|
백번 천번을 보면서 탐구해도 시간이 아깝지 않은 공부는
"구조와 생체역학"이다.
(클릭) 긴장통합체 물리학 - 반드시 먼저 이해해야...
2014년 12월 25일 다시 정리중
- 역시 좋은 자료임.
panic bird..
Mechanics is the study of forces and their effects.
Biomechanics is the application of mechanical laws to living structures, specifically to the locomotor system of the human body . Therefore biomechanics concerns the interrelations of the skeleton, muscles, and joints. The bones form the levers, the ligaments surrounding the joints form hinges, and the muscles provide the forces for moving the levers about the joints.
- mechanics(역학)이란 힘(force)과 그것들의 작용에 대한 탐구
- biomechanics(생체역학)이란 살아있는 인체의 운동계의 역학적 법칙을 적용하는 탐구.
- 그래서 생체역학은 골격(뼈), 근육, 관절의 힘과 작용에 대한 상관관계를 탐구함.
- 뼈는 지레(lever)를 제공하고, 인대는 뼈와 뼈를 연결하여 지지하고, 근육은 관절에 대하여 지레를 움직이는 힘을 제공함.
생체역학 2가지 분류
1) 정적인 자세의 생체역학
2) 동적인 움직임 생체역학으로 나뉨
1) 정적 생체역학(static biomechanics)
- 움직이지 않는 상태(평형상태 인체)의 자세, 장력, 부하 시스템을 탐구하는 학문
2) 동적 생체역학(dynamic biomechanics)
- 움직이기때문에 인체근육, 관절에 가해지는 부하가 다름
- 인체가 움직이는 동안 동일하지 않은, 균형힘이 깨진 상태의 부하, 장력 시스템을 탐구하는 학문
Kinematics is a branch of mechanics that deals with the geometry of the motion of objects, including displacement, velocity, and acceleration, without taking into account the forces that produce the motion.
Kinetics, however, is the study of the relationships between the force system acting on a body and the changes it produces in body motion.
- kinematics(운동학)은 역학의 한 분야로 사물의 움직임에 관한 기하학(geometry)를 다루는 탐구. 움직임을 생성하는 힘과 상관없이 "가속, 속도, 변위(displacement)를 다룸.
- kinetics(동역학)은 인체 움직임에서 몸에 작용하는 힘과 힘을 변화시키는 것에 관한 연관성을 탐구.
Knowledge of joint mechanics and structure, as well as the effects that forces produce on the body, has important
implications for the use of manipulative procedures and, specifically, chiropractic adjustments. Forces have vector characteristics whereby specific directions are delineated at the points of application. Moreover, forces can vary in magnitude, which will affect the acceleration of the object to which the force is applied.
- 관절역학과 구조 그리고 인체에 힘을 생성하는 효과에 관한 지식은 manipulative procedure 특히 카이로프락틱에 중요한 지식임.
- 힘은 방향요소를 가지고 있음.
- 또한 힘은 크기가 다양하고, 힘이 주어진 물체에 가속도에 영향을 줌.
3가지 지레(levers) - 인체에 주어지는 힘, 축, 저항의 관계를 이해하는 필수지식
A lever is a rigid bar that pivots about a fixed point, called the axis or fulcrum, when a force is applied to it. Force is applied by muscles at some point along the lever to move the body part (resistance). The lever is one of the simplest of all mechanical devices that can be called a machine. The relationship of fulcrum to force to resistance distinguishes the different classes of levers.
- 지레는 힘이 주어질때 고정된 지점(axis or fulcrum)에 대한 피봇을 형성하는 강한 bar
- 힘(force)은 지레를 따라 저항체(몸)을 움직이는 근육에 의하여 만들어짐.
- 지레는 모든 역학적 device(장치)의 하나로 기계로 불릴 수 있음.
- 축에 대한 힘, 저항의 관계는 지레의 종류에 따라 구분할 수 있음.
Figure 2-1 A, Lever system showing components. B, First-class lever system. C, Second-class lever system. D, Third-class lever system. A, Axis (fulcrum); F, force; R, resistance.
In a first-class lever, the axis (fulcrum) is located between the force and the resistance; in a second-class lever, the resistance is between the axis and the force; and in a third-class lever, the force is between the axis and the resistance
(Figure 2-1).
위 그림에서 b그림 : 1유형 지레는 축이 힘과 저항체 중간에 있음. 최소힘 필요. 축에서 손상이 주로 발생함.
c 그림 : 2유형 지레는 축과 힘 사이에 저항체가 있음.
d 그림 : 3유형 지레는 축과 저항체 사이에 힘이 있음. 큰 힘이 필요. 인체에서 가장 흔함.
- 중요한 것은 힘(force)과 축(axis, fulcrum)
- 힘을 만드는 것은 근육(muscle)이고, 근육이 만드는 힘때문에 부하가 걸리는 축(axis)이 있음.
- 손상은 근육과 축에서 주로 발생함.
- 근육과 건은 주로 비정상적인 당기는 힘(장력)에 의해 건염, 근육파열(strain)이 발생함
- 관절은 주로 비정상적인 압박(roll, sliding, spin(rotation), shear force)에 의해 관절, 연골, 인대 등 손상이 발생
Every movable bone in the body acts alone or in combination, forcing a network of lever systems characteristic of the first- and third-class levers. There are virtually no second-class levers in the body, although opening the mouth against resistance is an example.
- 모든 움직이는 뼈는 홀로 또는 조합으로 작용하는데, 1유형과 3유형 지레시스템의 힘연결망 특성임. 2형 지레는 인체에 실제적으로는 없음.
With a first-class lever, the longer the lever arm is, the less force is required to overcome the resistance. The force arm may be longer, shorter, or equal to the resistance arm, but the axis will always be between these two points. An example of a first-class lever in the human body is the forearm moving from a position of flexion into extension at the elbow through contraction of the triceps muscle.
1형 지레는 긴지레팔이 저항체를 움직이기 위해 최소힘이 필요함. 힘팔은 저항팔과 같을수도 있고, 짧을 수도 있고, 길 수도 있음. 하지만 축은 항상 힘팔과 저항팔 중간에 있음.
Third-class levers are the most common types in the body because they allow the muscle to be inserted near the joint and can thereby produce increased speed of movement, although at a sacrifice of force. The force arm must be smaller than the resistance arm, and the applied force lies closer to the axis than the resistance force. An example of a third-class lever is flexion of the elbow joint through contraction of the biceps muscle.
힘이 중간에 들어가는 3형지레는 인체에서 가장 흔한 형태임. 축이 뒤에 있고 힘이 중간에서 작용하여 저항체가 움직이기 때문에 힘은 손실되지만 움직임이 가장 빠름. 힘팔은 저항팔보다 힘이 반드시 작고, 적용되는 힘은 저항힘보다는 축힘에 가까이 놓임.
