나며, 높은 수준의 Wnt1을 발현하는 세포가 4번째 뇌실의 지붕을 덮고 있는 일시적인 유사층상 상피인 후뇌 지붕판 상피(hRPe)를 생성합니다40, 53. 초기 연구에서는 ChP 발달이 분화의 선형적 진행을 따른다는 모델을 제시했습니다. 사각 입술 전구세포는 hRPe 세포의 비분열 집단을 생성하는 것으로 여겨졌으며, 이후 추가적인 세포의 추가 없이 일련의 고정된 형태학적 변화(단계 I-IV; 아래와 그림 3 참조)를 거쳐 궁극적으로 성숙한 후뇌 ChP 상피21, 22, 38, 39, 55로 변형됩니다. 상피 변형은 ChP 발달의 중요한 측면이지만, 최근 연구에 따르면 하측 사다리꼴 입술과 hRPe의 분자적, 시간적으로 뚜렷한 세포 영역이 후뇌 ChP 발달에 기여하는 것으로 밝혀졌습니다40, 53.
Figure 2. Progenitor domains of the hindbrain and telencephalic choroid plexi.
a | Hindbrain choroid plexus (ChP) development begins at about embryonic day 9.5 (E9.5) and peaks between ∼E11 and E12. The left panel shows a sagittal view of mouse embryo at E11.5; the dashed line represents idealized field of view for the middle panel, which shows a dorsal view of the neural tube. The rhombic lip neuroepithelium (gray) surrounds three fields of hindbrain roofplate epithelium. Field 1 (yellow) contains cells that do not express transthyretin (Ttr) or potassium voltage-gated channel subfamily E member 2 (Kcne2), whereas field 2 (blue) contains caudally derived (from rhombomeres 2–8) Ttr- and Kcne2-positive cells and field 3 (green) contains rostrally derived (from rhombomere 1) Ttr- and Kcne2-positive cells40. The right panel depicts the dorsal view of a proliferating ChP, as it emerges from the lateral edges of the fourth ventricle and grows medially to complete its development by E14. Sonic hedgehog (SHH) that is secreted by hindbrain ChP epithelial cells (black) signals to underlying pericytes91 (green) to regulate vascular outgrowth (red) while also signalling to hindbrain ChP progenitors adjacent to the lower rhombic lip to induce further progenitor proliferation41 (inset).
b | Development of telencephalic ChP follows that of the hindbrain ChP. The left panel shows a sagittal view of a mouse embryo at E12.5, in which the dashed line represents the idealized coronal section that is shown in the right panel. The right panel depicts a telencephalic ChP developing bilaterally at the invaginated dorsal midline of the neural tube. Telencephalic ChP formation requires signals from the dorsal midline, including bone morphogenetic proteins and WNTs originating from the cortical hem. Disruption of the dorsal midline is frequently associated with either ChP over proliferation or failure of the ChP to form.
a | 뇌의 후뇌교조(choroid plexus)의 발달은 배아 9.5일(E9.5)경에 시작되어 E11과 E12 사이에 최고조에 달합니다. 왼쪽 그림은 E11.5에 있는 생쥐 배아의 시상면도이고, 점선은 중간의 그림에서 신경관의 배면도를 보여 주는 이상적인 시야를 나타냅니다. 마름모꼴 입술 신경상피(회색)는 후뇌 지붕판 상피의 세 영역을 둘러싸고 있습니다. 영역 1(노란색)에는 트랜스티레틴(TTR) 또는 칼륨 전압-게이트 채널 서브패밀리 E 멤버 2(KCNE2)를 발현하지 않는 세포가 포함되어 있습니다. 반면, 2번 필드(파란색)에는 꼬리쪽에서 유래된(2-8번 마름모꼴에서 유래된) Ttr- 및 Kcne2-양성 세포가 포함되어 있고, 3번 필드(녹색)에는 앞쪽에서 유래된(1번 마름모꼴에서 유래된) Ttr- 및 Kcne2-양성 세포가 40개 포함되어 있습니다. 오른쪽 패널은 E14에 발달이 완료될 때까지 제4뇌실의 측면 가장자리에서 시작하여 안쪽으로 성장하는 증식성 ChP의 배면도를 보여줍니다. 뒷뇌 ChP 상피세포(검은색)가 분비하는 소닉 헤지호그(Sonic hedgehog, SHH)는 혈관 신생(빨간색)을 조절하기 위해 밑에 있는 페리사이토(pericyte, 녹색)에 신호를 보내고, 더 많은 전구세포 증식을 유도하기 위해 아래 마름모꼴 입술에 인접한 뒷뇌 ChP 전구세포(삽입 그림41)에 신호를 보냅니다.
b | 후뇌 ChP의 발달은 전뇌 ChP의 발달을 따릅니다. 왼쪽 패널은 E12.5에 있는 생쥐 배아의 시상면도를 보여줍니다. 여기서 점선은 오른쪽 패널에 있는 이상적인 관상 단면을 나타냅니다. 오른쪽 그림은 신경관의 뒤쪽 중앙선에서 양쪽으로 발달하는 뇌뇌교를 보여줍니다. 뇌뇌교의 형성은 뼈형성단백질과 피질에서 유래하는 WNT를 포함한 뒤쪽 중앙선의 신호가 필요합니다. 뒤쪽 중앙선의 교란은 뇌뇌교의 과다 증식 또는 뇌뇌교의 형성 실패와 관련이 있습니다.
Figure 3. Morphological stages of the developing choroid plexus epithelium.
