; 거의 한 세기 전 프랑스 수학자 푸앵카레가 처음 제시한 이 문제는 다음과 같은 간단해 보이는 질문에서 시작된다 : 사과와 도넛을 어떻게 구별할 수 있을까? 정말이지 이 질문은 100만 달러의 상금과는 거리가 먼 질문으로 보인다. 하지만 이 질문은 어렵다. 왜냐하면 푸앵카레가 보다 일반적인 경우들에 적용될 수 있는 수학적 해답을 요구했기 때문이다. 그 요구 때문에, 한 입 먹어보면 알지 않느냐는 자명한 해답들은 제거된다. 푸앵카레 자신이 제시한 해답을 알아보자. 만일 당신이 사과 표면에 고무 밴드를 늘여놓았다면, 당신은 그 밴드를 천천히 움직여서 한 점이 되도록 축소시킬 수 있다. 고무 밴드를 자를 필요도 없고, 표면을 떠날 필요도 없다. 반면에 도넛 둘레를 한 바퀴 감도록 고무 밴드를 늘여놓았다고 해보자. 이 경우에는 고무 밴드나 도넛을 자르지 않는 한, 고무 밴드를 한 점으로 축소시킬 방법이 없다. 축소되는 밴드를 이용한 이 구분법을 사과와 도넛의 5차원 변양태에서도 적용할 수 있을까? 푸앵카레가 묻는 질문이 바로 이것이다. 놀랍게도 아직 아무도 이 질문에 답하지 못했다. 푸앵카레 추측에 따르면, 고무 밴드 발상을 이용해서 4차원 사과를 식별할 수 있다.
이 문제는 현대 수학에서 가장 흥미로은 분양들 중 하나인 위상학의 핵심에 놓여 있다. 위상학은 그 자체로 흥미롭고 때로는 기발한 발상으로 수학적 이성인들을 사로잡을 뿐만 아니라 - 예를 들면 위상학은 도넛과 커프 잔이 심층적이고 그본적인 관점에서는 동일하다고 말한다 - 수학의 여러 분여들과 관계된다. 위상학의 발전은 컴퓨터 칩을 비롯한 전자부품의 설계와 생산, 운송, 뇌 연구, 심지어 영화산업에도 영향을 끼친다.