인체면(body plane)
인체 탐구는 세가지 면으로 시행함.
시상면(sagittal plane), 관상면(coronal plane), 축상(axial plane, transverse plane)
3개의 축(3 axis)는 6개의 자유도를 생성함.
3개의 축방향 움직임과 좌우 회전두가지를 합하여 6 degrees of freedom 생성
움직임의 축(axes of movement)
- 관절 축을 기준으로 발생하는 3가지 관절움직임(rotation, translation, curvilinear motion)
An axis is a line around which motion occurs. Axes are related to planes of reference, and the cardinal axes are oriented at right angles to one another. This is expressed as a three-dimensional coordinate system with x, y, and z used to mark the axes (Figure 2-3). The significance of this coordinate system is in defining or locating the extent of the types of movement possible at each joint—rotation, translation, and curvilinear motion.
움직임의 축은 어떤 움직임이 일어나는데 중심선임. 축은 움직임면의 기준점과 관련됨. 3차원 공간(x, y, z)으로 이루어 짐.
이것을 기준으로 관절 움직임은 회전(rotation), 병진움직임(평행이동 translation), 곡선움직임(curvilinear motion)을 만듬.
All movements that occur about an axis are considered rotational, whereas linear movements along an axis and through a plane are called translational. Curvilinear motion occurs when a translational movement accompanies rotational movements. The load that produces a rotational movement is called torsion; a force that produces a translational movement is called an axial or shear force.
축을 중심으로 일어나는 움직임은 회전(rotation motion)임.
반면에 축을 따라 선형으로 움직이는 평행이동을 병진움직임(translational motion)이라 함.
곡선 움직임(curvilinear motion)은 병진움직임이 일어날때 회전움직임이 수반되는 것을 말함.
회전움직임으로 만들어내는 부하를 torsion(비틀림)이라 하고, 병진움직임이 만들어내는 부하를 축힘 또는 전단력(shear force)라고 함.
정리) 인체에 가해지는 5가지 힘
1) traction force or tension force - 당기는 힘
2) compression force - 압박힘
3) bending force - 구부러지는 힘
4) axial force or shear force - 축힘, 전단힘
5) torsion force - 비틀림 힘(회전힘과 병진힘의 합)
인체에서는 복합힘이 작용함
- 압박힘, 비틀림, 구부러짐, 전단힘이 동시에 작용하는 경우에 흔히 손상당함
- 당기는 힘과 비틀림이 동시에 작용할때도 흔히 손상
- 이때 어디가 손상될 것인가를 탐구하는 학문이 바로 "손상 메카니즘"
움직임의 인체면 body plane
1) sagittal plane - coronal axis - flexion and extension
2) coronal plane - sagittal axis - abduction and adduction
3) transverse plane - longitudinal axis - medial and lateral roation
cf) 관절의 분류
1) plane joint(평면관절) - noaxial, sliding movement
2) saddle joint (안장관절) - biaxial, 굴곡신전과 내전외전 움직임
3) hinge joint (경첩관절) - monoaxial, 굴곡신전 움직임
4) pivot joint(차축관절)- monoaxial, 회전움직임
5) ball and socket joint (구상관절) - multi axial, 굴곡신전, 내전외전, 회전움직임
6) ellipsoid joint(condyloid joint) - biaxial, 굴곡신전과 내전외전 움직임
평면관절 plane joint
- no axial joint
- 관절면이 편평하거나 약간 커브형태
- 병진움직임이 가능하고 대개 회전은 인대에 의해서 제한됨
- intercarpal joint, SC joint, facet joint가 대표적인 사례
경첩관절 hinge joint
- 관절의 오목면과 볼록면이 만나는 관절
- 무릎, 팔꿈치, 발목, interphalangeal joint
- 주로 굴곡과 신전 움직임. 선천적인 ligment laxity가 있는 사람은 과신전이 발생할수 있음(팔꿈치, 무릎 등)
차축관절 pivot joint
- 관절면의 한쪽이 둥글고, 하나는 둥근 링형태이고 인대로 고정되는 관절
- monoaxial이고, 오직 회전만 가능한 관절
- proximal radioulnar joint는 회내, 회외 움직임이 있음
- C1-C2(atlanto-axial) joint는 경추의 회전움직임을 허용함.
saddle joint(안장 관절)
- 말안장과 비슷한 관절
- biaxial joint
- 주로 circumduction 회선움직임
condyloid joint(과상 관절)
- 계란모양의 관절면이 만나는 관절
- biaxial 관절로 굴곡신전, 내전외전이 가능함
구상관절 ball and socket joint
- 볼과 소켓으로 이루어진 관절
- multiaxial 관절로 굴곡, 신전, 외전, 내전, 회전이 모두 가능한 불안정한 관절
- 회전요소가 많아 압박부하, 전단부하, 비틀림부하 등 모든 부하와 변형이 가능한 관절
- shoulder joint, hip joint가 대표적
- 구상관절은 인체에서 움직임을 극대화한 관절. 동적 안정성을 만들어내는 치료적 관점에서는 어려운 관절임.
관절 움직임(joint motion)
움직임은 인체면(body plane)과 축(axis)을 기준으로 만들어짐.
굴곡 신전
내전 외전
회전
Motion can be defined as a continuous change in position of an object. The axis around which movement takes place and the plane through which movement occurs define specific motions or resultant positions.
움직임이란 물체의 위치에서 지속적인 변화로 정의될 수 있음.
축은 움직임이 발생하는 중심, 면(plane)을 따라서 특별한 움직임과 연속되는 위치변화가 발생함.
The coronal axis (x-axis) lies in the coronal plane and extends from one side of the body to the other. The motions of flexion and extension occur about this axis and through the sagittal plane. Flexion is motion in the anterior direction for joints of the head, neck, trunk, upper extremity, and hips (Figure 2-4, A ). Flexion of the knee, ankle, foot, and toes is movement in the posterior direction. Extension is the motion opposite of flexion.
관상축은 관상면에 수직선
- 몸통(두부, 경추, 몸통, 요추 등)에서 굴곡신전 움직임을 만듬.
- 상지 하지에서도 관상축을 중심으로 굴곡신전 움직임.
The sagittal axis (z-axis) lies in the sagittal plane and extends horizontally from anterior to posterior. Movements of abduction and adduction of the extremities, as well as lateral flexion of the spine, occur around this axis and through the coronal plane. Lateral flexion is a rotational movement and is used to denote lateral movements of the head, neck, and trunk in the coronal plane (Figure 2-4, B ). In the human, lateral flexion is usually combined with some element of rotation.
시상축
- 사지말단의 내전, 외전 움직임
- 척추에서 lateral flexion(lateral bending)은 회전요소와 병행됨.
Abduction and adduction are also motions in a coronal plane. Abduction is movement away from the body, and adduction is movement toward the body; the reference here is to the midsagittal plane of the body. This would be true for all parts of the extremities, excluding the thumb, fingers, and toes. For these structures, reference points are to be found within that particular extremity.
