|
13
An uneasy tension disturbs the heart of the selfish gene theory. It is the tension between gene and individual body as fundamental agent of life. On the one hand we have the beguiling image of independent DNA replicators, skipping like chamois, free and untrammelled down the generations, temporarily brought together in throwaway survival machines, immortal coils shuffling off an endless succession of mortal ones as they forge towards their separate eternities. On the other hand we look at the individual bodies themselves and each one is obviously a coherent, integrated, immensely complicated machine, with a conspicuous unity of purpose. A body doesn't look like the product of a loose and temporary federation of warring genetic agents who hardly have time to get acquainted before embarking in sperm or egg for the next leg of the great genetic diaspora. It has one single-minded brain which coordinates a cooperative of limbs and sense organs to achieve one end. The body looks and behaves like a pretty impressive agent in its own right.
In some chapters of this book we have indeed thought of the individual organism as an agent, striving to maximize its success in passing on all its genes. We imagined individual animals making complicated economic ‘as if’ calculations about the genetic benefits of various courses of action. Yet in other chapters the fundamental rationale was presented from the point of view of genes. Without the gene's-eye view of life there is no particular reason why an organism should ‘care’ about its reproductive success and that of its relatives, rather than, for instance, its own longevity.
How shall we resolve this paradox of the two ways of looking at life? My own attempt to do so is spelled out in The Extended Phenotype, the book that, more than anything else I have achieved in my professional life, is my pride and joy. This chapter is a brief distillation of a few of the themes in that book, but really I'd almost rather you stopped reading now and switched to The Extended Phenotype! {235}
On any sensible view of the matter Darwinian selection does not work on genes directly. DNA is cocooned in protein, swaddled in membranes, shielded from the world and invisible to natural selection. If selection tried to choose DNA molecules directly it would hardly find any criterion by which to do so. All genes look alike, just as all recording tapes look alike. The important differences between genes emerge only in their effects. This usually means effects on the processes of embryonic development and hence on bodily form and behaviour. Successful genes are genes that, in the environment influenced by all the other genes in a shared embryo, have beneficial effects on that embryo. Beneficial means that they make the embryo likely to develop into a successful adult, an adult likely to reproduce and pass those very same genes on to future generations. The technical word phenotype is used for the bodily manifestation of a gene, the effect that a gene, in comparison with its alleles, has on the body, via development. The phenotypic effect of some particular gene might be, say, green eye colour. In practice most genes have more than one phenotypic effect, say green eye colour and curly hair. Natural selection favours some genes rather than others not because of the nature of the genes themselves, but because of their consequences — their phenotypic effects.
Darwinians have usually chosen to discuss genes whose phenotypic effects benefit, or penalize, the survival and reproduction of whole bodies. They have tended not to consider benefits to the gene itself. This is partly why the paradox at the heart of the theory doesn't normally make itself felt. For instance a gene may be successful through improving the running speed of a predator. The whole predator's body, including all its genes, is more successful because it runs faster. Its speed helps it survive to have children; and therefore more copies of all its genes, including the gene for fast running, are passed on. Here the paradox conveniently disappears because what is good for one gene is good for all.
But what if a gene exerted a phenotypic effect that was good for itself but bad for the rest of the genes in the body? This is not a flight of fancy. Cases of it are known, for instance the intriguing phenomenon called meiotic drive. Meiosis, you will remember, is the special kind of cell division that halves the number of chromosomes and gives rise to sperm cells or egg cells. Normal meiosis is a completely fair lottery. Of each pair of alleles, only one can be the lucky one that enters any given sperm or egg. But it is equally likely to {236} be either one of the pair, and if you average over lots of sperms (or eggs) it turns out that half of them contain one allele, half the other. Meiosis is fair, like tossing a penny. But, though we proverbially think of tossing a penny as random, even that is a physical process influenced by a multitude of circumstances — the wind, precisely how hard the penny is flicked, and so on. Meiosis, too, is a physical process, and it can be influenced by genes. What if a mutant gene arose that just happened to have an effect, not upon something obvious like eye colour or curliness of hair, but upon meiosis itself? Suppose it happened to bias meiosis in such a way that it, the mutant gene itself, was more likely than its allelic partner to end up in the egg. There are such genes and they are called segregation distorters. They have a diabolical simplicity. When a segregation distorter arises by mutation, it Will spread inexorably through the population at the expense of its allele. It is this that is known as meiotic drive. It will happen even if the effects on bodily welfare, and on the welfare of all the other genes in the body, are disastrous.
Throughout this book we have been alert to the possibility of individual organisms ‘cheating’ in subtle ways against their social companions. Here we are talking about single genes cheating against the other genes with which they share a body. The geneticist James Crow has called them ‘genes that beat the system’. One of the best-known segregation distorters is the so-called t gene in mice. When a mouse has two t genes it either dies young or is sterile, t is therefore said to be ‘lethal’ in the homozygous state. If a male mouse has only one t gene it will be a normal, healthy mouse except in one remarkable respect. If you examine such a male's sperms you will find that up to 95 per cent of them contain the t gene, only 5 per cent the normal allele. This is obviously a gross distortion of the 50 per cent ratio that we expect. Whenever, in a wild population, a t allele happens to arise by mutation, it immediately spreads like a brush fire. How could it not, when it has such a huge unfair advantage in the meiotic lottery? It spreads so fast that, pretty soon, large numbers of individuals in the population inherit the t gene in double dose (that is, from both their parents). These individuals die or are sterile, and before long the whole local population is likely to be driven extinct. There is some evidence that wild populations of mice have, in the past, gone extinct through epidemics of t genes. {237}
Not all segregation distorters have such destructive side-effects as t. Nevertheless, most of them have at least some adverse consequences. (Almost all genetic side-effects are bad, and a new mutation will normally spread only if its bad effects are outweighed by its good effect. If both good and bad effects apply to the whole body, the net effect can still be good for the body. But if the bad effects are on the body, and the good effects are on the gene alone, from the body's point of view the net effect is all bad.) In spite of its deleterious side-effects, if a segregation distorter arises by mutation it will surely tend to spread through the population. Natural selection (which, after all, works at the genie level) favours the segregation distorter, even though its effects at the level of the individual organism are likely to be bad.
Although segregation distorters exist they aren't very common. We could go on to ask why they aren't common, which is another way of asking why the process of meiosis is normally fair, as scrupulously impartial as tossing a good penny. We'll find that the answer drops out once we have understood why organisms exist anyway.
The individual organism is something whose existence most biologists take for granted, probably because its parts do pull together in such a united and integrated way. Questions about life are conventionally questions about organisms. Biologists ask why organisms do this, why organisms do that. They frequently ask why organisms group themselves into societies. They don't ask — though they should — why living matter groups itself into organisms in the first place. Why isn't the sea still a primordial battleground of free and independent replicators? Why did the ancient replicators club together to make, and reside in, lumbering robots, and why are those robots — individual bodies, you and me — so large and so complicated?
It is hard for many biologists even to see that there is a question here at all. This is because it is second nature for them to pose their questions at the level of the individual organism. Some biologists go so far as to see DNA as a device used by organisms to reproduce themselves, just as an eye is a device used by organisms to see! Readers of this book will recognize that this attitude is an error of great profundity. It is the truth turned crashing on its head. They will also recognize that the alternative attitude, the selfish gene view of life, has a deep problem of its own. That problem — almost the reverse one — is why individual organisms exist at all, especially in a {238} form so large and coherently purposeful as to mislead biologists into turning the truth upside down. To solve our problem, we have to begin by purging our minds of old attitudes that covertly take the individual organism for granted; otherwise we shall be begging the question. The instrument with which we shall purge our minds is the idea that I call the extended phenotype. It is to this, and what it means, that I now turn.
The phenotypic effects of a gene are normally seen as all the effects that it has on the body in which it sits. This is the conventional definition. But we shall now see that the phenotypic effects of a gene need to be thought of as all the effects that it has on the world. It may be that a gene's effects, as a matter of fact, turn out to be confined to the succession of bodies in which the gene sits. But, if so, it will be just as a matter of fact. It will not be something that ought to be part of our very definition. In all this, remember that the phenotypic effects of a gene are the tools by which it levers itself into the next generation. All that I am going to add is that the tools may reach outside the individual body wall. What might it mean in practice to speak of a gene as having an extended phenotypic effect on the world outside the body in which it sits? Examples that spring to mind are artefacts like beaver dams, bird nests and caddis houses.