The choroid plexus (ChP) of each ventricle has the same morphology and is organized into a layer of cuboidal epithelium surrounding a core of vasculature and other stromal cells. The maturation of epithelial cells includes four stereotypical stages. The ChP epithelial cells first appear to be pseudostratified with centrally located nuclei in stage 1 with little to no villous elaboration. This is followed by a transition to a columnar epithelium with apically located nuclei in stage 2, and the tissue becomes convoluted into sparse primary villi. In stage 3, the epithelial cells flatten to become more cuboidal in shape, nuclei are centrally or apically located, and primary villi in the tissue become more abundant. Last, in stage 4, nuclei become more basally located, which is thought to be caused by the apical enrichment of transport machinery and microvilli, and villi are more complex with multiple fronds. Junctions and adhesion molecules are found between adjacent cells, allowing the mature ChP to function as the blood–cerebrospinal fluid (CSF) barrier by restricting the passage of solutes from systemic circulation into CSF.
Fate-mapping studies have revealed that the hRPe consists of three molecularly distinct fields of cells, which emerge at different developmental times and have unique organizational and proliferative programmes40. Field 1 cells populate the dorsal midline from E8 to E9.5. They express Wnt1 and are mitotic until about E10.5, but are not thought to contribute to ChP epithelium. By contrast, field 2 and field 3 cells form more laterally at E9.5, express Wnt1 and growth differentiation factor 7 (Gdf7), are post-mitotic, and contribute to hindbrain ChP epithelium. Field 2 cells derive from rhombomeres 2–8, whereas field 3 cells derive from rhombomere 1. Field 2 cells express markers of mature ChP epithelial cells including transthyretin and the potassium voltage-gated channel subfamily E member 2 (Kcne2) as early as E9.5, whereas the expression of these genes is delayed in field 3 cells until E12.540. The mechanisms that regulate the appearance of these patterned, segmented fields of cells are not known. The hRPe is transient in development and ceases to contribute to the hindbrain ChP by ∼E12.5. Intriguingly, further genetic analyses have shown that, from E12.5 to E14.5, the lower rhombic lip can directly contribute to the hindbrain ChP, when the hRPe no longer exists40. As the temporal interval for hindbrain ChP production continues well past E14.5, these findings have spurred further investigation into the source of hindbrain ChP progenitor cells.
Taking advantage of mouse genetic approaches to selectively target sonic hedgehog protein (SHH) expression in hindbrain ChP epithelial cells using Wnt1-Cre mice, recent studies have identified a third progenitor cell domain for the hindbrain ChP that is positioned between the anterior edge of the lower rhombic lip and the differentiated hindbrain ChP41. This persisting mitotic region, which consists of LMX1A- and GLI1-expressing ChP progenitor cells, produces ChP epithelial cells from E12.5 to the late stages of mouse embryonic development. These progenitor cells proliferate in response to SHH exposure, which is expressed by the hindbrain ChP epithelial cells. Thus, these findings suggest the existence of an autoregulatory loop in which mature ChP epithelial cells produce SHH, which stimulates the proliferation of adjacent ChP epithelial cells. As these progenitor cells become post-mitotic, they progressively integrate into the adjacent ChP epithelium41.
Genetic fate-mapping studies not only have revealed that the roof plate is the source of progenitors for the hindbrain ChP but also have demonstrated that there is molecular heterogeneity in the roof plate epithelium, which may persist in the mature ChP53. Genetic lineage studies have verified that the hindbrain ChP receives contributions from rhombomeres 1 to 840, 53, 54, 56. Furthermore, fate-mapping studies have illustrated that the embryonic roof plate, unlike the floor plate, develops in a segmental, lineage-restricted fashion from Wnt1-expressing neuroepithelial cells of discrete rhombomeric coordinates53. This genetic approach demonstrates that Wnt1-expressing cells from rhombomere 2 (Hoxa2-lineage) and rhombomeres 3 and 5 (Egr2-lineage) from distinct axial regions do not intermingle in the mature ChP. This segregation of lineages in the mature ChP may provide a basis for distinct functional domains within the mature hindbrain ChP with regards to CSF production and other functions. Consistent with this model, the regionalization of SHH-expressing cells that is observed in the developing hindbrain ChP may persist in adulthood53, and even neighbouring cells differ in their expression of γ-protocadherin, a cell adhesion molecule that is found on the apical surface of ChP epithelium and that might have a role in CSF production57. There have been suggestions that ChPs differ in their metabolic rates and adrenergic activity58, 59. However, the functional significance of a molecularly segregated ChP remains to be explored.
Little is known regarding secreted signalling factors that regulate the proliferation of ChP progenitor zones. However, in addition to SHH41 mentioned above, the Notch signalling pathway is able to stimulate hindbrain ChP epithelial proliferation40. Notch ligands are expressed by the developing mammalian ChP60. In the zebrafish mutant mibtfi91, disruption in Notch signalling leads to formation of a misplaced and diminutive hindbrain ChP61. However, investigation of Notch signalling in zebrafish ChP development has also suggested that knockdown of Notch signaling in notch1b, deltaA and deltaD mutants leads to expansion of the hindbrain ChP62. These differential effects of Notch on ChP development may arise because Notch influences the entirety of the rhombic lip or directly affects ChP progenitors41. Intriguingly, the activated NOTCH3 receptor is also implicated as an oncoprotein in human ChP tumours44, 63, 64 (BOX 2).
각 심실의 맥락막 신경총(ChP)은 형태가 동일하며, 혈관 구조와 다른 기질 세포의 핵을 둘러싸고 있는 입방체 상피층으로 구성되어 있습니다. 상피 세포의 성숙에는 네 가지 전형적인 단계가 포함됩니다. ChP 상피 세포는 1단계에서 융모가 거의 또는 전혀 발달하지 않은 상태에서 중심에 위치한 핵을 가진 유사층화 상태로 처음 나타납니다. 그 다음에는 2단계에서 핵이 정점에 위치한 원주상피로 전환되고, 조직은 얇은 1차 융모로 복잡하게 얽히게 됩니다. 3단계에서는 상피 세포가 납작해져서 좀 더 입방체 모양이 되고, 핵은 중심 또는 정점에 위치하며, 조직의 1차 융모가 더 풍부해집니다. 마지막으로, 4단계에서는 핵이 더 기저부에 위치하게 되는데, 이는 수송 기계와 미세 융모의 정점 농축으로 인한 것으로 여겨지며, 융모는 여러 개의 엽으로 더 복잡해집니다. 접합부와 접착 분자가 인접한 세포 사이에 존재하여 성숙한 ChP가 전신 순환에서 CSF로의 용질 통과를 제한함으로써 혈액-뇌척수액(CSF) 장벽으로 기능할 수 있게 합니다.