- 내전과 외전은 관상면을 따라 일어남.
The longitudinal axis (y-axis) is vertical, extending in a head-to-toe direction. Movements of medial (internal) and lateral (external) rotation in the extremities, as well as axial rotation in the spine, occur around it and through the transverse plane (Figure 2-4, C ).
종축(세로축)
- 사지의 회전 움직임
- 척추의 축회전 움직임이 일어남.
Axial rotation is used to describe this type of movement for all areas of the body except the scapula and clavicle. Rotation occurs about an anatomic axis, except in the case of the femur, which rotates around a mechanical axis.4 In the human extremity, the anterior surface of the extremity is used as a reference area. Rotation of the anterior surface toward the midsagittal plane of the body is medial (internal) rotation, and rotation away from the midsagittal plane is lateral (external) rotation. Supination and pronation are rotation movements of the forearm. Because the head, neck, thorax, and pelvis rotate about longitudinal axes in the midsagittal area, rotation cannot be named in reference to the midsagittal plane.
- 축회전은 견갑골과 쇄골을 제외한 모든 관절에서 일어남.
- Forearm에서 회내, 회외 움직임
- foot에서 회내, 회외 움직임이 있음.
Rotation of the head, spine, and pelvis is described as rotation of the anterior surface posteriorly toward the right or left. Rotation of the scapula is movement about a sagittal axis, rather than about a longitudinal axis. The terms clockwise or counterclockwise are used.
- 두부, 척추, 골반의 회전은 ...
- 견갑골의 회전은 ... 시계방향과 시계 반대방향의 회전이 있음.
관절 움직임의 탐구
1. 병진움직임 translation movement
Translational movements are linear movements or, simply, movements in a straight line. Gliding movements of the joint are translational in character. The term slide has also been used in referring to translational movements between joint surfaces. Posterior-to-anterior (P-A) glide (anterolisthesis) and anterior-to-posterior (A-P) glide (retrolisthesis) are translational movements along the z axis. Lateral-to-medial (L-M) glide and medial-tolateral (M-L) glide (laterolisthesis) translate along the x axis.
- 병진움직임(평행이동)은 선상움직임으로 선을 따라 이동하는 것을 의미함. gliding과 sliding이 있음.
- gliding 움직임은 병진움직임. P-A, A-P, L-M, M-L gliding이 있음.
2. 당김과 압박의 힘
Distraction and compression (altered interosseous spacing) translate along the y axis.
- 당김과 압박은 y축을 따라서 이동함.
3. 커브 선형움직임.
Curvilinear motion combines both rotational and translational movements and is the most common motion produced by the joints of the body (Figure 2-5).
- 꺾인 선형움직임은 회전과 병진움직임의 조합이고, 인체관절에서 가장 흔하게 발생하는 움직임.
Moreover, the potential exists for each joint to exhibit three translational movements and three rotational movements, constituting 6 degrees of freedom. The extent of each movement is based more or less on the joint anatomy and, specifically, the plane of the joint surface. Each articulation in the body has the potential to exhibit, to some degree, flexion, extension, right and left lateral flexion, right and left axial rotation, A-P glide, P-A glide, L-M glide, M-L glide, compression, and distraction.
3 방향 병진움직임과 회전움직임으로 6 자유도를 구성함. 각관절은 굴곡신전, 좌우측굴, 좌우 회전 움직임, A-P glide, P-A glide, L-M glide, M-L glide, compression and distraction.
관절분류
Joints are classified first by their functional capabilities and then are subdivided by their structural characteristics.
Synarthroses allow very little, if any, movement; diarthroses, or true synovial joints, allow significant movement. The structural characteristics of these joints are detailed in Table 2-2.
1. synarthroses 부동결합 관절
1) 섬유성 관절 : cranial suture
2) 연골성 관절 : 말단 경골-비골 관절, 성장판 관절(epiphysial plate), pubis, intervertebral disc
2. diarthrose 가동관절
1) uniaxial 단축 가동관절 - elbow, alantoaxial joint
2) biaxial 쌍축 가동관절 - saddle joint
3) multiaxial 다축 가동관절 - shoulder, hip joint
4) noaxial(plane) 평면 가동관절 - facet joint
활액관절(synovial joint)
Synovial joints are the most common joints of the human appendicular skeleton, representing highly evolved, movable joints. Although these joints are considered freely movable, the degree of possible motion varies according to the individual structural design, facet planes, and primary function (motion vs. stability). The components of a typical synovial joint include the bony elements, subchondral bone, articular cartilage, synovial membrane, fibroligamentous joint capsule, and articular joint receptors.
- 활액관절은 인체 대부분을 구성하는 대표적인 관절.
- 이 관절은 자유롭게 움직이는 것으로 생각되지만 각 관절의 움직임 정도는 각 구조, 관절염, 주요 기능(안정성, 움직임)에 따라 다름.
- 전형적인 활액관절은 "뼈, 연골하골, 연골, 관절면, 섬유인대관절낭, 관절 수용기로 구성됨.
An understanding of the basic anatomy of a synovial joint forms the foundation for appreciation of clinically significant changes in the joint that lead to joint dysfunction.
- 활액관절의 기초해부학 이해는 관절기능부전을 야기하는 심각한 변화를 이해하는데 중요한 역할을 함.
1. 뼈(bony element)
The bony elements provide the supporting structure that gives the joint its capabilities and individual characteristics
by forming lever arms to which intrinsic and extrinsic forces are applied. Bone is actually a form of connective tissue that has an inorganic constituent (lime salts). A hard outer shell of cortical bone provides structural support and surrounds the cancellous bone, which contains marrow and blood vessels that provide nutrition.
- 뼈는 인체를 지지하는 지레구조로 움직이는 관절을 제공
- 뼈는 석회, 인 등의 비생물적 구조를 포함한 결합조직.
- 뼈의 외부는 단단한 껍질(shell)구조 이고, 많은 혈관이 있어 영양을 공급받음.
Trabecular patterns develop in the cancellous bone, corresponding to mechanical stress applied to and required by the bone (Figure 2-6). Bone also has the important role of hemopoiesis (formation of blood cells). Furthermore, bone stores calcium and phosphorus, which it exchanges with blood and tissue fluids. Finally, bone has the unique characteristic of repairing itself with its own tissue as opposed to fibrous scar tissue, which all other body tissues use.
- 골소주 패턴은 뼈가 부하를 받는 방향에 따라 장력, 압박(tension and compression) 골소주 패턴을 가짐.
- 뼈는 칼슘과 인을 함유하여 근골격 구조를 만듬.