Caddis flies are rather nondescript, drab brown insects, which most of us fail to notice as they fly rather clumsily over rivers. That is when they are adults. But before they emerge as adults they have a rather longer incarnation as larvae walking about the river bottom. And caddis larvae are anything but nondescript. They are among the most remarkable creatures on earth. Using cement of their own manufacture, they skilfully build tubular houses for themselves out of materials that they pick up from the bed of the stream. The house is a mobile home, carried about as the caddis walks, like the shell of a snail or hermit crab except that the animal builds it instead of growing it or finding it. Some species of caddis use sticks as building materials, others fragments of dead leaves, others small snail shells. But perhaps the most impressive caddis houses are the ones built in local stone. The caddis chooses its stones carefully, rejecting those that are too large or too small for the current gap in the wall, even rotating each stone until it achieves the snuggest fit.
Incidentally, why does this impress us so? If we forced ourselves to think in a detached way we surely ought to be more impressed by the architecture of the caddis's eye, or of its elbow joint, than by the {239} comparatively modest architecture of its stone house. After all, the eye and the elbow joint are far more complicated and ‘designed’ than the house. Yet, perhaps because the eye and elbow joint develop in the same kind of way as our own eyes and elbows develop, a building process for which we, inside our mothers, claim no credit, we are illogically more impressed by the house.
Having digressed so far, I cannot resist going a little further. Impressed as we may be by the caddis house, we are nevertheless, paradoxically, less impressed than we would be by equivalent achievements in animals closer to ourselves. Just imagine the banner headlines if a marine biologist were to discover a species of dolphin that wove large, intricately meshed fishing nets, twenty dolphin-lengths in diameter! Yet we take a spider web for granted, as a nuisance in the house rather than as one of the wonders of the world. And think of the furore if Jane Goodall returned from Gombe stream with photographs of wild chimpanzees building their own houses, well roofed and insulated, of painstakingly selected stones neatly bonded and mortared! Yet caddis larvae, who do precisely that, command only passing interest. It is sometimes said, as though in defence of this double standard, that spiders and caddises achieve their feats of architecture by ‘instinct’. But so what? In a way this makes them all the more impressive.
Let us get back to the main argument. The caddis house, nobody could doubt, is an adaptation, evolved by Darwinian selection. It must have been favoured by selection, in very much the same way as, say, the hard shell of lobsters was favoured. It is a protective covering for the body. As such it is of benefit to the whole organism and all its genes. But we have now taught ourselves to see benefits to the organism as incidental, as far as natural selection is concerned. The benefits that actually count are the benefits to those genes that give the shell its protective properties. In the case of the lobster this is the usual story. The lobster's shell is obviously a part of its body. But what about the caddis house?
Natural selection favoured those ancestral caddis genes that caused their possessors to build effective houses. The genes worked on behaviour, presumably by influencing the embryonic development of the nervous system. But what a geneticist would actually see is the effect of genes on the shape and other properties of houses. The geneticist should recognize genes ‘for’ house shape in precisely the same sense as there are genes for, say, leg shape. Admittedly, {240} nobody has actually studied the genetics of caddis houses. To do so you would have to keep careful pedigree records of caddises bred in captivity, and breeding them is difficult. But you don't have to study genetics to be sure that there are, or at least once were, genes influencing differences between caddis houses. All you need is good reason to believe that the caddis house is a Darwinian adaptation. In that case there must have been genes controlling variation in caddis houses, for selection cannot produce adaptations unless there are hereditary differences among which to select.
Although geneticists may think it an odd idea, it is therefore sensible for us to speak of genes ‘for’ stone shape, stone size, stone hardness and so on. Any geneticist who objects to this language must, to be consistent, object to speaking of genes for eye colour, genes for wrinkling in peas and so on. One reason the idea might seem odd in the case of stones is that stones are not living material. Moreover, the influence of genes upon stone properties seems especially indirect. A geneticist might wish to claim that the direct influence of the genes is upon the nervous system that mediates the stone-choosing behaviour, not upon the stones themselves. But I invite such a geneticist to look carefully at what it can ever mean to speak of genes exerting an influence on a nervous system. All that genes can really influence directly is protein synthesis. A gene's influence upon a nervous system, or, for that matter, upon the colour of an eye or the wrinkliness of a pea, is always indirect. The gene determines a protein sequence that influences X that influences Y that influences Z that eventually influences the wrinkliness of the seed or the cellular wiring up of the nervous system. The caddis house is only a further extension of this kind of sequence. Stone hardness is an extended phenotypic effect of the caddis's genes. If it is legitimate to speak of a gene as affecting the wrinkliness of a pea or the nervous system of an animal (all geneticists think it is) then it must also be legitimate to speak of a gene as affecting the hardness of the stones in a caddis house. Startling thought, isn't it? Yet the reasoning is inescapable.
We are ready for the next step in the argument: genes in one organism can have extended phenotypic effects on the body of another organism. Caddis houses helped us take the previous step; snail shells will help us take this one. The shell plays the same role for a snail as the stone house does for a caddis larva. It is secreted by the snail's own cells, so a conventional geneticist would be happy to {241} speak of genes ‘for’ shell qualities such as shell thickness. But it turns out that snails parasitized by certain kinds of fluke (flatworm) have extra-thick shells. What can this thickening mean? If the parasitized snails had had extra-thin shells, we'd happily explain this as an obvious debilitating effect on the snail's constitution. But a thicker shell? A thicker shell presumably protects the snail better. It looks as though the parasites are actually helping their host by improving its shell. But are they?
We have to think more carefully. If thicker shells are really better for the snail, why don't they have them anyway? The answer probably lies in economics. Making a shell is costly for a snail. It requires energy. It requires calcium and other chemicals that have to be extracted from hard-won food. All these resources, if they were not spent on making shell substance, could be spent on something else such as making more offspring. A snail that spends lots of resources on making an extra-thick shell has bought safety for its own body. But at what cost? It may live longer, but it will be less successful at reproducing and may fail to pass on its genes. Among the genes that fail to be passed on will be the genes for making extra-thick shells. In other words, it is possible for a shell to be too thick as well as (more obviously) too thin. So, when a fluke makes a snail secrete an extra-thick shell, the fluke is not doing the snail a good turn unless the fluke is bearing the economic cost of thickening the shell. And we can safely bet that it isn't being so generous. The fluke is exerting some hidden chemical influence on the snail that forces the snail to shift away from its own ‘preferred’ thickness of shell. It may be prolonging the snail's life. But it is not helping the snail's genes.
What is in it for the fluke? Why does it do it? My conjecture is the following. Both snail genes and fluke genes stand to gain from the snail's bodily survival, all other things being equal. But survival is not the same thing as reproduction and there is likely to be a trade-off. Whereas snail genes stand to gain from the snail's reproduction, fluke genes don't. This is because any given fluke has no particular expectation that its genes will be housed in its present host's offspring. They might be, but so might those of any of its fluke rivals. Given that snail longevity has to be bought at the cost of some loss in the snail's reproductive success, the fluke genes are ‘happy’ to make the snail pay that cost, since they have no interest in the snail's reproducing itself. The snail genes are not happy to pay that cost, since their long-term future depends upon the snail reproducing. {242} So, I suggest that fluke genes exert an influence on the shell-secreting cells of the snail, an influence that benefits themselves but is costly to the snail's genes. This theory is testable, though it hasn't been tested yet.
We are now in a position to generalize the lesson of the caddises. If I am right about what the fluke genes are doing, it follows that we can legitimately speak of fluke genes as influencing snail bodies, in just the same sense as snail genes influence snail bodies. It is as if the genes reached outside their ‘own’ body and manipulated the world outside. As in the case of the caddises, this language might make geneticists uneasy. They are accustomed to the effects of a gene being limited to the body in which it sits. But, again as in the case of the caddises, a close look at what geneticists ever mean by a gene having ‘effects’ shows that such uneasiness is misplaced. We need to accept only that the change in snail shell is a fluke adaptation. If it is, it has to have come about by Darwinian selection of fluke genes. We have demonstrated that the phenotypic effects of a gene can extend, not only to inanimate objects like stones, but to ‘other’ living bodies too.