운명 매핑 연구에 따르면, hRPe는 분자적으로 뚜렷하게 구분되는 세 가지 세포 영역으로 구성되어 있으며, 각 영역은 다른 발달 시기에 출현하고 고유한 조직화 및 증식 프로그램을 가지고 있습니다40. 1번 필드의 세포는 E8에서 E9.5까지 등쪽 중앙선을 채웁니다. 이 세포들은 Wnt1을 발현하고 E10.5까지 유사분열을 하지만, ChP 상피에 기여하지는 않는 것으로 여겨집니다. 반면, 2번 필드와 3번 필드의 세포는 E9.5에 더 많은 수의 측면을 형성하고, Wnt1과 성장 분화 인자 7(Gdf7)을 발현하며, 유사분열 후, 후뇌 ChP 상피에 기여합니다. 2번 필드의 세포는 2번에서 8번 마름모꼴에서 유래하는 반면, 3번 필드의 세포는 1번 마름모꼴에서 유래합니다. 2번 필드의 세포는 E9.5에 트랜스티레틴과 칼륨 전압-게이트 채널 서브패밀리 E 멤버 2(Kcne2)를 포함한 성숙한 ChP 상피세포의 표지자를 발현하는 반면, 3번 필드의 세포에서는 E12.540까지 이러한 유전자의 발현이 지연됩니다. 이러한 패턴이 있는 분할된 세포 필드의 출현을 조절하는 메커니즘은 알려져 있지 않습니다. hRPe는 발달 과정에서 일시적으로 나타나며, E12.5경에 뒷뇌 ChP에 기여하지 않게 됩니다. 흥미롭게도, 추가적인 유전자 분석에 따르면, E12.5에서 E14.5 사이에 hRPe가 더 이상 존재하지 않을 때, 아래쪽 마름모꼴 입술이 뒷뇌 ChP에 직접적으로 기여할 수 있다는 사실이 밝혀졌습니다40. 후뇌 ChP 생산을 위한 시간 간격이 E14.5 이후에도 계속되기 때문에, 이러한 발견은 후뇌 ChP 전구세포의 근원에 대한 추가적인 조사를 촉진했습니다.
최근 연구에서는 마우스 유전적 접근법을 활용하여 Wnt1-Cre 마우스를 사용하여 후뇌 ChP 상피 세포에서 음향 고슴도치 단백질(SHH) 발현을 선택적으로 표적화함으로써, 하부 마름모꼴 입술의 앞쪽 가장자리와 분화된 후뇌 ChP41 사이에 위치한 후뇌 ChP의 세 번째 전구 세포 영역을 확인했습니다. LMX1A와 GLI1을 발현하는 ChP 전구세포로 구성된 이 지속적 유사분열 영역은 E12.5부터 생쥐 배아 발달의 후기 단계까지 ChP 상피세포를 생성합니다. 이 전구세포는 후뇌의 ChP 상피세포에 의해 발현되는 SHH에 노출되면 증식합니다. 따라서, 이러한 발견은 성숙한 ChP 상피세포가 SHH를 생성하여 인접한 ChP 상피세포의 증식을 자극하는 자가 조절 고리의 존재를 시사합니다. 이러한 전구세포가 유사분열 후 단계에 이르면, 인접한 ChP 상피에 점진적으로 통합됩니다41.
유전적 운명 지도 연구에 따르면, 지붕판은 후뇌 ChP의 전구세포의 원천이라는 사실이 밝혀졌을 뿐 아니라, 지붕판 상피에 분자적 이질성이 존재한다는 사실도 밝혀졌습니다. 이 이질성은 성숙한 ChP53에서도 지속될 수 있습니다. 유전적 계보 연구는 후뇌 ChP가 1번에서 8번40, 53, 54, 56번 마름모꼴에서 기여를 받는다는 사실을 확인했습니다. 또한, 운명 매핑 연구에 따르면, 배아 지붕판은 바닥판과 달리 Wnt1을 발현하는 신경상피세포에서 분절적으로 계통에 따라 제한된 방식으로 발달한다는 사실이 밝혀졌습니다53. 이 유전적 접근 방식은 성숙한 ChP에서 별개의 축 영역에서 나온 제2사다리꼴(Hoxa2 계통)과 제3사다리꼴 및 제5사다리꼴(Egr2 계통)의 Wnt1 발현 세포가 서로 섞이지 않는다는 것을 보여줍니다. 성숙한 ChP에서 이러한 계통의 분리는 성숙한 후뇌 ChP 내에서 CSF 생산 및 기타 기능과 관련하여 별개의 기능 영역을 위한 기초를 제공할 수 있습니다. 이 모델에 따르면, 발달 중인 후뇌 ChP에서 관찰되는 SHH 발현 세포의 지역화는 성인기에 지속될 수 있으며53, 심지어 인접한 세포들 사이에서도 ChP 상피의 정점 표면에 존재하며 CSF 생성에 관여할 수 있는 세포 부착 분자인 γ-protocadherin의 발현이 다를 수 있습니다57. ChP의 대사율과 아드레날린 활동이 다르다는 제안이 있었습니다58, 59. 그러나 분자적으로 분리된 ChP의 기능적 중요성은 아직 밝혀지지 않았습니다.