2. 관절연골(articular cartilage)
Articular cartilage covers the articulating bones in synovial joints and helps to transmit loads and reduce friction. It is bonded tightly to the subchondral bone through the zone of calcification, which is the end of bone visible on x-ray film. The joint space visible on x-ray film is composed of the synovial cavity and non calcified articular cartilage. In its normal composition, articular cartilage has four histologic areas or zones (Figure 2-7).
관절연골은 활액관절의 뼈의 관절면을 덮고 있고, 부하를 전달하고 마찰을 줄이는 역할.
정상관절의 조성을 보면 관절연골은 4개의 층으로 구분됨
1) gliding zone
2) tangential zone
3) radial zone
4) calcified catilage zone
These zones have been further studied and refined so that a wealth of newer information regarding cartilage has developed. The outermost layer of cartilage is known as the gliding zone, which itself contains a superficial layer (outer) and a tangential layer (inner). The outer segment is made up solely of collagen randomly oriented into flat bundles.
- 관절연골 표면은 gliding zone(활주 영역)으로 콜라겐이 풍부하게 배열
The tangential layer consists of densely packed layers of collagen, which are oriented parallel to the surface of the
joint.5 This orientation is along the lines of the joint motion, which implies that the outer layers of collagen are
stronger when forces are applied parallel to the joint motion rather than perpendicular to it.6 This particular orientation
of fibers provides a great deal of strength to the joint in normal motion. The gliding zone also has a role in protecting the deeper elastic cartilage. The transitional zone lies beneath the gliding zone. It represents an area where the orientation of the fibers begins to change from the parallel orientation of the gliding zone to the more perpendicular orientation of the radial zone.
- tangential 층은 치밀한 콜라겐 층으로 콜라겐이 관절면에 평행하게 배열됨
Therefore fiber orientation is more or less oblique and, in varying angles, formed from glucuronic acid and N- acetylgalactosamine with a sulfate on either the fourth or sixth position. The keratin compound is formed with galactose and N- acetylgalactosamine. All of this occurs in linked, repeating units (Figure 2-8).
- 관절연골의 섬유배열
Articular cartilage is considered mostly avascular. Articular cartilage must rely on other sources for nutrition, removal of waste products, and the process of repair. Therefore intermittent compression (loading) and distraction (unloading) are necessary for adequate exchange of nutrients and waste products. The highly vascularized synovium is believed to be a critical source of nutrition for the articular cartilage it covers.
- 관절연골은 혈관이 없기 때문에 영양공급과 이물질 제거, 손상회복은 다른 요소에 의지해야 함.
- 그래서 간헐적 압박부하와 이완은 영양공급, 이물질제거, 손상회복에 필수요소임.
- 혈관이 풍부한 활막이 관절연골을 위한 영양공급에 중요한 요소임.
The avascular nature of articular cartilage limits the potential for cartilage repair by limiting the availability of the repair products on which healing depends. Chondrocytes, the basic cells of cartilage that maintain and synthesize the matrix, are contained within a mesh of collagen and proteoglycan that does not allow them to migrate to the injury site from adjacent healthy cartilage.7
- 관절연골은 혈관이 없기 때문에 손상회복에 제한을 받음.
- 연골세포(chondrocyte)는 관절연골의 기질, 콜라겐, 프로테오글리칸을 합성하고 유지하는데 가장 기초 세포임.
Moreover, the articular cartilage matrix may contain substances that inhibit vascular and macrophage invasion and clot formation that are also necessary for healing.8 After an injury to the articular cartilage, the joint can return to an asymptomatic state after the transient synovitis subsides. Degeneration of the articular cartilage depends on the size and depth of the lesion, the integrity of the surrounding articular surface, the age and weight of the patient, associated meniscal and ligamentous lesions, and a variety of other biomechanical factors.7
- 관절연골 기질은 혈관이 없는 물질을 함유함.
- 대식세포 침윤과 clot 형성은 치유에 필수임.
- 관절연골이 손상된 후 관절은 일시적인 활액염 후에 무증상기로 되돌아갈 수 있음.
- 관절연골의 퇴행화는 손상의 크기와 깊이에 의존하고, 주위 관절면의 완전함, 나이, 체중 그리고 연관된 반월판, 인대 손상, 생체역학적 요소 등이 치유에 중요한 역할을 함.
Continuous passive motion has increased the ability of full-thickness defects in articular cartilage to heal, producing
tissue that closely resembles hyaline cartilage.9
- 지속적인 수동적 움직임은 관절연골 치유에 full-thickness 손상을 증가시킴.
3. 인대(ligamentous elements)
The primary ligamentous structure of a synovial joint is the joint capsule. Throughout the vertebral column, the
joint capsules are thin and loose. The capsules are attached to the opposed superior and inferior articular facets of adjacent vertebrae. Joint capsules in the spine have three layers.10 The outer layer is composed of dense fibroelastic connective tissue made up of parallel bundles of collagen fibers. The middle layer is composed of loose connective tissue and areolar tissue containing vascular structures. The inner layer consists of the synovial membrane. This joint capsules covers the posterior and lateral aspects of the zygapophyseal joint. The ligamentum flavum covers the joint capsules anteriorly and medially.
- 활액 관절의 1차 인대구조는 관절낭임.
- 예를들어 후관절의 관절낭은 얇고 loose함. 3개의 층으로 구성됨. 가장 바깥쪽은 fibroelastic 결합조직으로 구성되고 콜라겐 섬유의 parallel bundle로 구성됨. 중간층은 loose 결합조직으로 구성되고, 혈관구조를 포함한 근육 모양의 조직임. 내측은 활액막으로 구성됨.
- 후관절의 뒤쪽, 옆쪽은 관절낭이 덮고 있음. 황색인대는 앞쪽 내쪽의 관절낭을 덮고 있음.
4. 활액(synovial fluid)
Although the exact role of synovial fluid is still unknown, it is thought to serve as a joint lubricant or at least to interact with the articular cartilage to decrease friction between joint surfaces. This is of clinical relevance because immobilized joints have been shown to undergo degeneration of the articular cartilage.11 Synovial fluid is similar in composition to plasma, with the addition of mucin (hyaluronic acid), which gives it a high molecular weight and its characteristic viscosity.
- 활액의 정확한 기능은 아직 밝혀지지 않았지만, 관절에 윤활유 역할을 제공하고, 관절연골과 상호작용하여 관절면이 부딪히는 것을 막는 마찰을 줄이는 역할을 수행함.
- 활액은 조성이 혈장과 비슷하고 히알루론산과 함께 적절한 점탄성을 제공함.
Three models of joint lubrication exist. The controversy lies in the fact that no one model of joint lubrication applies to all joints under all circumstances. According to the hydrodynamic model, synovial fluid fills in spaces left by the incongruent joint surfaces. During joint movement, synovial fluid is attracted to the area of contact between the joint surfaces, resulting in the maintenance of a fluid film between moving surfaces. This model was the first to be described and works well with quick movement, but it would not provide adequate lubrication for slow movements and movement under increased loads.