The story of the snails and flukes is only the beginning. Parasites of all types have long been known to exert fascinatingly insidious influences on their hosts. A species of microscopic protozoan parasite called Nosema, which infests the larvae of flour beetles, has ‘discovered’ how to manufacture a chemical that is very special for the beetles. Like other insects, these beetles have a hormone called the juvenile hormone which keeps larvae as larvae. The normal change from larva to adult is triggered by the larva ceasing production of juvenile hormone. The parasite Nosema has succeeded in synthesizing (a close chemical analogue of) this hormone. Millions of Nosema club together to mass-produce juvenile hormone in the beetle larva's body, thereby preventing it from turning into an adult. Instead it goes on growing, ending up as a giant larva more than twice the weight of a normal adult. No good for propagating beetle genes, but a cornucopia for Nosema parasites. Giantism in beetle larvae is an extended phenotypic effect of protozoan genes.
And here is a case history to provoke even more Freudian anxiety than the Peter Pan beetles — parasitic castration! Crabs are parasitized by a creature called Sacculina. Sacculina is related to barnacles, though you would think, to look at it, that it was a parasitic plant. It drives an elaborate root system deep into the tissues of the {243} unfortunate crab, and sucks nourishment from its body. It is probably no accident that among the first organs that it attacks are the crab's testicles or ovaries; it spares the organs that the crab needs to survive — as opposed to reproduce — till later. The crab is effectively castrated by the parasite. Like a fattened bullock, the castrated crab diverts energy and resources away from reproduction and into its own body — rich pickings for the parasite at the expense of the crab's reproduction. Very much the same story as I conjectured for Nosema in the flour beetle and for the fluke in the snail. In all three cases the changes in the host, if we accept that they are Darwinian adaptations for the benefit of the parasite, must be seen as extended phenotypic effects of parasite genes. Genes, then, reach outside their ‘own’ body to influence phenotypes in other bodies.
To quite a large extent the interests of parasite genes and host genes may coincide. From the selfish gene point of view we can think of both fluke genes and snail genes as ‘parasites’ in the snail body. Both gain from being surrounded by the same protective shell, though they diverge from one another in the precise thickness of shell that they ‘prefer’. This divergence arises, fundamentally, from the fact that their method of leaving this snail's body and entering another one is different. For the snail genes the method of leaving is via snail sperms or eggs. For the fluke's genes it is very different. Without going into the details (they are distractingly complicated) what matters is that their genes do not leave the snail's body in the snail's sperms or eggs.
I suggest that the most important question to ask about any parasite is this. Are its genes transmitted to future generations via the same vehicles as the host's genes? If they are not, I would expect it to damage the host, in one way or another. But if they are, the parasite will do all that it can to help the host, not only to survive but to reproduce. Over evolutionary time it will cease to be a parasite, will cooperate with the host, and may eventually merge into the host's tissues and become unrecognizable as a parasite at all. Maybe, as I suggested on page 182, our cells have come far across this evolutionary spectrum: we are all relics of ancient parasitic mergers.
Look at what can happen when parasite genes and host genes do share a common exit. Wood-boring ambrosia beetles (of the species Xyleborus ferrugineus) are parasitized by bacteria that not only live in their host's body but also use the host's eggs as their transport into a new host. The genes of such parasites therefore stand to gain from {244} almost exactly the same future circumstances as the genes of their host. The two sets of genes can be expected to ‘pull together’ for just the same reasons as all the genes of one individual organism normally pull together. It is irrelevant that some of them happen to be ‘beetle genes’, while others happen to be ‘bacterial genes’. Both sets of genes are ‘interested’ in beetle survival and the propagation of beetle eggs, because both ‘see’ beetle eggs as their passport to the future. So the bacterial genes share a common destiny with their host's genes, and in my interpretation we should expect the bacteria to cooperate with their beetles in all aspects of life.
It turns out that ‘cooperate’ is putting it mildly. The service they perform for the beetles could hardly be more intimate. These beetles happen to be haplodiploid, like bees and ants (see Chapter 10). If an egg is fertilized by a male, it always develops into a female. An unfertilized egg develops into a male. Males, in other words, have no father. The eggs that give rise to them develop spontaneously, without being penetrated by a sperm. But, unlike the eggs of bees and ants, ambrosia beetle eggs do need to be penetrated by something. This is where the bacteria come in. They prick the unfertilized eggs into action, provoking them to develop into male beetles. These bacteria are, of course, just the kind of parasites that, I argued, should cease to be parasitic and become mutualistic, precisely because they are transmitted in the eggs of the host, together with the host's ‘own’ genes. Ultimately, their ‘own’ bodies are likely to disappear, merging into the ‘host’ body completely.
A revealing spectrum can still be found today among species of hydra — small, sedentary, tentacled animals, like freshwater sea anemones. Their tissues tend to be parasitized by algae. (The ‘g’ should be pronounced hard. For unknown reasons some biologists, not least in America, have recently taken to saying Algy as in Algernon, not only for the plural ‘algae’, which is — just — forgivable, but also for the singular ‘alga’, which is not.) In the species Hydra vulgaris and Hydra attenuata, the algae are real parasites of the hydras, making them ill. In Chlorohydra viridissima, on the other hand, the algae are never absent from the tissues of the hydras, and make a useful contribution to their well-being, providing them with oxygen. Now here is the interesting point. Just as we should expect, in Chlorohydra the algae transmit themselves to the next generation by means of the hydra's egg. In the other two species they do not. The interests of alga genes and Chlorohydra genes coincide. Both are {245} interested in doing everything in their power to increase production of Chlorohydra eggs. But the genes of the other two species of hydra do not ‘agree’ with the genes of their algae. Not to the same extent, anyway. Both sets of genes may have an interest in the survival of hydra bodies. But only hydra genes care about hydra reproduction. So the algae hang on as debilitating parasites rather than evolving towards benign cooperation. The key point, to repeat it, is that a parasite whose genes aspire to the same destiny as the genes of its host shares all the interests of its host and will eventually cease to act parasitically.
Destiny, in this case, means future generations. Chlorohydra genes and alga genes, beetle genes and bacteria genes, can get into the future only via the host's eggs. Therefore, whatever ‘calculations’ the parasite genes make about optimal policy, in any department of life, will converge on exactly, or nearly exactly, the same optimal policy as similar ‘calculations’ made by host genes. In the case of the snail and its fluke parasites, we decided that their preferred shell thicknesses were divergent. In the case of the ambrosia beetle and its bacteria, host and parasite will agree in preferring the same wing length, and every other feature of the beetle's body. We can predict this without knowing any details of exactly what the beetles might use their wings, or anything else, for. We can predict it simply from our reasoning that both the beetle genes and the bacterial genes will take whatever steps lie in their power to engineer the same future events — events favourable to the propagation of beetle eggs.
We can take this argument to its logical conclusion and apply it to normal, ‘own’ genes. Our own genes cooperate with one another, not because they are our own but because they share the same outlet — sperm or egg — into the future. If any genes of an organism, such as a human, could discover a way of spreading themselves that did not depend on the conventional sperm or egg route, they would take it and be less cooperative. This is because they would stand to gain by a different set of future outcomes from the other genes in the body. We've already seen examples of genes that bias meiosis in their own favour. Perhaps there are also genes that have broken out of the sperm/egg ‘proper channels’ altogether and pioneered a sideways route.
There are fragments of DNA that are not incorporated in chromosomes but float freely and multiply in the fluid contents of cells, especially bacterial cells. They go under various names such as {246} viroids or plasmids. A plasmid is even smaller than a virus, and it normally consists of only a few genes. Some plasmids are capable of splicing themselves seamlessly into a chromosome. So smooth is the splice that you can't see the join: the plasmid is indistinguishable from any other part of the chromosome. The same plasmids can also cut themselves out again. This ability of DNA to cut and splice, to jump in and out of chromosomes at the drop of a hat, is one of the more exciting facts that have come to light since the first edition of this book was published. Indeed the recent evidence on plasmids can be seen as beautiful supporting evidence for the conjectures near bottom of page 182 (which seemed a bit wild at the time). From some points of view it does not really matter whether these fragments originated as invading parasites or breakaway rebels. Their likely behaviour will be the same. I shall talk about a breakaway fragment in order to emphasize my point.