ChP 전구 영역의 증식을 조절하는 분비 신호 인자에 대해서는 알려진 바가 거의 없습니다. 그러나 위에서 언급한 SHH41 외에도 Notch 신호 전달 경로는 후뇌 ChP 상피 증식을 자극할 수 있습니다40. 노치 리간드는 발달 중인 포유류 ChP60에 의해 발현됩니다. 제브라피쉬 돌연변이 mibtfi91에서 노치 신호 전달의 붕괴는 잘못 배치되고 축소된 뒷뇌 ChP61의 형성을 초래합니다. 그러나 제브라피쉬 ChP 발달에서 노치 신호 전달에 대한 조사 결과, notch1b, deltaA, deltaD 돌연변이에서 노치 신호 전달의 붕괴가 뒷뇌 ChP62의 확장을 초래한다는 사실도 밝혀졌습니다. 노치가 ChP 발달에 미치는 이러한 차별적 효과는 노치가 마름모꼴 입술 전체에 영향을 미치거나 ChP 전구세포에 직접 영향을 미치기 때문에 발생할 수 있습니다41. 흥미롭게도, 활성화된 NOTCH3 수용체는 인간 ChP 종양에서 종양 단백질로 관여하는 것으로 밝혀졌습니다44, 63, 64 (박스 2).
Telencephalic choroid plexus progenitors
The telencephalic ChP emerges between the medial wall of each telencephalic vesicle (FIG. 2). The telencephalic ChP develops simultaneously on both sides of the medial wall such that each lateral ventricle has its own ChP tissue. It undergoes a distal to proximal maturation process in which proliferative cells at the root of the plexus are progressively added to the growing tissue that extends into the ventricle24, 65, 66. Bromodeoxyuridine (BrdU) injection studies performed in the marsupial Monodelphis domestica (gray short-tailed opossum) show that newly postmitotic epithelial cells gradually incorporate into the growing ChP tissue along the dorsal stalk of the plexus24. In these studies, neither BrdU-positive progenitors nor newly postmitotic cells were observed in the ventral region of the ChP. In conjunction with proliferative activity, the neuroepithelium comprising the midline choroid plaque also undergoes cell death, such that this region thins during the course of development in mice23, 67.
The dorsal midline is a well-established patterning and signalling centre, which provides a source of BMPs that is critical for telencephalic ChP formation. It is thought that high levels of BMPs are required to induce ChP formation49, 67, 68 and that BMPs might control telencephalic ChP morphogenesis by regulating the balance between cell proliferation and cell death to produce an epithelial monolayer67. By in situ hybridization, co-expression of Bmp2, Bmp4, Bmp5, Bmp6, and Bmp7 correlates with sites of ChP differentiation and with expression of the gene encoding forkhead box protein J1, a transcription factor involved in ciliogenesis67, 69. Misexpression of the constitutively active BMP receptor type 1A (BMPR1A) leads to expansion of an epithelium that resembles the telencephalic ChP epithelium at the expense of cortical neuroepithelium70, whereas inactivation of BMPR1A leads to defective specification of telencephalic ChP epithelium46, 71. A high level of BMP expression also represses LHX2, a suppressor of ChP epithelial and cortical hem fates49. The sufficiency of BMP signalling in ChP induction has been demonstrated by the differentiation of mouse and human embryonic stem cells into ChP epithelial cells using BMP468.
The telencephalic ChP in humans has anterior and posterior domains72, and fate-mapping studies taking advantage of Gdf7-Cre mice suggest that the anterior–posterior substructure is likely to be conserved across species23. The anterior telencephalic ChP can be identified by its descent from the Gdf7 lineage, whereas the larger posterior domain is devoid of Gdf7-lineage cells23. The boundary between the anterior and posterior domains of the mouse telencephalic ChP is not morphologically discernible. However, another distinguishing feature between these two domains is that the anterior domain shows evidence for developmentally regulated apoptosis at E10.5 and E11.5, whereas the posterior domain lacks TUNEL-positive cells23. Early Gdf7-mediated ablations achieved by driving diphtheria toxin A (DTA) expression from the Gdf7 promoter (Gdf7-DTA mice) led to a failure of the entire telencephalic ChP to develop, suggesting that development of the anterior domain of the telencephalic ChP precedes and is necessary for the development of the posterior domain. In these experiments, BMP levels were also attenuated, supporting the model that the roof plate is required to induce high levels of BMP signalling, which in turn induces posterior telencephalic ChP formation23.
The cortical hem, a WNT-rich transient dorsal midline structure73–75, is located between the developing ChP and hippocampus, and is thus positioned to provide inductive signals to both neighbouring areas (FIG. 2). Defects in the cortical hem may compromise proper development of the ChP or hippocampus. In the zinc finger Gli3 mouse mutant extra-toesJ (XtJ), downregulation of Wnt expression in the cortical hem is accompanied by the absence of the telencephalic ChP, but the development of the hindbrain ChP remains unaffected73, 76, 77. Disruption of Gli3 expression in the XtJ mutant probably contributes to the failure of the telencephalic ChP to develop, as GLI3 expressed in ChP mesenchyme may coordinate epithelial and mesenchymal interactions73. Likewise, mice lacking Dmrta2 (doublesex and mab-3 related transcription factor A2) have poorly developed cortical hem and telencephalic ChP structures, which probably result from DMRTA2 regulation of development through WNT–β-catenin signalling78. By contrast, expansion of the cortical hem may lead to an enlarged telencephalic ChP, as loss of Lhx2 expression in the cortex is associated with an expansion of both the cortical hem and ChP49, 79.
ChP epithelial cell maturation
Upon differentiation, ChP epithelial cells transition through a series of stereotyped developmental stages (FIG. 3). Based on cellular morphology21, 22, stage 1 is defined by a sheet of pseudostratified epithelial cells. In stage 2, these cells transition into a simple, high columnar epithelium, and in stage 3, they achieve a flattened (cuboidal) epithelial cell shape. In most species examined, stage 3 can be followed by stage 4, depending on whether the epithelial cells have a high glycogen (energy source) content and apical or centrally positioned nuclei (in which case they remain at stage 3), or a lower glycogen content and basally positioned nuclei (in which case they progress to stage 4)11, 66, 80.