- 관절 윤활유 역할에 대한 3가지 설명 모델이 있음.
- 관절윤활모델은 모든 관절환경을 설명할 수는 없음.
- 유체역학 모델에 의하면 활액은 관절공간을 채우고 서로 잘 맞지 않는 관절면을 채움. 관절이 움직일때, 활액은 관절면 사이의 접촉면이 당겨져지는데, 관절면사이의 활액필름을 유지함. 이러한 설명 모델은 빠른 움직임에 적합함. 하지만 증가하는 부하아래서 천천히 움직이는 윤활유를 제공하지는 못함.
The elastohydrodynamic model is a modification of the hydrodynamic model that considers the viscoelastic properties of articular cartilage whereby deformation of joint surfaces occurs with loading, creating increased contact between surfaces. This would effectively reduce the compression stress to the lubrication fluid. Although this model allows for loading forces, it does not explain lubrication at the initiation of movement or the period of relative zero velocity during reciprocating movements.12
- 유체탄성역학 모델은 유체역학모델을 수정한 이론으로 관절연골의 점탄성 성분을 고려한 것임.
In the boundary lubrication model, the lubricant is adsorbed on the joint surface, which would reduce the roughness of the surface by filling the irregularities and effectively coating the joint surface. This model allows for initial movement and zero velocity movements.
- 장벽윤활모델은 윤활물질이 관절면에서 흡수되고, ....
Moreover, boundary lubrication combined with the elastohydrodynamic model, creating a mixed model, meets the demands of the human synovial joint (Figure 2-9).
5. 관절의 수용기(신경), articular neurology
- type 1 mechanoreceptor는 muscle tone에 지속적인 영향을 줌
- type 2 mechanoreceptor는 muscle tone에 짧고 반사적인 영향을 줌
- type 3 mechanoreceptor는 muscle tone에 반사적으로 영향을 줌
Articular neurology gives invaluable information on the nature of joint pain, the relationship of joint pain to joint dysfunction, and the role of manipulative procedures in affecting joint pain. Synovial joints are innervated by
three or four varieties of neuroreceptors, each with a wide variety of parent neurons. The axons differ in diameter and conduction velocity, representing a continuum from the largest heavily myelinated A -fibers to the smallest
unmyelinated C fibers. All are derived from the dorsal and ventral rami, as well as the recurrent meningeal nerve of each segmental spinal nerve (Figure 2-10).
- 관절수용기는 관절기능부전과 관절통의 연관성, 관절통(joint pain)에서 중요한 정보를 제공하고, 관절통에 영향을 주는 수기치료의 역할, 이해에 중요한 역할을 함.
- 활액관절은 3-4가지의 신경에 의해서 지배되고 있음. 축삭은 굵기와 전도속도가 다름. 가장 굵은 섬유인 유수 A 섬유와 가장 가는 섬유인 무수초 C섬유가 있음. 관절을 지배하고 있는 모든 신경은 척수신경의 dorsal and ventral rami에서 시작되고 척추분절신경의 meningeal nerve로부터 시작함.
정리)
spinal nerve root - spinal nerve ganglion - sinuvertebral nerve to annulus fiborsus, articular facet innervation, PLL, interspinous and supraspinous ligament
anterior primary ramus - nerve to joint capsule
Information from these receptors spreads among many segmental levels because of multilevel ascending and descending primary afferents. The receptors are divided into the four groups according to their neurohistologic properties, which include three corpuscular mechanoreceptors and one nociceptor.13
- 척추관절(후관절)에 존재하는 기계적자극수용기와 통증수용기는 신경조직학 특성에 따라 4가지로 분류함.
관절낭 외측에 존재하는 type 1 수용기
Type I receptors are confined to the outer layers of the joint capsule and are stimulated by active or passive joint motions. Their firing rate is inhibited with joint approximation, and they have a low threshold, making them very sensitive to movement. Some are considered static receptors because they fire continually, even with no joint movement. Because they are slow adapting, the effects of movement are long lasting.
- Type 1 수용기는 관절낭의 외층(outer layer)에 한정되어 존재하고, 능동적 또는 수동적 관절움직임에 의해서 자극됨.
- type 1 수용기의 발화비율은 관절접근과 함께 억제되고, 낮은 역치를 가지고, 움직임에 매우 민감함.
- 어떤 것은 정적 수용기(static receptor)로 고려되는데, 그 이유는 그들은 심지어 움직임이 없을지라도 지속적으로 발화하기 때문.
- type 1 수용기는 느린적응 특성을 가지고 있기 때문에 움직임의 효과는 오래 지속됨.
Stimulation of type I receptors is involved with the following:
1. Reflex modulation of posture, as well as movement (kinesthetic sensations), through constant monitoring of outer joint tension
2. Perception of posture and movement
3. Inhibition of flow from pain receptors via an enkephalin synaptic interneuron transmitter
4. Tonic effects on lower motor neuron pools involved in the neck, limbs, jaw, and eye muscles
1. 바깥쪽 관절의 긴장을 지속적으로 모니터링하여 움직임뿐만 아니라 자세의 반사조절
2. 자세와 움직임의 지각
3. 엔케팔린 시냅스 중간뉴런 전달물질을 통해 통각수용기로부터의 흐름을 억제
4. 목, 사지, 턱, 눈 근육에서 하부운동신경원의 tonic 반응과 연관됨.
관절낭 심부층에 존재하는 type 2 기계적 수용기
Type II mechanoreceptors are found within the deeper layers of the joint capsule. They are also low threshold and again are stimulated with even minor changes in tension within the inner joint. Unlike type I receptors, however, type II receptors adapt very rapidly and quickly cease firing when the joint stops moving. Type II receptors are completely inactive in immobilized joints.
- type 2 기계적 수용기는 관절낭의 심부층에서 발견됨.
- type 2 수용기는 낮은 역치를 가지고 관절 내측에서 장력의 작은 변화를 감지함.
- type 1 수용기와 다르게, type 2 수용기는 빠르게 적응하여 관절움직임이 멈출때 빠르게 발화를 멈춤.
- type 2 수용기는 움직이지 않는 관절에서는 완전하게 inactive함.
Functions of the type II receptors are likely to include the following:
1. Movement monitoring for reflex actions and perhaps perceptual sensations
2. Inhibition of flow from pain receptors via an enkephalin synaptic interneuron neural transmitter
3. Phasic effects on lower motor neuron pools involved in the neck, limbs, jaw, and eye muscles
1. 반사적 움직임과 자세 자극을 위한 움직임 모니터링
2. 엔케팔린 시냅스 중간뉴런 신경전달물질을 통한 통증 수용기 흐름의 억제
3. 목, 사지, 턱, 눈 근육에서 하부운동신경원의 phasic 효과.