Consider a rebel stretch of human DNA that is capable of snipping itself out of its chromosome, floating freely in the cell, perhaps multiplying itself up into many copies, and then splicing itself into another chromosome. What unorthodox alternative routes into the future could such a rebel replicator exploit? We are losing cells continually from our skin; much of the dust in our houses consists of our sloughed-off cells. We must be breathing in one another's cells all the time. If you draw your fingernail across the inside of your mouth it will come away with hundreds of living cells. The kisses and caresses of lovers must transfer multitudes of cells both ways. A stretch of rebel DNA could hitch a ride in any of these cells. If genes could discover a chink of an unorthodox route through to another body (alongside, or instead of, the orthodox sperm or egg route), we must expect natural selection to favour their opportunism and improve it. As for the precise methods that they use, there is no reason why these should be any different from the machinations — all too predictable to a selfish gene/extended phenotype theorist — of viruses.
When we have a cold or a cough, we normally think of the symptoms as annoying byproducts of the virus's activities. But in some cases it seems more probable that they are deliberately engineered by the virus to help it to travel from one host to another. Not content with simply being breathed into the atmosphere, the virus makes us sneeze or cough explosively. The rabies virus is transmitted in saliva when one animal bites another. In dogs, one of {247} the symptoms of the disease is that normally peaceful and friendly animals become ferocious biters, foaming at the mouth. Ominously too, instead of staying within a mile or so of home like normal dogs, they turn into restless wanderers, propagating the virus far afield. It has even been suggested that the well-known hydrophobic symptom encourages the dog to shake the wet foam from its mouth — and with it the virus. I do not know of any direct evidence that sexually transmitted diseases increase the libido of sufferers, but I conjecture that it would be worth looking into. Certainly at least one alleged aphrodisiac, Spanish Fly, is said to work by inducing an itch. . . and making people itch is just the kind of thing viruses are good at.
The point of comparing rebel human DNA with invading parasitic viruses is that there really isn't any important difference between them. Viruses may well, indeed, have originated as collections of breakaway genes. If we want to erect any distinction, it should be between genes that pass from body to body via the orthodox route of sperms or eggs, and genes that pass from body to body via unorthodox, ‘sideways’ routes. Both classes may include genes that originated as ‘own’ chromosomal genes. And both classes may include genes that originated as external, invading parasites. Or perhaps, as I speculated on page 182, all ‘own’ chromosomal genes should be regarded as mutually parasitic on one another. The important difference between my two classes of genes lies in the divergent circumstances from which they stand to benefit in the future. A cold virus gene and a breakaway human chromosomal gene agree with one another in ‘wanting’ their host to sneeze. An orthodox chromosomal gene and a venereally transmitted virus agree with one another in wanting their host to copulate. It is an intriguing thought that both would want the host to be sexually attractive. More, an orthodox chromosomal gene and a virus that is transmitted inside the host's egg would agree in wanting the host to succeed not just in its courtship but in every detailed aspect of its life, down to being a loyal, doting parent and even grandparent.
The caddis lives inside its house, and the parasites that I have so far discussed have lived inside their hosts. The genes, then, are physically close to their extended phenotypic effects, as close as genes ordinarily are to their conventional phenotypes. But genes can act at a distance; extended phenotypes can extend a long way. One of the longest that I can think of spans a lake. Like a spider web or a caddis house, a beaver dam is among the true wonders of the world. {248} It is not entirely clear what its Darwinian purpose is, but it certainly must have one, for the beavers expend so much time and energy to build it. The lake that it creates probably serves to protect the beaver's lodge from predators. It also provides a convenient water-way for travelling and for transporting logs. Beavers use flotation for the same reason as Canadian lumber companies use rivers and eighteenth-century coal merchants used canals. Whatever its benefits, a beaver lake is a conspicuous and characteristic feature of the landscape. It is a phenotype, no less than the beaver's teeth and tail, and it has evolved under the influence of Darwinian selection. Darwinian selection has to have genetic variation to work on. Here the choice must have been between good lakes and less good lakes. Selection favoured beaver genes that made good lakes for transporting trees, just as it favoured genes that made good teeth for felling them. Beaver lakes are extended phenotypic effects of beaver genes, and they can extend over several hundreds of yards. A long reach indeed!
Parasites, too, don't have to live inside their hosts; their genes can express themselves in hosts at a distance. Cuckoo nestlings don't live inside robins or reed-warblers; they don't suck their blood or devour their tissues, yet we have no hesitation in labelling them as parasites. Cuckoo adaptations to manipulate the behaviour of foster-parents can be looked upon as extended phenotypic action at a distance by cuckoo genes.
It is easy to empathize with foster parents duped into incubating the cuckoo's eggs. Human egg collectors, too, have been fooled by the uncanny resemblance of cuckoo eggs to, say, meadow-pipit eggs or reed-warbler eggs (different races of female cuckoos specialize in different host species). What is harder to understand is the behaviour of foster-parents later in the season, towards young cuckoos that are almost fledged. The cuckoo is usually much larger, in some cases grotesquely larger, than its ‘parent’. I am looking at a photograph of an adult dunnock, so small in comparison to its monstrous foster-child that it has to perch on its back in order to feed it. Here we feel less sympathy for the host. We marvel at its stupidity, its gullibility. Surely any fool should be able to see that there is something wrong with a child like that.
I think that cuckoo nestlings must be doing rather more than just ‘fooling’ their hosts, more than just pretending to be something that they aren't. They seem to act on the host's nervous system in rather {249} the same way as an addictive drug. This is not so hard to sympathize with, even for those with no experience of addictive drugs. A man can be aroused, even to erection, by a printed photograph of a woman's body. He is not ‘fooled’ into thinking that the pattern of printing ink really is a woman. He knows that he is only looking at ink on paper, yet his nervous system responds to it in the same kind of way as it might respond to a real woman. We may find the attractions of a particular member of the opposite sex irresistible, even though the better judgment of our better self tells us that a liaison with that person is not in anyone's long-term interests. The same can be true of the irresistible attractions of unhealthy food. The dunnock probably has no conscious awareness of its long-term best interests, so it is even easier to understand that its nervous system might find certain kinds of stimulation irresistible.
So enticing is the red gape of a cuckoo nestling that it is not uncommon for ornithologists to see a bird dropping food into the mouth of a baby cuckoo sitting in some other bird's nest! A bird may be flying home, carrying food for its own young. Suddenly, out of the corner of its eye, it sees the red super-gape of a young cuckoo, in the nest of a bird of some quite different species. It is diverted to the alien nest where it drops into the cuckoo's mouth the food that had been destined for its own young. The ‘irresistibility theory’ fits with the views of early German ornithologists who referred to foster-parents as behaving like ‘addicts’ and to the cuckoo nestling as their ‘vice’. It is only fair to add that this kind of language finds less favour with some modern experimenters. But there's no doubt that if we do assume that the cuckoo's gape is a powerful drug-like super-stimulus, it becomes very much easier to explain what is going on. It becomes easier to sympathize with the behaviour of the diminutive parent standing on the back of its monstrous child. It is not being stupid. ‘Fooled’ is the wrong word to use. Its nervous system is being controlled, as irresistibly as if it were a helpless drug addict, or as if the cuckoo were a scientist plugging electrodes into its brain.
But even if we now feel more personal sympathy for the manipulated foster-parent, we can still ask why natural selection has allowed the cuckoos to get away with it. Why haven't host nervous systems evolved resistance to the red gape drug? Maybe selection hasn't yet had time to do its work. Perhaps cuckoos have only in recent centuries started parasitizing their present hosts, and will in a few centuries be forced to give them up and victimize other species. {250} There is some evidence to support this theory. But I can't help feeling that there must be more to it than that.