Transition through these distinct stages is accompanied by structural changes such as the polarization and formation of microvilli and cilia along the apical surface, as well as changes in cellular content, including an increase in the number of mitochondria and maturation of the endoplasmic reticulum55, 81. Owing to their narrow width (∼50 nm), microvilli are generally free of organelles. However, microvilli have been estimated to increase the surface area of E16 rat epithelial cells, leading to a total apical surface area of 75 cm2 for the rat telencephalic ChP; similarly, in humans, the ChP surface area is increased to 200 cm2 82. The increase in apical ChP surface area parallels its increased ability to produce CSF. Indeed, the machinery and enzymes required for CSF secretion are enriched in this brush border83, suggesting that if the microvilli were damaged or ablated, CSF production by ChP epithelial cells would substantially decrease. Eventually with advanced age, microvilli decrease in size as does the production of CSF20, 84, 85.
The vast majority of ChP epithelial cells are multi-ciliated (9+2 microtubule configuration), with tufts of cilia ranging from 4–8 cilia per cell in rats to 50 cilia per cell in salamander11. Motile cilia are thought to contribute to CSF flow, and structural defects induced by chemical or genetic means can contribute to hydrocephalus86–89. However, epithelial cells extending one primary cilium (9+0 configuration) into the CSF can also be observed in the ChP. Although the functional significance of mono-ciliated epithelial cells remains to be elucidated, they have been proposed to play roles in osmosensation and/or chemosensation1.
Epithelial–mesenchymal interactions
Despite cell-intrinsic mechanisms that may underlie the specification of ChP epithelium, extrinsic signalling through cell–cell interactions between ChP epithelial cells and mesenchymal cells is also necessary for both epithelial and stromal development. When grafted to the body wall, tissues containing the ChP anlagen are capable of maturing into tissues histologically indistinguishable from true ChP39. The epithelium forms with appropriate apico-basal polarity, microvilli architecture, and tight junctions between adjacent cells. The underlying stroma, which develops from the body wall of the host rather than from the grafted tissue, develops fenestrated capillaries, which are not typically found in the body wall39. However, the molecular mechanisms underlying the coordinated development of ChP epithelium and underlying vasculature are only beginning to be understood.
Vascularization of the choroid plexus
During ChP development, actively proliferating epithelial sheets envelop the underlying mesenchyme and abundant vascular supply, which raises the question of how the co-development of these cell types of different embryological origin is coordinated. Live-imaging of zebrafish has shown that the ChP epithelium makes close contact with vascular cells very early in development61. Signalling factors expressed at the roof plate– neuroepithelium boundary may induce vascular differentiation in the ChP90. However, factors from the ChP epithelium have also been shown to regulate vascular outgrowth (FIG. 2). In particular, Shh, which encodes a protein known to induce angiogenesis in other tissue types, is expressed by hindbrain ChP epithelial cells, and patched 1 (Ptc1), which encodes its receptor, is highly enriched in the ChP mesenchyme91. Ptc1-expressing cells were identified to be chondroitin sulphate proteoglycan 4 (CSPG4; also known as NG2)-expressing pericytes, which are vascular support cells that are capable of responding to ChP-derived SHH and transducing this signal to regulate vascular outgrowth and surface area. However, other yet-to-be identified mechanisms control the vessel diameter and capillary fenestrations, as these parameters were normal following manipulations in SHH signalling. Indeed, the exact developmental time course of ChP vasculature is not well understood. Fenestrae have not been observed in E14.5 mice91. In rats, in addition to increased epithelial apical surface density, low numbers of fenestrae can be observed at E16, and they increase progressively in number per unit length of ChP vessel perimeter up to postnatal day 3082. These observations suggest that there is crosstalk between the developing epithelium, stroma and vasculature. Indeed, SHH that is secreted by ChP epithelial cells seems to regulate ChP epithelial production via vascular outgrowth91 as well as by directly signalling to ChP epithelial progenitors41.
Functions of the ChP–CSF system
The ChP has long been appreciated as the principal source of CSF92–94, and ChP epithelial cells acquire their secretory, transport and barrier functions shortly after differentiation25, 27–29, 95–97. Ion transporters at the basal and apical surfaces of ChP epithelial cells transport ions into CSF, and water supplied by blood is transported apically through aquaporins down an osmotic gradient1, 98. Transporter expression varies dynamically with age25, 26. Evidence in rats suggests that CSF secretion and CSF fluid volume increase dramatically during the second postnatal week and reach mature adult levels before complete maturation of the brain99. Transport across the epithelium extends beyond ions to many factors, including proteins, nutrients and metabolic precursors96, 100. Myo-inositol represents one osmolyte and precursor for many signalling molecules, which is actively transported across the ChP epithelium by sodium/myo-inositol transporter 1, the activity of which is regulated by potassium channel subunits KCNE2 and KCNQ1101. Important insight into how transport across the ChP epithelium influences brain function comes from Kcne2-deficient mice, which are susceptible to stress and seizures, and have low levels of myo-inositol in the CSF. Dose-dependent CSF-supplementation of myo-inositol in Kcne2-deficient mice reverses their behavioural phenotypes101. The role of CSF myo-inositol in psychiatric disease remains to be elucidated; however, these findings demonstrate that transport across the ChP epithelium can have far-reaching consequences on brain function.
ChP epithelial cells also express and secrete their own proteins into the CSF. The total CSF protein content varies with age such that it peaks near birth in rodents35, 102, 103. In other species with longer gestational periods, CSF protein content peaks in utero, suggesting that CSF protein changes are due to fundamental changes in the brain rather than birth104. Transthyretin, a thyroid hormone carrier routinely used as a marker of ChP epithelium, is expressed by ChP epithelial cells shortly after their appearance and is present in embryonic CSF8, 21, 40. Although some factors are directly secreted into the CSF, others are ferried via interactions with binding proteins or encapsulated in exosomes. Extracellular vesicles originating from the ChP transport important proteins for brain development such as folate receptor-α105, as well as non-coding RNAs, including microRNAs that regulate neural stem cells via modulation of the insulin-like growth factor (IGF) signalling pathway in an age-dependent manner106, 107. Ultimately, the CSF is a rich source of proteins, lipids, hormones, cholesterol, glucose, microRNAs and many other molecules and metabolites that affect a wide range of CNS functions2, 12, 13, 21, 106. ChP functions are dynamic from development into adulthood, as protein secretion into CSF and ciliary motility continue to mature21, 108.