인대에 존재하는 type 3 기계적 감각 수용기
Type III mechanoreceptors are found in the intrinsic and extrinsic ligaments of the peripheral joints, but they had been previously thought to be absent from all of the synovial spinal joints. However, McLain14 examined 21 cervical facet capsules from three normal human subjects and found type III receptors, although they were less abundant than either type I or type II. These receptors are very slow adapters with a very high threshold because they are innervated by large myelinated fibers. They seem to be the joint version of the Golgi tendon organ in that they impose an inhibitory effect on motoneurons.
- type 3 기계적 감각수용기는 말초 관절의 내재, 외재 인대에서 발견됨. 하지만 척추후관절에는 존재하지 않는 것으로 인정됨.
- 하지만 McLain은 21개 경추 후관절낭을 연구한 결과 type 1, 2보다 적지만 type 3 기계적 수용기가 있음을 밝혀냄.
- 이러한 수용기는 큰 수초화된 신경섬유에 의해 지배되고 있어 매우 느리게 적응하고, 높은 역치를 가지고 있음. .....
Although the functions of type III receptors are not completely understood, it is likely that they achieve the following:
1. Monitor direction of movement
2. Create a reflex effect on segmental muscle tone, providing a “braking mechanism” against movement that overdisplaces the joint
3. Recognize potentially harmful movements
1. 움직임의 방향을 모니터하는 역할
2. 분절근육 tone의 반사효과를 만들고, 관절의 위치가 과도하게 움직임에 대항하여 breaking mechanism 제공
3. 해로운 움직임을 인지
무수신경 섬유인 자유신경종말을 구성하는 type 4 수용기
Type IV receptors are composed of a network of free nerve endings, as well as unmyelinated fibers. They are associated with pain perception and include many different varieties with large ranges of sensations, including itch and tickle. They possess an intimate physical relationship to the mechanoreceptors and are present throughout the fibrous portions of the joint capsule and ligaments.
- type 4 수용기는 무수신경 섬유로 자유신경 종말의 네트워크를 구성.
- type 4 수용기는 가려움, 간지임을 포함한 다양한 감각을 포함한 통증지각과 연관됨.
- type 4 수용기는 인대와 관절의 섬유성 부분을 포함하여 존재하고, 기계적 수용기를 포함함.
They are absent from articular cartilage and synovial linings, although they have been found in synovial folds.15,16 They are very high-threshold receptors and are completely inactive in the physiologic joint. Joint capsule pressure, narrowing of the intervertebral disc, fracture of a vertebral body, dislocation of the zygapophyseal joints, chemical irritation, and interstitial edema associated with acute or chronic inflammation may all activate the nociceptive system.
- type 4 수용기는 관절연골과 synovial lining에는 존재하지 않음. synovial fold에는 많이 type 4 수용기가 많이 발견됨.
- type 4 수용기는 높은 역치의 수용기이고, 생리학적 관절에서 완전히 inactive.
- 관절낭의 압력, 디스크의 협소, 척추체의 골절, 후관절의 탈구, 화학적 자극(irritation), 간질부종 등은 급성 또는 만성 염증과 연관되어 유해자극 시스템을 활성화함.
The basic functions of the nociceptors include the following:
1. Evocation of pain
2. Tonic effects on neck, limb, jaw, and eye muscles
3. Central reflex connections for pain inhibition
4. Central reflex connections for a myriad of autonomic effects
1. 통증을 환기시킴
2. 경추, 사지, 턱, 눈 근육의 tonic effect
3. 통증억제를 위한 중추반응 연결
4. 자율신경 반응의 myriad(무수히 많음)를 위한 중추 반응연결
A relationship exists between mechanoreceptors and nociceptors such that when the mechanoreceptors function correctly, an inhibition of nociceptor activity occurs. 13 The converse also holds true; when the mechanoreceptors fail to function correctly, inhibition of nociceptors will occur less, and pain will be perceived.13 Discharges from the articular mechanoreceptors are polysynaptic and produce coordinated facilitory and inhibitory reflex changes in the spinal musculature. This provides a significant contribution to the reflex control of these muscles.13
- 기계적수용기와 유해자극수용기 사이에 연관성이 있는데, 기계적 수용기가 올바로 기능을 할때, 유해자극 활성 억제가 일어남.
- 기계적 수용기가 올바른 기능에 실패할때, 유해자극 억제가 덜 일어나 통증이 지각될 수 있음.
- 관절 기계적 수용기로부터 discharge는 polysynaptic이고, 근육에 협응적인 촉진과 억제 반사 변화가 발생함.
- 이 과정에서 근육의 반사적 조절에 중요한 공헌을 함.
Gillette15 suggests that a chiropractic adjustment produces sufficient force to coactivate a wide variety of mechanically sensitive receptor types in the paraspinal tissues. The A -mechanoreceptors and C-polymodal nociceptors, which can generate impulses during and after stimulation, may well be the most physiologically interesting component of the afferent bombardment initiated by high-velocity, low-amplitude manipulations.
- 질레트는 수기치료(chiropratic adjustment)가 척추주위 조직에 기계적으로 민감한 수용기 형태를 다양하게 활성화하는 충분한 힘을 제공한다고 제안함.
- a 기계적 수용기와 c 유해자극수용기는 자극 동안, 자극 후에 임펄스를 생성하여 물리적으로 흥미로운 구심성 충격이 됨.
- 그 자극은 high velocity, low amplitude manipulation임.
For normal function of the joint structures, an integration of proprioception, kinesthetic perception, and reflex regulation is absolutely essential.
- 관절구조의 정상기능을 위하여 고유수용감각의 통합, 운동감각의 인지(kinestehtic perception), 반사조절은 필수임.
Pain-sensitive fibers also exist within the annulus fibrosus of the disc. Malinsky16 demonstrated the presence of a variety of free and complex nerve endings in the outer one third of the annulus. The disc is innervated posteriorly by the recurrent meningeal nerve (sinuvertebral nerve) and laterally by branches of the gray rami communicants. During evaluation of disc material surgically removed before spinal fusion, Bogduk17 found abundant nerve endings with various morphologies. The varieties of nerve endings included free terminals, complex sprays, and convoluted tangles. Furthermore, many of these endings contained substance P, a putative transmitter substance involved in nociception.
- 통증 민감섬유는 추간판 섬유륜에 존재함. 메인스키는 추간판 섬유륜 바깥쪽 1/3부위에 다양한 신경종말이 존재함을 밝혀냄.
- 추간판의 후면은 sinuvertebral nerve에 의해서 지배받고, 추간판의 외측은 gray rami communicantes의 가지에 의해 지배받음.
- 척추수술로 추간판을 제거한 연구에 따르면 .. 보그독은 추간판에 다양한 신경지배를 찾아냄. ..
Shinohara18 reported the presence of such nerve fibers accompanying granulation tissue as deep as the nucleus in
degenerated discs. Freemont et al19 examined discs from individuals free of back pain and from those with back
pain. They identified nerve fibers in the outer one third of the annulus in pain-free disc samples, but they found nerve fibers extending into the inner one third of the annulus and into the nucleus pulposus of the discs from the pain sample.