In the evolutionary ‘arms race’ between cuckoos and any host species, there is a sort of built-in unfairness, resulting from unequal costs of failure. Each individual cuckoo nestling is descended from a long line of ancestral cuckoo nestlings, every single one of whom must have succeeded in manipulating its foster-parent. Any cuckoo nestling that lost its hold, even momentarily, over its host would have died as a result. But each individual foster-parent is descended from a long line of ancestors many of whom never encountered a cuckoo in their lives. And those that did have a cuckoo in their nest could have succumbed to it and still lived to rear another brood next season. The point is that there is an asymmetry in the cost of failure. Genes for failure to resist enslavement by cuckoos can easily be passed down the generations of robins or dunnocks. Genes for failure to enslave foster-parents cannot be passed down the generations of cuckoos. This is what I meant by ‘built-in unfairness’, and by ‘asymmetry in the cost of failure’. The point is summed up in one of Aesop's fables: ‘The rabbit runs faster than the fox, because the rabbit is running for his life while the fox is only running for his dinner.’ My colleague John Krebs and I have dubbed this the ‘life/dinner principle’.
Because of the life/dinner principle, animals might at times behave in ways that are not in their own best interests, manipulated by some other animal. Actually, in a sense they are acting in their own best interests: the whole point of the life/dinner principle is that they theoretically could resist manipulation but it would be too costly to do so. Perhaps to resist manipulation by a cuckoo you need bigger eyes or a bigger brain, which would have overhead costs. Rivals with a genetic tendency to resist manipulation would actually be less successful in passing on genes, because of the economic costs of resisting.
But we have once again slipped back into looking at life from the point of view of the individual organism rather than its genes. When we talked about flukes and snails we accustomed ourselves to the idea that a parasite's genes could have phenotypic effects on the host's body, in exactly the same way as any animal's genes have phenotypic effects on its ‘own’ body. We showed that the very idea of an ‘own’ body was a loaded assumption. In one sense, all the genes in a body are ‘parasitic’ genes, whether we like to call them the body's {251} ‘own’ genes or not. Cuckoos came into the discussion as an example of parasites not living inside the bodies of their hosts. They manipulate their hosts in much the same way as internal parasites do, and the manipulation, as we have now seen, can be as powerful and irresistible as any internal drug or hormone. As in the case of internal parasites, we should now rephrase the whole matter in terms of genes and extended phenotypes.
In the evolutionary arms race between cuckoos and hosts, advances on each side took the form of genetic mutations arising and being favoured by natural selection. Whatever it is about the cuckoo's gape that acts like a drug on the host's nervous system, it must have originated as a genetic mutation. This mutation worked via its effect on, say, the colour and shape of the young cuckoo's gape. But even this was not its most immediate effect. Its most immediate effect was upon unseen chemical happenings inside cells. The effect of genes on colour and shape of gape is itself indirect. And now here is the point. Only a little more indirect is the effect of the same cuckoo genes on the behaviour of the besotted host. In exactly the same sense as we may speak of cuckoo genes having (phenotypic) effects on the colour and shape of cuckoo gapes, so we may speak of cuckoo genes having (extended phenotypic) effects on host behaviour. Parasite genes can have effects on host bodies, not just when the parasite lives inside the host where it can manipulate by direct chemical means, but when the parasite is quite separate from the host and manipulates it from a distance. Indeed, as we are about to see, even chemical influences can act outside the body.
Cuckoos are remarkable and instructive creatures. But almost any wonder among the vertebrates can be surpassed by the insects. They have the advantage that there are just so many of them; my colleague Robert May has aptly observed that ‘to a good approximation, all species are insects.’ Insect ‘cuckoos’ defy listing; they are so numerous and their habit has been reinvented so often. Some examples that we'll look at have gone beyond familiar cuckooism to fulfil the wildest fantasies that The Extended Phenotype might have inspired.
A bird cuckoo deposits her egg and disappears. Some ant cuckoo females make their presence felt in more dramatic fashion. I don't often give Latin names, but Bothriomyrmex regicidus and B. decapitans tell a story. These two species are both parasites on other species of ants. Among all ants, of course, the young are normally fed not by {252} parents but by workers, so it is workers that any would-be cuckoo must fool or manipulate. A useful first step is to dispose of the workers’ own mother with her propensity to produce competing brood. In these two species the parasite queen, all alone, steals into the nest of another ant species. She seeks out the host queen, and rides about on her back while she quietly performs, to quote Edward Wilson's artfully macabre understatement, ‘the one act for which she is uniquely specialized: slowly cutting off the head of her victim’. The murderess is then adopted by the orphaned workers, who unsuspectingly tend her eggs and larvae. Some are nurtured into workers themselves, who gradually replace the original species in the nest. Others become queens who fly out to seek pastures new and royal heads yet unsevered.
But sawing off heads is a bit of a chore. Parasites are not accustomed to exerting themselves if they can coerce a stand-in. My favourite character in Wilson's The Insect Societies is Monomorium santschii. This species, over evolutionary time, has lost its worker caste altogether. The host workers do everything for their parasites, even the most terrible task of all. At the behest of the invading parasite queen, they actually perform the deed of murdering their own mother. The usurper doesn't need to use her jaws. She uses mind-control. How she does it is a mystery; she probably employs a chemical, for ant nervous systems are generally highly attuned to them. If her weapon is indeed chemical, then it is as insidious a drug as any known to science. For think what it accomplishes. It floods the brain of the worker ant, grabs the reins of her muscles, woos her from deeply ingrained duties and turns her against her own mother. For ants, matricide is an act of special genetic madness and formidable indeed must be the drug that drives them to it. In the world of the extended phenotype, ask not how an animal's behaviour benefits its genes; ask instead whose genes it is benefiting.
It is hardly surprising that ants are exploited by parasites, not just other ants but an astonishing menagerie of specialist hangers-on. Worker ants sweep a rich flow of food from a wide catchment area into a central hoard which is a sitting target for freeloaders. Ants are also good agents of protection: they are well-armed and numerous. The aphids of Chapter 10 could be seen as paying out nectar to hire professional bodyguards. Several butterfly species live out their caterpillar stage inside an ants’ nest. Some are straightforward pillagers. Others offer something to the ants in return for protection. {253} Often they bristle, literally, with equipment for manipulating their protectors. The caterpillar of a butterfly called Thisbe irenea has a sound-producing organ in its head for summoning ants, and a pair of telescopic spouts near its rear end which exude seductive nectar. On its shoulders stands another pair of nozzles, which cast an altogether more subtle spell. Their secretion seems to be not food but a volatile potion that has a dramatic impact upon the ants’ behaviour. An ant coming under the influence leaps clear into the air. Its jaws open wide and it turns aggressive, far more eager than usual to attack, bite and sting any moving object. Except, significantly, the caterpillar responsible for drugging it. Moreover, an ant under the sway of a dope-peddling caterpillar eventually enters a state called ‘binding’, in which it becomes inseparable from its caterpillar for a period of many days. Like an aphid, then, the caterpillar employs ants as bodyguards, but it goes one better. Whereas aphids rely on the ants’ normal aggression against predators, the caterpillar administers an aggression-arousing drug and it seems to slip them something addictively binding as well.
I have chosen extreme examples. But, in more modest ways, nature teems with animals and plants that manipulate others of the same or of different species. In all cases in which natural selection has favoured genes for manipulation, it is legitimate to speak of those same genes as having (extended phenotypic) effects on the body of the manipulated organism. It doesn't matter in which body a gene physically sits. The target of its manipulation may be the same body or a different one. Natural selection favours those genes that manipulate the world to ensure their own propagation. This leads to what I have called the Central Theorem of the Extended Phenotype: An animal's behaviour tends to maximize the survival of the genes ‘for’ that behaviour, whether or not those genes happen to be in the body of the particular animal performing it. I was writing in the context of animal behaviour, but the theorem could apply, of course, to colour, size, shape — to anything.
It is finally time to return to the problem with which we started, to the tension between individual organism and gene as rival candidates for the central role in natural selection. In earlier chapters I made the assumption that there was no problem, because individual reproduction was equivalent to gene survival. I assumed there that you can say either ‘The organism works to propagate all its genes’ or ‘The genes work to force a succession of organisms to propagate them.’ They {254} seemed like two equivalent ways of saying the same thing, and which form of words you chose seemed a matter of taste. But somehow the tension remained.