In the developing cerebral cortex, cortical progenitor cells line the ventricular surface, extending a primary cilium directly into the CSF. The primary cilia, as well as their adjacent apical domains, harbour receptors poised to receive signals emanating from the CSF109. Indeed, pure embryonic CSF, without the addition of exogenous growth-promoting signals, promotes the development and growth of cortical progenitor cells in an age-dependent manner103, 110. For instance, embryonic CSF stimulates young stem cells that are cultured as neurospheres or in tissue explants to divide vigorously. By contrast, the same stem cells bathed in older CSF, including adult CSF, undergo limited cell division. These results are consistent with findings that many protein signals in the CSF fluctuate with age. Some of the proliferative effects of embryonic CSF can be attributed to ChP-secreted IGF2 and signalling through the IGF1 receptor at the ventricular surface103, 106, 111, 112. However, as mentioned above, the CSF is home to many signaling molecules with important roles in development (for example, fibroblast growth factors113, SHH102,114, retinoic acid115, 116, leukaemia inhibitory factor117, 118, semaphorin3B119 and others2). Thus, the construction of the mammalian brain depends upon the appropriate interactions of multiple signalling activities delivered to neural stem cells via the CSF.
Intriguingly in vivo, lateral and fourth ventricle CSF shows distinct protein signatures12, 35, 120, which are suggestive of regionalized protein gradients across the ventricular system (FIG. 4). Gene expression analyses performed in intact ChP as well as purified ChP epithelial cells from TTR::RFP mice (a random integration transgenic mouse line that expresses monomeric red fluorescent protein 1 from a transthyretin minigene) have revealed that the telencephalic and hindbrain ChP are spatially heterogeneous, with distinct gene expression domains that mark positional identity and encode regionalized secretomes35. For example, the telencephalic ChP is enriched for markers of the posterior half of the telencephalon121 including Emx2, Otx1, and Six3, whereas the hindbrain ChP is enriched for Hox genes (for example, Hoxa and Hoxb), which is consistent with previous studies53, 122, as well as En2 and Meis135. Proteomic analyses demonstrate that this differential gene expression functionally translates to the differential secretion of nearly 200 proteins by the telencephalic and hindbrain ChP35. For example, the telencephalic ChP secretes higher amounts of cystatin C and cathepsin D, whereas the hindbrain ChP secretes higher amounts of SHH, which is consistent with previous studies41, as well as proenkephalin and extracellular superoxide dismutase (EC-SOD). Regionalized ChP protein secretion occurs in an age-dependent manner, such that embryonic ChP shows robust regionalization of gene and protein expression, which decreases in adulthood, in a gene-specific manner35. Spatial domains with distinct protein expression profiles were also observed within each ChP (for example, there is much higher expression of EC-SOD ventrally than dorsally within the hindbrain ChP), suggesting the production of local protein gradients within a ventricle. The regionalized gene expression domains marking identity as well as its secretome (for example, SHH is both a selective marker for hindbrain ChP as well as a component of its secretome) are conserved in the mouse, macaque, and human brain35. Although hindbrain ChP-secreted SHH has roles in instructing hindbrain ChP41, 91 and cerebellar development114, it remains to be determined whether the regional ChP-secretomes, in aggregate, also have broader roles in instructing regional brain development.
Figure 4. Telencephalic and hindbrain choroid plexi are transcriptionally and functionally distinct tissues.
Gene expression profiling of mouse and primate telencephalic choroid plexus (ChP) and hindbrain ChP reveal that, despite being morphologically similar, these tissues are transcriptionally heterogeneous35. The ChPs maintain distinct positional identities reminiscent of their axial tissues of origin. The telencephalic ChP has higher expression levels of Emx2Otx1, and Six3, which are markers of the telencephalon, whereas the hindbrain ChP has higher expression levels of Hoxa2En2, and Meis1, genes critical for patterning the hindbrain. Further analysis of the ChP secretome reveals that these tissues are functionally distinct in their expression and secretion of signalling factors into the cerebrospinal fluid (CSF)35. In particular, the telencephalic ChP secretes more cystatin C (CSTC), cathepsin B (CTSB) and cathepsin D (CTSD), whereas the hindbrain ChP secretes more Sonic hedgehog (SHH), proenkephalin (PENK) and extracellular superoxide-dismutase (EC-SOD). Protein expression domains have been observed within each ChP (for example, EC-SOD35 and SHH53 protein domains), which is suggestive of protein gradients within each ventricle. These findings indicate that the molecular heterogeneity of the telencephalic versus the hindbrain ChP contributes to establishing a regionalized CSF and support a model of protein gradients throughout the ventricular system.
The ChP–CSF system is also emerging as a key component in the regulation of adult neurogenesis in both the ventricular-subventricular zone (V-SVZ) that is located adjacent to the lateral ventricles and the subgranular zone of the hippocampus. The landscape along the V-SVZ is organized into pinwheels, where the neural stem cells (B cells or astrocytes) form the core of the pinwheels and are surrounded by rosettes of multi-ciliated ependymal cells123. The neural stem cells span the length of the V-SVZ, with a primary cilium that extends into the CSF and a basal domain that contacts the vascular plexus124, 125. As adult neurogenesis proceeds, neural stem cells give rise to immature precursors (type C cells or transit amplifying cells), which ultimately generate neuroblasts (type A cells). The architecture of this germinal niche, and the unique polarity of the B cells, are thought to function as key determinants of adult neurogenesis, allowing for instructive extrinsic cues to arrive from both apical as well as basal domains.