- 시노하라는 퇴행화된 추간판의 수핵과 같은 깊은 부위에 육아조직을 동반한 신경섬유가 있다고 보고함. 프리몬트는 통증이 있는 샘플에서 섬유륜 내측의 1/3부위, 수핵부위에 신경이 확장되어 연결되어 있음을 밝혀냄.
They suggest that their findings of isolated nerve fibers that express substance P deep within diseased intervertebral
discs may play an important role in the pathogenesis of chronic low back pain. Abundant evidence shows that the disc can be painful, supporting the ascribed nociceptive function of the free nerve endings.16-27
- 많은 연구에서 추간판이 통증조직임을 밝혀냄.
Because structure and function are interdependent, the study of joint characteristics should not isolate structure
from function. The structural attributes of a joint are defined as the anatomic joint, consisting of the articular surfaces with the surrounding joint capsule and ligaments, as well as any intraarticular structures.
- 구조와 기능은 상호 의존적이기 때문에, 관절특성 탐구는 기능으로부터 구조를 고립시켜서는 안됨.
- 관절의 구조적 특성은 해부학적 관절로 정의되고, 관절면의 ....
The functional attributes are defined as the physiologic joint, consisting of the anatomic joint plus the surrounding soft tissues, including the muscles, connective tissue, nerves, and blood vessels (Figure 2-11).
- 구조와 기능은 서로 연관되어 있기 때문에, 관절 특성의 연구는 기능으로부터 구조를 고립시켜서는 안됨.
- 관절의 기능적 특성은 생리적 관절, 해부학적 관절에 근육, 결합조직, 신경, 혈관 등의 주위조직을 결합시켜야 함.
6. 관절기능(joint function)
뼈운동학(osteokinematic)과 관절운동학(arthrokinematics)
The physiologic movement possible at each joint occurs when muscles contract or when gravity acts on bone to move it. This motion is termed osteokinematic movement. Osteokinematic movement describes how each bony joint partner moves relative to the other. The specific movements that occur at the articulating joint surfaces are referred to as arthrokinematic movement. Consideration of the motion between bones alone or osteokinematic movement is insufficient, because no concern is given to what occurs at the joint and because movement commonly involves coupling of motion around different axes.
- 각관절에 물리적인 움직임은 근육이 수축할때나, 뼈에 중력이 작용하여 움직일때 발생함. 이런 움직임을 osteokinematic(뼈운동학) 움직임이라고 함. 뼈운동학 움직임은 각관절 파트너가 어떻게 움직여 연관되는지를 묘사함.
- 관절면에서 일어나는 특별한 움직임과 연관된 것을 관절운동학이라고 함.
Furthermore, arthrokinematic movements consider the forces applied to the joint and include the accessory motion
present in a particular articulation. It is therefore important to relate osteokinematic movement to arthrokinematic movement when evaluating joint motion (Figure 2-12).
- 관절운동학 움직임은 관절에 적용된 힘과 관절에 부수적인 움직임을 포함함.
- 그래서 관절움직임을 평가할때 뼈운동학과 관절운동학의 연관성이 중요함.
This involves determining the movement of the mechanical axis of the moving bone relative to the stationary joint surface. The mechanical axis of a joint is defined as a line passing through the moving bone, oriented perpendicular to the center of the stationary joint surface (Figure 2-13).
- 정지된 관절면과 연관된 뼈 움직임의 기계적축을 결정하는 것이 중요함.
- 관절의 기계적 축은 정지된 관절면의 중심과 중력을 받은 힘의 축의 연관성을 이해하는 것이 중요함.
When one joint surface moves relative to the other, spin, roll, slide, or combinations occur. MacConnail and Basmajian28 use the term spin to describe rotational movement around the mechanical axis, which is possible as a pure movement only in the hip, shoulder, and proximal radius. Roll occurs when points on the surface of one bone contact points at the same interval of the other bone. Slide occurs when only one point on the moving joint surface contacts various points on the opposing joint surface (Figure 2-14).
- 하나의 관절면이 회전, roll, slide등의 움직임과 연관되어 움직임.
- 맥코넬은 spin을 기계적 축 주위로 회전하는 움직임으로 정의함. roll과 slide 아래 참조
In most joints of the human body, these motions occur simultaneously. The concave-convex rule relates to this expected coupling of rotational (roll) and translational (slide) movements. When a concave surface moves on a convex surface, roll and slide movements should occur in the same direction. When a convex surface moves on a concave surface, however, roll and slide should occur in opposite directions (Figure 2-15).
- 인체 모든 관절은 이러한 움직임이 동시다발적으로 일어남. 볼록-오목 규칙이 회전, roll, slide움직임과 짝을 이루면서 일어남.
- 오목면은 볼록면을 움직이고, roll and slide움직임은 같은 방향으로 일어남.
참고) 임상에서 문제가 되는 것은 B와같은 관절끼임으로 관절압박이 심해지는 경우임.
Pure roll movement tends to result in joint dislocation, whereas pure slide movement causes joint surface impingement (Figure 2-16).
- 순수한 roll 움직임은 관절 탈구를 야기하고, 순수한 slide움직임은 관절면 끼임을 야기함.
Moreover, coupling of roll and slide is important anatomically because less articular cartilage is necessary in a joint to allow for movement and may decrease wear on the joint. These concepts are instrumental in clinical decision making regarding the restoration of restricted joint motion.
- 짝으로 움직이는 roll and slide 움직임은 해부학적으로 매우 중요함.
Roll and spin can be restored with passive range- of-motion procedures that induce the arthrokinematic movements of the dysfunctional joint. Manipulative (thrust) techniques are needed to restore slide movements and can also be used for roll and spin problems.29
- 기능부전관절의 관절운동학 움직임을 유도하는 roll과 spin은 수동적 관절움직임과 함께 회복될 수 있음.
- 관절 수기치료 테크닉은 slide움직임을 회복하는 것이 필요함. 그리고 roll과 spin 문제 해결을 위해 사용될 수 있음.
In addition, when an object moves, the axis around which the movement occurs can vary in placement from one instant to another. The term instantaneous axis of rotation (IAR) is used to denote this location point. Asymmetric forces applied to the joint can cause a shift in the normal IAR. Furthermore, vertebral movement may be more easily analyzed as the IAR becomes more completely understood (Figure 2-17).
- 인체가 움직일때, 움직임의 축은...
- 회전을 위한 순간축은 이러한 축의 위치를 나타내는데 사용하는 용어임.
- 비대칭적인 힘이 관절에 적용되면 정상적인 IAR은 이동함.
- 게다가, 척추 움직임은 ...