One way of sorting this whole matter out is to use the terms ‘replicator’ and ‘vehicle’. The fundamental units of natural selection, the basic things that survive or fail to survive, that form lineages of identical copies with occasional random mutations, are called replicators. DNA molecules are replicators. They generally, for reasons that we shall come to, gang together into large communal survival machines or ‘vehicles’. The vehicles that we know best are individual bodies like our own. A body, then, is not a replicator; it is a vehicle. I must emphasize this, since the point has been misunderstood. Vehicles don't replicate themselves; they work to propagate their replicators. Replicators don't behave, don't perceive the world, don't catch prey or run away from predators; they make vehicles that do all those things. For many purposes it is convenient for biologists to focus their attention at the level of the vehicle. For other purposes it is convenient for them to focus their attention at the level of the replicator. Gene and individual organism are not rivals for the same starring role in the Darwinian drama. They are cast in different, complementary and in many respects equally important roles, the role of replicator and the role of vehicle.
The replicator/vehicle terminology is helpful in various ways. For instance it clears up a tiresome controversy over the level at which natural selection acts. Superficially it might seem logical to place ‘individual selection’ on a sort of ladder of levels of selection, half-way between the ‘gene selection’ advocated in Chapter 3 and the ‘group selection’ criticized in Chapter 7. ‘Individual selection’ seems vaguely to be a middle way between two extremes, and many biologists and philosophers have been seduced into this facile path and treated it as such. But we can now see that it isn't like that at all. We can now see that the organism and the group of organisms are true rivals for the vehicle role in the story, but neither of them is even a candidate for the replicator role. The controversy between ‘individual selection’ and ‘group selection’ is a real controversy between alternative vehicles. The controversy between individual selection and gene selection isn't a controversy at all, for gene and organism are candidates for different, and complementary, roles in the story, the replicator and the vehicle.
The rivalry between individual organism and group of organisms {255} for the vehicle role, being a real rivalry, can be settled. As it happens the outcome, in my view, is a decisive victory for the individual organism. The group is too wishy-washy an entity. A herd of deer, a pride of lions or a pack of wolves has a certain rudimentary coherence and unity of purpose. But this is paltry in comparison to the coherence and unity of purpose of the body of an individual lion, wolf, or deer. That this is true is now widely accepted, but why is it true? Extended phenotypes and parasites can again help us.
We saw that when the genes of a parasite work together with each other, but in opposition to the genes of the host (which all work together with each other), it is because the two sets of genes have different methods of leaving the shared vehicle, the host's body. Snail genes leave the shared vehicle via snail sperm and eggs. Because all snail genes have an equal stake in every sperm and every egg, because they all participate in the same unpartisan meiosis, they work together for the common good, and therefore tend to make the snail body a coherent, purposeful vehicle. The real reason why a fluke is recognizably separate from its host, the reason why it doesn't merge its purposes and its identity with the purposes and identity of the host, is that the fluke genes don't share the snail genes’ method of leaving the shared vehicle, and don't share in the snail's meiotic lottery — they have a lottery of their own. Therefore, to that extent and that extent only, the two vehicles remain separated as a snail and a recognizably distinct fluke inside it. If fluke genes were passed on in snail eggs and sperms, the two bodies would evolve to become as one flesh. We mightn't even be able to tell that there ever had been two vehicles.
‘Single’ individual organisms such as ourselves are the ultimate embodiment of many such mergers. The group of organisms — the flock of birds, the pack of wolves — does not merge into a single vehicle, precisely because the genes in the flock or the pack do not share a common method of leaving the present vehicle. To be sure, packs may bud off daughter packs. But the genes in the parent pack don't pass to the daughter pack in a single vessel in which all have an equal share. The genes in a pack of wolves don't all stand to gain from the same set of events in the future. A gene can foster its own future welfare by favouring its own individual wolf, at the expense of other individual wolves. An individual wolf, therefore, is a vehicle worthy of the name. A pack of wolves is not. Genetically speaking, the reason for this is that all the cells except the sex cells in a wolf's {256} body have the same genes, while, as for the sex cells, all the genes have an equal chance of being in each one of them. But the cells in a pack of wolves do not have the same genes, nor do they have the same chance of being in the cells of sub-packs that are budded off. They have everything to gain by struggling against rivals in other wolf bodies (although the fact that a wolf-pack is likely to be a kin group will mitigate the struggle).
The essential quality that an entity needs, if it is to become an effective gene vehicle, is this. It must have an impartial exit channel into the future, for all the genes inside it. This is true of an individual wolf. The channel is the thin stream of sperms, or eggs, which it manufactures by meiosis. It is not true of the pack of wolves. Genes have something to gain from selfishly promoting the welfare of their own individual bodies, at the expense of other genes in the wolf pack. A bee-hive, when it swarms, appears to reproduce by broad-fronted budding, like a wolf pack. But if we look more carefully we find that, as far as the genes are concerned, their destiny is largely shared. The future of the genes in the swarm is, at least to a large extent, lodged in the ovaries of one queen. This is why — it is just another way of expressing the message of earlier chapters — the bee colony looks and behaves like a truly integrated single vehicle.
Everywhere we find that life, as a matter of fact, is bundled into discrete, individually purposeful vehicles like wolves and bee-hives. But the doctrine of the extended phenotype has taught us that it needn't have been so. Fundamentally, all that we have a right to expect from our theory is a battleground of replicators, jostling, jockeying, fighting for a future in the genetic hereafter. The weapons in the fight are phenotypic effects, initially direct chemical effects in cells but eventually feathers and fangs and even more remote effects. It undeniably happens to be the case that these phenotypic effects have largely become bundled up into discrete vehicles, each with its genes disciplined and ordered by the prospect of a shared bottleneck of sperms or eggs funnelling them into the future. But this is not a fact to be taken for granted. It is a fact to be questioned and wondered at in its own right. Why did genes come together into large vehicles, each with a single genetic exit route? Why did genes choose to gang up and make large bodies for themselves to live in? In The Extended Phenotype I attempt to work out an answer to this difficult problem. Here I can sketch only a part of that answer — although, as might be expected after seven years, I can also now take it a little further. {257}
I shall divide the question up into three. Why did genes gang up in cells? Why did cells gang up in many-celled bodies? And why did bodies adopt what I shall call a ‘bottlenecked’ life cycle?
First then, why did genes gang up in cells? Why did those ancient replicators give up the cavalier freedom of the primeval soup and take to swarming in huge colonies? Why do they cooperate? We can see part of the answer by looking at how modern DNA molecules cooperate in the chemical factories that are living cells. DNA molecules make proteins. Proteins work as enzymes, catalysing particular chemical reactions. Often a single chemical reaction is not sufficient to synthesize a useful end-product. In a human pharmaceutical factory the synthesis of a useful chemical needs a production line. The starting chemical cannot be transformed directly into the desired end-product. A series of intermediates must be synthesized in strict sequence. Much of a research chemist's ingenuity goes into devising pathways of feasible intermediates between starting chemicals and desired end-products. In the same way single enzymes in a living cell usually cannot, on their own, achieve the synthesis of a useful end-product from a given starting chemical. A whole set of enzymes is necessary, one to catalyse the transformation of the raw material into the first intermediate, another to catalyse the transformation of the first intermediate into the second, and so on.
Each of these enzymes is made by one gene. If a sequence of six enzymes is needed for a particular synthetic pathway, all six genes for making them must be present. Now it is quite likely that there are two alternative pathways for arriving at that same end-product, each needing six different enzymes, and with nothing to choose between the two of them. This kind of thing happens in chemical factories. Which pathway is chosen may be historical accident, or it may be a matter of more deliberate planning by chemists. In nature's chemistry the choice will never, of course, be a deliberate one. Instead it will come about through natural selection. But how can natural selection see to it that the two pathways are not mixed, and that cooperating groups of compatible genes emerge? In very much the same way as I suggested with my analogy of the German and English rowers (Chapter 5). The important thing is that a gene for a stage in pathway 1 will flourish in the presence of genes for other stages in pathway 1, but not in the presence of pathway 2 genes. If the population already happens to be dominated by genes for pathway 1, selection will {258} favour other genes for pathway 1, and penalize genes for pathway 2. And vice versa. Tempting as it is, it is positively wrong to speak of the genes for the six enzymes of pathway 2 being selected ‘as a group’. Each one is selected as a separate selfish gene, but it flourishes only in the presence of the right set of other genes.