Both embryonic and adult CSF can support adult neural stem cells that are cultured as neurospheres103, and these favourable effects of CSF are partly mediated by a combination of factors that are dynamically distributed in the CSF. The maintenance of adult V-SVZ architecture is crucial for its continued production of neural stem cells123. Recent studies have proposed one mechanism by which CSF-distributed factors may support the viability of this niche. ChP-secreted interleukin-1β binds to interleukin-1 receptors on the surface of type B neural stem cells, regulating the expression of vascular cell adhesion molecule 1 (VCAM1), a cell surface sialoglycoprotein and a member of the immunoglobulin superfamily126. VCAM1 then promotes adhesion to the neural stem cell niche and maintains niche architecture by activating NADPH oxidase 2-mediated redox homeostasis. Inhibition of VCAM1 stimulates quiescent type B cells to swiftly proliferate and advance through the cell lineage to type A neuroblasts126. An added layer of regulation to this model comes from endothelial sources of neurotrophin 3 (NT3), a neurotrophic factor with a prominent role in promoting survival. NT3 was suggested to be required for the quiescence and long-term maintenance of adult stem cells127. Originating from either the brain’s vasculature or the ChP capillaries, NT3 acts as a cytostatic factor by stimulating the phosphorylation of nitric oxide synthase and production of nitric oxide in B cells127. Upon B cell differentiation into neuroblasts, SLIT in the CSF can serve as a chemo-repulsive cue that guides neuroblasts along the rostral migratory stream to the olfactory bulb128.
The role of ChP–CSF signalling in adult hippocampal neurogenesis and cognitive function has also been explored in experiments that uncovered a type 1 interferon (IFN)-dependent gene expression profile in aged ChP129. Heterochronic parabiosis, an approach in which young and old mice are surgically connected to share a blood supply130–132, was used to test whether the aged gene expression profile was due to signalling events triggered at the apical, ventricular side of the ChP (that is, events triggered by factors delivered by the CSF), or at the basal side of the ChP (that is, events triggered by factors delivered through the systemic circulation)129. The results suggest that signalling events occurring at the apical and basal aspects of the ChP may modulate ChP function. Although the aged circulation did not induce expression of type I IFN-dependent genes in young ChP, it did stimulate the expression of type II IFN-dependent genes including Ccl11, which encodes a chemokine associated with impaired plasticity. By contrast, CCL11 expression in old ChP was not mitigated by young circulation, suggesting that a complex array of brain as well as systemic signals regulate ChP gene expression. CSF from older animals induced a type I IFN-dependent gene response in cultured ChP cells. In mouse behavioural experiments, blocking type I IFN signalling in the aged brain improved cognitive function and hippocampal neurogenesis129.
ChP–CSF based signalling has broad effects on the brain, extending beyond neurogenesis to the regulation of critical periods. For example, ChP epithelial cells synthesize and secrete the homeodomain transcription factor OTX2. OTX2 is likely to be distributed by the CSF throughout the brain and is taken up by parvalbumin-positive GABAergic interneurons in the forebrain, where it is thought to regulate interneuron maturation, and consequently the timing for the critical period of plasticity for binocular vision133. Genetic disruption of OTX2 expression in the ChP impairs the function of these forebrain circuits, enabling the reopening of binocular plasticity in primary visual cortex such that vision is restored in amblyopic mice134. In addition to the regulation of critical periods, CSF-based signalling is important in the early phase of sensory map formation. The reduction of CSF serotonin levels at birth, which can be accelerated by pre-term birth, has an important role in initiating the formation of barrel fields and eye-specific segregation of the visual system135.
Summary and perspectives
In summary, the ChP–CSF system actively coordinates the development and health of the CNS. Although progress has been made in understanding the specification and origins of the ChP tissues, many questions remain unresolved. First, ChP epithelial cells secrete hundreds of factors into the CSF, but the regulation of gene transcription and protein translation, and the degree to which conventional versus unconventional mechanisms of protein secretion136 are engaged by the ChP remain poorly understood. Second, the identification of conserved, spatial heterogenetity across ChP and the secretion of regionalized ChP proteomes35 suggest the presence of protein gradients across the cerebroventricular system. As the CSF delivers important health- and growth-promoting signals for the developing nervous system, these findings raise questions regarding the utility and functional consequences of a regionalized CSF. Third, the model that systemic signals regulate ChP129, together with findings that CSF composition and mixing with the interstitial fluid maintain the health of the brain via convective flux more generally than previously believed137–139 (BOX 3), raise tantalizing hypotheses for the myriad ways by which CNS health can be regulated. Collectively, pairing actively evolving technologies with available models, including recently developed fluorescent ChP zebrafish lines140, should accelerate steps towards further elucidating the biology of the ChP–CSF system as well as advancing future therapies, including the transplantation of engineered ChP epithelial cells.
요약 및 전망
요약하자면, ChP-CSF 시스템은 중추신경계의 발달과 건강을 적극적으로 협응합니다. ChP 조직의 특성과 기원에 대한 이해가 진전되고 있지만, 아직 해결되지 않은 질문이 많습니다.
첫째, ChP 상피세포는 수백 가지의 인자를 CSF로 분비하지만,
ChP가 유전자 전사와 단백질 번역의 조절, 그리고
기존의 단백질 분비 메커니즘과 비전통적인 단백질 분비 메커니즘136이 관여하는 정도에 대해서는
아직 잘 알려져 있지 않습니다.
둘째,
ChP 전반에 걸쳐 보존된 공간적 이질성의 확인과 지역화된 ChP 단백질체 분비35는
뇌실 시스템 전반에 걸쳐 단백질 구배가 존재한다는 것을 시사합니다.
CSF가 발달 중인 신경계에 중요한 건강 및 성장 촉진 신호를 전달하기 때문에,
이러한 발견은 지역화된 CSF의 유용성과 기능적 결과에 대한 의문을 제기합니다.