White and Panjabi1 point out that the value of this concept is that any kind of plane motion can be described relative to the IAR. Complex motions are simply regarded as many very small movements with many changing IARs.1 This concept is designed to describe plane movement, or movement in two dimensions. When three-dimensional motion occurs between objects, a unique axis in space is defined called the helical axis of motion (HAM), or screw axis of motion (Figure 2-18).
- 판자비는 이러한 용어 개념의 가치를 찾아냄.
- instantaneous axis of rotation은 복잡한 움직임을 간단하게 변화시킴.
- helical axis of motion의 개념
HAM is the most precise way to describe motion occurring between irregularly shaped objects, such as anatomic structures, because it is difficult to consistently and accurately identify reference points for such objects. Clearly, most movements occur around and through several axes simultaneously, so pure movements in the human frame rarely occur. The nature and extent of individual joint motion are determined by the joint structure and, specifically, by the shape and direction of the joint surfaces. No two opposing joint surfaces are perfectly matched, nor are they perfectly geometric. All joint surfaces have some degree of curvature that is not constant but changing from point to point. Because of the incongruence between joint surfaces, some joint space and “play” must be present to allow free movement.
HAM은 불규칙한 형태의 움직임을 정확히 묘사하는 방법임.
- 대부분의 움직임은 몇개의 축이 동시에 일어남. 그래서 인체에서 순수한 움직임은 드물게 발생.
This joint play is an accessory movement of the joint that is essential for normal functioning of the joint. The resting position of a joint, or its neutral position, occurs when the joint capsule is most relaxed and the greatest amount of play is possible. When injured, a joint often seeks this maximum loose-packed position to allow for swelling.
- 관절가동은 관절의 정상 기능을 위한 필수 치료테크닉임.
- 관절의 Resting position, 중립위치는 관절낭이 가장 이완되고 관절움직임이 잘 일어날 수 있는 상태임
- 관절이 손상되었을때, 부종을 줄이기 위해 가장 관절이 열리는 자세를 찾는 것!
-
The close-packed position occurs when the joint capsule and ligaments are maximally tightened. Moreover, there is maximal contact between the articular surfaces, making the joint very stable and difficult to move or separate.
- 관절이 닫힌 상태는 관절낭과 인대가 가장 최대로 긴장되어 있는 상태임. 게다가 관절면이 가장 많이 접촉하고 있는 상태이고, 매우 안정적이고 움직이기 힘든 상태임.
Joint surfaces will approximate or separate as the joint goes through a range of motion. This is the motion of compression and distraction. A joint moving toward its close-packed position is undergoing compression, and a joint moving toward its open-packed position is undergoing distraction28 (Table 2-3).
- 관절면은 ROM을 통해 가까워지거나 분리될 수 있음.
- 이는 압박과 늘어남의 움직임.
- 하나의 관절이 닫힌 관절상태로 움직이는 것은 압박을 야기하고, 열린관절상태로 움직이는 것은 distraction을 야기함.
5가지 관절 움직임
Joint motion consists of five qualities of movement that must be present for normal joint function. These five qualities are joint play, active range of motion, passive range of motion, end feel or play, and paraphysiologic movement. From the neutral close-packed position, joint play should be present.
- joint play
- 능동 관절움직임
- 수동관절 움직임
- end feel
- paraphysiologic movement
- 반드시 중립적 닫힌관절 상태에서 관절가동은 시행되어야 함.
This is followed by a range of active movement under the control of the musculature. The passive range of motion is produced by the examiner and includes the active range, plus a small degree of movement into the elastic range. The elastic barrier of resistance is then encountered, which exhibits the characteristic movement of end feel.
- 근육구조의 조절하에서 능동적 움직임이 뒤따름.
- 수동적 움직임은 검사자에 의해서 탄성범위내의 범위에 더해서 능동적 범위를 포함한 움직임
- 저항의 탄성경계를 만나고 그 단계에서 움직임의 끝느낌이 드러남.
The small amount of movement available past the elastic barrier typically occurs post cavitation and has been classified as paraphysiologic movement. Movement of the joint beyond the paraphysiologic barrier takes the joint beyond its limit of anatomic integrity and into a pathologic zone of movement.
Should a joint enter the pathologic zone, there will be damage to the joint structures, including the osseous and soft tissue components (see Figures 3-22 and 3-23).
Both joint play and end-feel movements are thought to be necessary for the normal functioning of the joint. A
loss of either movement can result in a restriction of motion, pain, and most likely, both.
- 관절가동과 끝느낌 움직임은 관절의 정상기능을 위해 필수임. 움직임 제한은 결국 통증과 기능부전을 야기함.
Active movements can be influenced by exercise and mobilization, and passive movements can be influenced by traction and some forms of mobilization, but end-feel movements are affected when the joint is taken through the elastic barrier, creating a sudden yielding of the joint and a characteristic cracking noise (cavitation). This action can be accomplished
with deep mobilization and a high-velocity, low amplitude manipulative thrust.
- 능동적 움직임은 운동과 가동, 수동움직임에 의해 영향을 받음.
- 끝느낌 움직임은 관절이 탄성경계를 넘어설때 허용지점을 창조하고, cracking noise가 발생함.
- 이러한 동작이 high-velocity, low amplitude manipulative thrust임.
첫댓글 감사합니다.
좋은글잘보았습니다
좋은글 잘 보았습니다(2)
잘보앗습니다 정말 좋네요
읽기
좋은 자료 너무 감사합니다.*^^*
정말 좋은 자료네요. 궁금했던 내용이 다 연결되어 있네요,^^
네.. ㅎㅎㅎ
내용 잘보고 갑니다. 정말 좋은 자료입니다 감사합니다
좋은 자료 감사합니다~ 두고두고 읽어보겠습니다
읽기 관절생체역학
귀한 자료 감사히 잘보았습니다~
귀한 자료 감사합니다.
감사합니다^^
막 가입했습니다. 열정이 넘치십니다. 감사합니다.
감사합니다. 짱
Mechanics is the study of forces and their effects.
Biomechanics is the application of mechanical laws to living structures, specifically to the locomotor system of the human body . Therefore biomechanics concerns the interrelations of the skeleton, muscles, and joints. The bones form the levers, the ligaments surrounding the joints form hinges, and the muscles provide the forces for moving the levers about the joints.
- mechanics(역학)이란 힘(force)과 그것들의 작용에 대한 탐구
- biomechanics(생체역학)이란 살아있는 인체의 운동계의 역학적 법칙을 적용하는 탐구.
- 그래서 생체역학은 골격(뼈), 근육, 관절의 힘과 작용에 대한 상관관계를 탐구함.
- 뼈는 지레(lever)를 제공하고, 인대는 뼈와 뼈를 연결하여 지지하고, 근육은 관절에 대하여 지레를 움직이는 힘을 제공함.
3가지 지레(levers) - 인체에 주어지는 힘, 축, 저항의 관계를 이해하는 필수지식
감사합니다^^
생체역학의 기초. 감사합니다