Nowadays this cooperation between genes goes on within cells. It must have started as rudimentary cooperation between self-replicating molecules in the primeval soup (or whatever primeval medium there was). Cell walls perhaps arose as a device to keep useful chemicals together and stop them leaking away. Many of the chemical reactions in the cell actually go on in the fabric of membranes; a membrane acts as a combined conveyor-belt and test-tube rack. But cooperation between genes did not stay limited to cellular biochemistry. Cells came together (or failed to separate after cell division) to form many-celled bodies.
This brings us to the second of my three questions. Why did cells gang together; why the lumbering robots? This is another question about cooperation. But the domain has shifted from the world of molecules to a larger scale. Many-celled bodies outgrow the microscope. They can even become elephants or whales. Being big is not necessarily a good thing: most organisms are bacteria and very few are elephants. But when the ways of making a living that are open to small organisms have all been tilled, there are still prosperous livings to be made by larger organisms. Large organisms can eat smaller ones, for instance, and can avoid being eaten by them.
The advantages of being in a club of cells don't stop with size. The cells in the club can specialize, each thereby becoming more efficient at performing its particular task. Specialist cells serve other cells in the club and they also benefit from the efficiency of other specialists. If there are many cells, some can specialize as sensors to detect prey, others as nerves to pass on the message, others as stinging cells to paralyse the prey, muscle cells to move tentacles and catch the prey, secretory cells to dissolve it and yet others to absorb the juices. We must not forget that, at least in modern bodies like our own, the cells are a clone. All contain the same genes, although different genes will be turned on in the different specialist cells. Genes in each cell type are directly benefiting their own copies in the minority of cells specialized for reproduction, the cells of the immortal germ line.
So, to the third question. Why do bodies participate in a ‘bottle-necked’ life cycle? {259}
To begin with, what do I mean by bottlenecked? No matter how many cells there may be in the body of an elephant, the elephant began life as a single cell, a fertilized egg. The fertilized egg is a narrow bottleneck which, during embryonic development, widens out into the trillions of cells of an adult elephant. And no matter how many cells, of no matter how many specialized types, cooperate to perform the unimaginably complicated task of running an adult elephant, the efforts of all those cells converge on the final goal of producing single cells again — sperms or eggs. The elephant not only has its beginning in a single cell, a fertilized egg. Its end, meaning its goal or end-product, is the production of single cells, fertilized eggs of the next generation. The life cycle of the broad and bulky elephant both begins and ends with a narrow bottleneck. This bottlenecking is characteristic of the life cycles of all many-celled animals and most plants. Why? What is its significance? We cannot answer this without considering what life might look like without it.
It will be helpful to imagine two hypothetical species of seaweed called bottle-wrack and splurge-weed. Splurge-weed grows as a set of straggling, amorphous branches in the sea. Every now and then branches break off and drift away. These breakages can occur anywhere in the plants, and the fragments can be large or small. As with cuttings in a garden, they are capable of growing just like the original plant. This shedding of parts is the species's method of reproducing. As you will notice, it isn't really different from its method of growing, except that the growing parts become physically detached from one another.
Bottle-wrack looks the same and grows in the same straggly way. There is one crucial difference, however. It reproduces by releasing single-celled spores which drift off in the sea and grow into new plants. These spores are just cells of the plant like any others. As in the case of splurge-weed, no sex is involved. The daughters of a plant consist of cells that are clone-mates of the cells of the parent plant. The only difference between the two species is that splurge-weed reproduces by hiving off chunks of itself consisting of indeterminate numbers of cells, while bottle-wrack reproduces by hiving off chunks of itself always consisting of single cells.
By imagining these two kinds of plant, we have zeroed in on the crucial difference between a bottlenecked and an unbottlenecked life cycle. Bottle-wrack reproduces by squeezing itself, every generation, through a single-celled bottleneck. Splurge-weed just grows {260} and breaks in two. It hardly can be said to possess discrete ‘generations’, or to consist of discrete ‘organisms’, at all. What about bottle-wrack? I'll spell it out soon, but we can already see an inkling of the answer. Doesn't bottle-wrack already seem to have a more discrete, ‘organismy’ feel to it?
Splurge-weed, as we have seen, reproduces by the same process as it grows. Indeed it scarcely reproduces at all. Bottle-wrack, on the other hand, makes a clear separation between growth and reproduction. We may have zeroed in on the difference, but so what? What is the significance of it? Why does it matter? I have thought a long time about this and I think I know the answer. (Incidentally, it was harder to work out that there was a question than to think of the answer!) The answer can be divided into three parts, the first two of which have to do with the relationship between evolution and embryonic development.
First, think about the problem of evolving a complex organ from a simpler one. We don't have to stay with plants, and for this stage of the argument it might be better to switch to animals because they have more obviously complicated organs. Again there is no need to think in terms of sex; sexual versus asexual reproduction is a red herring here. We can imagine our animals reproducing by sending off nonsexual spores, single cells that, mutations aside, are genetically identical to one another and to all the other cells in the body.
The complicated organs of an advanced animal like a human or a woodlouse have evolved by gradual degrees from the simpler organs of ancestors. But the ancestral organs did not literally change themselves into the descendant organs, like swords being beaten into ploughshares. Not only did they not. The point I want to make is that in most cases they could not. There is only a limited amount of change that can be achieved by direct transformation in the ‘swords to ploughshares’ manner. Really radical change can be achieved only by going ‘back to the drawing board’, throwing away the previous design and starting afresh. When engineers go back to the drawing board and create a new design, they do not necessarily throw away the ideas from the old design. But they don't literally try to deform the old physical object into the new one. The old object is too weighed down with the clutter of history. Maybe you can beat a sword into a ploughshare, but try ‘beating’ a propeller engine into a jet engine! You can't do it. You have to discard the propeller engine and go back to the drawing board. {261}
Living things, of course, were never designed on drawing boards. But they do go back to fresh beginnings. They make a clean start in every generation. Every new organism begins as a single cell and grows anew. It inherits the ideas of ancestral design, in the form of the DNA program, but it does not inherit the physical organs of its ancestors. It does not inherit its parent's heart and remould it into a new (and possibly improved) heart. It starts from scratch, as a single cell, and grows a new heart, using the same design program as its parent's heart, to which improvements may be added. You see the conclusion I am leading up to. One important thing about a ‘bottlenecked’ life cycle is that it makes possible the equivalent of going back to the drawing board.
Bottlenecking of the life cycle has a second, related consequence. It provides a ‘calendar’ that can be used to regulate the processes of embryology. In a bottlenecked life cycle, every fresh generation marches through approximately the same parade of events. The organism begins as a single cell. It grows by cell division. And it reproduces by sending out daughter cells. Presumably it eventually dies, but that is less important than it seems to us mortals; as far as this discussion is concerned the end of the cycle is reached when the present organism reproduces and a new generation's cycle begins. Although in theory the organism could reproduce at any time during its growth phase, we can expect that eventually an optimum time for reproduction would emerge. Organisms that released spores when they were too young or too old would end up with fewer descendants than rivals that built up their strength and then released a massive number of spores when in the prime of life.
The argument is moving towards the idea of a stereotyped, regularly repeating life cycle. Not only does each generation begin with a single-celled bottleneck. It also has a growth phase — ‘childhood’ — of rather fixed duration. The fixed duration, the stereotypy, of the growth phase, makes it possible for particular things to happen at particular times during embryonic development, as if governed by a strictly observed calendar. To varying extents in different kinds of creature, cell divisions during development occur in rigid sequence, a sequence that recurs in each repetition of the life cycle. Each cell has its own location and time of appearance in the roster of cell divisions. In some cases, incidentally, this is so precise that embryologists can give a name to each cell, and a given cell in one individual organism can be said to have an exact counterpart in another organism. {262}
So, the stereotyped growth cycle provides a clock, or calendar, by means of which embryological events may be triggered. Think of how readily we ourselves use the cycles of the earth's daily rotation, and its yearly circumnavigation of the sun, to structure and order our lives. In the same way, the endlessly repeated growth rhythms imposed by a bottlenecked life cycle will — it seems almost inevitable — be used to order and structure embryology. Particular genes can be switched on and off at particular times because the bottleneck/growth-cycle calendar ensures that there is such a thing as a particular time. Such well-tempered regulations of gene activity are a prerequisite for the evolution of embryologies capable of crafting complex tissues and organs. The precision and complexity of an eagle's eye or a swallow's wing couldn't emerge without clockwork rules for what is laid down when.