셋째,
체계적 신호가 ChP129를 조절하는 모델과 함께,
CSF의 구성과 간질액과의 혼합이 대류 플럭스를 통해 이전의 생각보다
더 일반적으로 뇌의 건강을 유지한다는 발견이137-139(박스 3)
CNS 건강을 조절할 수 있는 무수한 방법에 대한 흥미로운 가설을 제시합니다.
최근 개발된 형광 ChP 제브라피쉬 계통 140을 포함하여, 활발하게 발전하고 있는 기술과 이용 가능한 모델을 결합하면, ChP-CSF 시스템의 생물학을 더 명확하게 밝히는 단계와 조작된 ChP 상피세포 이식을 포함한 미래의 치료법을 발전시키는 단계가 가속화될 것입니다.
Box 3. Cerebrospinal fluid exchange and flux.
In addition to distributing secreted signals throughout the ventricular system, the cerebrospinal fluid (CSF) has an important role in clearing the brain of toxins and waste. Recent work using two-photon imaging in mice through a cranial window, which allows for imaging of the superficial cerebral cortex, led to a model in which a tripartite clearance mechanism contributes to clearing waste in the brain. Named the “glymphatic” system, aquaporin 4 channels on astrocytic end feet first facilitate the para-arterial CSF influx into the brain’s parenchyma138. This convective flux of CSF and interstitial fluid (ISF), with the aid of arterial pulsatility139, then flushes parenchymal waste via an intercellular trans-astrocytic path into the paravenous space for eventual clearance into the systemic circulation. Radiolabel tracer studies estimate that 40–80% of proteins and solutes in the extracellular space of superficial cortex may be removed in this manner, with the clearance of amyloid-β being one of the most intriguing noted to date. In these studies, the ISF space was estimated to increase by more than 60% during natural sleep or anaesthesia137. These findings suggest new potential roles for sleep and CSF fluid mechanics in maintenance of brain health. However, many questions remain to be addressed in future studies164.
박스 3. 뇌척수액 교환과 흐름.
뇌척수액은 분비된 신호를 심실계 전체에 분산시키는 것 외에도 뇌의 독소와 노폐물을 제거하는 데 중요한 역할을 합니다. 최근에는 두 개의 광자 이미징을 사용하여 두개골 창을 통해 생쥐의 표면 대뇌 피질을 이미징하는 작업을 통해, 뇌의 노폐물 제거에 기여하는 3중 클리어런스 메커니즘을 발견했습니다. 이 메커니즘은 “글림파틱” 시스템이라고 불리며, 성상교세포 말단 발의 아쿠아포린 4 채널이 먼저 뇌 실질로 동맥 주변의 뇌척수액의 유입을 촉진합니다138. 이 대뇌척수액과 간질액(ISF)의 대류 흐름은 동맥 맥동의 도움으로139, 세포 간 경로를 통해 실질 낭비물을 뇌실질 공간으로 흘려보내 최종적으로 전신 순환계로 배출됩니다. 방사성 표지 추적자 연구는 표면 피질의 세포 외 공간에 있는 단백질과 용질의 40-80%가 이러한 방식으로 제거될 수 있다고 추정하고 있으며, 아밀로이드-β의 제거는 지금까지 알려진 것 중 가장 흥미로운 것 중 하나입니다. 이 연구에서, ISF 공간은 자연 수면 또는 마취 중에 60% 이상 증가하는 것으로 추정되었습니다137. 이러한 결과는 수면과 뇌척수액 역학이 뇌 건강 유지에 새로운 잠재적 역할을 할 수 있음을 시사합니다. 그러나 향후 연구에서 해결해야 할 많은 질문들이 남아 있습니다164.
Acknowledgements
The authors thank members of the Lehtinen and Monuki laboratories for helpful discussions. The authors apologize to investigators whose work we could not reference owing to space limitations. This work was supported by CIRM RN2-00915-1 and UCI ICTS and ADRC Pilot Project Awards (to E.S.M.); and Pediatric Hydrocephalus Foundation, Alfred P. Sloan Foundation, NIH K99/R00 NS072192 and R01 NS088566 (to M.K.L.).
Glossary termsCribriform plate
The region of skull bone supporting the olfactory bulbs, which is perforated to allow the passage of olfactory nerves from the nasal cavities
Hydrocephalus
A condition resulting from an excess accumulation of cerebrospinal fluid within the ventricles of the brain
Neuroepithelial cells
The stem cells of the nervous system, these cells initially undergo symmetric division early in development to expand the progenitor cell pool, and subsequently give rise to more lineage-restricted cells at the start of neurogenesis, including radial glial and choroid plexus epithelial cells
Rhombic lip
A transient structure located at the interface between the roof plate and dorsal neuroepithelium, which functions as a germinal epithelium and a source of diffusible signals
Cortical hem
A signalling centre located bilaterally near the telencephalic midline, which functions as a source of WNTs and bone morphogenetic proteins for cerebral cortical, hippocampal and choroid plexus development, as well as a source of Cajal-Retzius cells
Prosomeres
Segments of the anterior neural tube early in embryonic development that give rise to forebrain structures
Rhombomeres
Transient, regularly spaced repeating units of hindbrain cells in the developing embryo that will ultimately give rise to the rhombencephalon
Bromodeoxyuridine (BrdU)
A synthetic thymidine analog that can incorporate into replicating DNA
Choroid plaque
The non-papillary tissue at the immediate dorsal midline that separates the two choroid plexi of the lateral ventricles
Fenestrated capillaries
Openings in the endothelium are bridged by thin diaphragms permeable to water and small molecules. (p16)
Trisomy 18
A genetic condition in which cells contain three copies of chromosome 18 rather than the normal two; also known as Edwards syndrome
Aicardi syndrome
A developmental disorder that is characterized by infantile spasms and defects of the corpus callosum and eyes (chorioretinopathy); see Online Mendelian Inheritance in Man 304050
Footnotes
Competing interests statement
The authors declare no competing interests.
References
|