The third consequence of a bottlenecked life history is a genetic one. Here, the example of bottle-wrack and splurge-weed serves us again. Assuming, again for simplicity, that both species reproduce asexually, think about how they might evolve. Evolution requires genetic change, mutation. Mutation can happen during any cell division. In splurge-weed, cell lineages are broad-fronted, the opposite of bottlenecked. Each branch that breaks apart and drifts away is many-celled. It is therefore quite possible that two cells in a daughter will be more distant relatives of one another than either is to cells in the parent plant. (By ‘relatives’, I literally mean cousins, grandchildren and so on. Cells have definite lines of descent and these lines are branching, so words like second cousin can be used of cells in a body without apology.) Bottle-wrack differs sharply from splurge-weed here. All cells in a daughter plant are descended from a single spore cell, so all cells in a given plant are closer cousins (or whatever) of one another than of any cell in another plant.
This difference between the two species has important genetic consequences. Think of the fate of a newly mutated gene, first in splurge-weed, then in bottle-wrack. In splurge-weed, the new mutation can arise in any cell, in any branch of the plant. Since daughter plants are produced by broad-fronted budding, lineal descendants of the mutant cell can find themselves sharing daughter plants and grand-daughter plants with unmutated cells which are relatively distant cousins of themselves. In bottle-wrack, on the other hand, the most recent common ancestor of all the cells in a plant is no {263} older than the spore that provided the plant's bottlenecked beginning. If that spore contained the mutant gene, all the cells of the new plant will contain the mutant gene. If the spore did not, they will not. Cells in bottle-wrack will be more genetically uniform within plants than cells in splurges-weed (give or take an occasional reverse-mutation). In bottle-wrack, the individual plant will be a unit with a genetic identity, will deserve the name individual. Plants of splurge-weed will have less genetic identity, will be less entitled to the name ‘individual’ than their opposite numbers in bottle-wrack.
This is not just a matter of terminology. With mutations around, the cells within a plant of splurge-weed will not have all the same genetic interests at heart. A gene in a splurge-weed cell stands to gain by promoting the reproduction of its cell. It does not necessarily stand to gain by promoting the reproduction of its ‘individual’ plant. Mutation will make it unlikely that the cells within a plant are genetically identical, so they won't collaborate wholeheartedly with one another in the manufacture of organs and new plants. Natural selection will choose among cells rather than ‘plants’. In bottle-wrack, on the other hand, all the cells within a plant are likely to have the same genes, because only very recent mutations could divide them. Therefore they will happily collaborate in manufacturing efficient survival machines. Cells in different plants are more likely to have different genes. After all, cells that have passed through different bottlenecks may be distinguished by all but the most recent mutations — and this means the majority. Selection will therefore judge rival plants, not rival cells as in splurge-weed. So we can expect to see the evolution of organs and contrivances that serve the whole plant.
By the way, strictly for those with a professional interest, there is an analogy here with the argument over group selection. We can think of an individual organism as a ‘group’ of cells. A form of group selection can be made to work, provided some means can be found for increasing the ratio of between-group variation to within-group variation. Bottle-wrack's reproductive habit has exactly the effect of increasing this ratio; splurge-weed's habit has just the opposite effect. There are also similarities, which may be revealing but which I shall not explore, between ‘bottlenecking’ and two other ideas that have dominated this chapter. Firstly the idea that parasites will cooperate with hosts to the extent that their genes pass to the next generation in the same reproductive cells as the genes of the hosts — {264} squeezing through the same bottleneck. And secondly the idea that the cells of a sexually reproducing body cooperate with each other only because meiosis is scrupulously fair.
To sum up, we have seen three reasons why a bottlenecked life history tends to foster the evolution of the organism as a discrete and unitary vehicle. The three maybe labelled, respectively, ‘back to the drawing board’, ‘orderly timing-cycle’, and ‘cellular uniformity’. Which came first, the bottlenecking of the life cycle, or the discrete organism? I should like to think that they evolved together. Indeed I suspect that the essential, defining feature of an individual organism is that it is a unit that begins and ends with a single-celled bottleneck. If life cycles become bottlenecked, living material seems bound to become boxed into discrete, unitary organisms. And the more that living material is boxed into discrete survival machines, the more will the cells of those survival machines concentrate their efforts on that special class of cells that are destined to ferry their shared genes through the bottleneck into the next generation. The two phenomena, bottlenecked life cycles and discrete organisms, go hand in hand. As each evolves, it reinforces the other. The two are mutually enhancing, like the spiralling feelings of a woman and a man during the progress of a love affair.
The Extended Phenotype is a long book and its argument cannot easily be crammed into one chapter. I have been obliged to adopt here a condensed, rather intuitive, even impressionistic style. I hope, nevertheless, that I have succeeded in conveying the flavour of the argument.
Let me end with a brief manifesto, a summary of the entire selfish gene/extended phenotype view of life. It is a view, I maintain, that applies to living things everywhere in the universe. The fundamental unit, the prime mover of all life, is the replicator. A replicator is anything in the universe of which copies are made. Replicators come into existence, in the first place, by chance, by the random jostling of smaller particles. Once a replicator has come into existence it is capable of generating an indefinitely large set of copies of itself. No copying process is perfect, however, and the population of replicators comes to include varieties that differ from one another. Some of these varieties turn out to have lost the power of self-replication, and their kind ceases to exist when they themselves cease to exist. Others can still replicate, but less effectively. Yet other varieties happen to find themselves in possession of new tricks: they turn out {265} to be even better self-replicators than their predecessors and contemporaries. It is their descendants that come to dominate the population. As time goes by, the world becomes filled with the most powerful and ingenious replicators.
Gradually, more and more elaborate ways of being a good replicator are discovered. Replicators survive, not only by virtue of their own intrinsic properties, but by virtue of their consequences on the world. These consequences can be quite indirect. All that is necessary is that eventually the consequences, however tortuous and indirect, feed back and affect the success of the replicator at getting itself copied.
The success that a replicator has in the world will depend on what kind of a world it is — the pre-existing conditions. Among the most important of these conditions Will be other replicators and their consequences. Like the English and German rowers, replicators that are mutually beneficial will come to predominate in each other's presence. At some point in the evolution of life on our earth, this ganging up of mutually compatible replicators began to be formalized in the creation of discrete vehicles — cells and, later, many-celled bodies. Vehicles that evolved a bottlenecked life cycle prospered, and became more discrete and vehicle-like.
This packaging of living material into discrete vehicles became such a salient and dominant feature that, when biologists arrived on the scene and started asking questions about life, their questions were mostly about vehicles — individual organisms. The individual organism came first in the biologist's consciousness, while the replicators — now known as genes — were seen as part of the machinery used by individual organisms. It requires a deliberate mental effort to turn biology the right way up again, and remind ourselves that the replicators come first, in importance as well as in history.
One way to remind ourselves is to reflect that, even today, not all the phenotypic effects of a gene are bound up in the individual body in which it sits. Certainly in principle, and also in fact, the gene reaches out through the individual body wall and manipulates objects in the world outside, some of them inanimate, some of them other living beings, some of them a long way away. With only a little imagination we can see the gene as sitting at the centre of a radiating web of extended phenotypic power. And an object in the world is the centre of a converging web of influences from many genes sitting in {266} many organisms. The long reach of the gene knows no obvious boundaries. The whole world is crisscrossed with causal arrows joining genes to phenotypic effects, far and near.
It is an additional fact, too important in practice to be called incidental but not necessary enough in theory to be called inevitable, that these causal arrows have become bundled up. Replicators are no longer peppered freely through the sea; they are packaged in huge colonies — individual bodies. And phenotypic consequences, instead of being evenly distributed throughout the world, have in many cases congealed into those same bodies. But the individual body, so familiar to us on our planet, did not have to exist. The only kind of entity that has to exist in order for life to arise, anywhere in the universe, is the immortal replicator.
|