원자
https://ko.wikipedia.org/wiki/%EC%9B%90%EC%9E%90#%EC%96%B4%EC%9B%90
아원자 입자
이 부분의 본문은 아원자 입자입니다.
[구조]
"더 이상 나누어지지 않는 것"이라는 원자의 어원이 무색하게, 현대 물리학에서는 원자도 전자, 양성자, 중성자 등의 아원자 입자들로 구성되었다고 말한다.
입자 | 질량[kg] | 상대 질량 | 전하[C] | 상대 전하 |
전자 | 9.110×10의 -28거듭제곱 | 1/1837 | -1.602×10의 -19거듭제곱 | -1 |
양성자 | 1.673×10의 -24거듭제곱 | 1 | +1.602×10의 -19거듭제곱 | +1 |
중성자 | 1.675×10의 -24거듭제곱 | 1 | 0 | 0 |
전자는 음의 전하전자·양성자·중성자의 특성를 띄며, 매우 작아 현대의 기술로 형태를 관측하는 것이 불가능하다.[19] 9.11×10−31 kg로 위의 세 아원자 입자들 중 가장 가벼워서 모든 입자들 중 가장 가벼울 것으로 여겨졌으나, 더 가벼운 중성미자가 발견되었다. 일반적으로 양의 전하를 띄는 원자핵 주변에 전자기력으로 포착되어 존재한다. 만일 원자가 가지고 있는 전자의 갯수가 원자번호와 다르다면 원자 자체가 전하를 띄게 되는데 이를 이온이라고 부른다. 조지프 존 톰슨이 1897년에 처음을 발견하였다.
양성자는 양의 전하를 띄며, 전자보다 1,836배 더 무거운 1.6726×10−27 kg의 질량을 가진다. 원자가 가지고 있는 양성자의 갯수는 원자 번호와 동일하다. 어니스트 러더퍼드가 1919년에 질소 원자를 알파 입자와 충돌시키는 실험에서 처음으로 관측하였다. 1886년에 수소의 원자핵으로 처음 발견되었으나 이 실험으로 인해 원자의 일반적인 구성성분임이 널리 인정받아 러더퍼드가 양성자라는 이름을 새로 붙이게 된다.
중성자는 전하를 띄지 않고 전자보다 1,839배 더 무거운1.6749×10−27 kg의 질량을 가진다.[20][21] 이 세 종류의 입자들 중 가장 무겁지만 핵결합에너지 때문에 실제 질량은 이보다 작다. 양성자와 함께 핵자라고도 불리는데, 둘 다 2.5×10−15 m의 비슷한 크기를 가지지만 둘 다 어떤 특정한 형태로 존재하지는 않는다.[22] 1932년에 제임스 채드윅에 의해 처음으로 발견되었다.
표준 모형에서는 전자를 기본 입자로 보는 반면, 양성자와 중성자는 쿼크로 이루어진 합성 입자로 본다. 원자에는 두 종류의 쿼크가 있는데, 양성자는 +2/3 전하를 가지는 위 쿼크 2개와 −1/3 전하를 가지는 아래 쿼크로 한 개로 이루어진다. 중성자는 두 개의 아래 쿼크와 하나의 위 쿼크로 이루어진다. 이러한 차이로 인해 전하와 질량에서 차이가 발생하는 것이다.
쿼크들은 글루온이 매개하는 강한 상호작용으로 서로 묶여있다. 양성자와 중성자는 서로 핵력으로 붙잡고 있는 형태이다. 글루온은 게이지 보손중 하나로 쿼크와 마찬가지로 기본 입자이고, 힘의 매개자로 작용한다.
원자핵
이 부분의 본문은 원자핵입니다.
원자핵은 양성자와 중성자가 강한 상호작용으로 결합해 있다. 이들 양성자와 중성자의 개수에 따라 원자를 주기율표로 분류할 수 있으며 화학적인 성질이 결정된다. 이 결합을 바꾸면 아주 강한 힘이 나온다.
핵자 하나가 원자핵에서 분리되기 위해 필요한 에너지.
원자 내의 양성자와 중성자들은 결합하여 원자핵을 만들고, 이러한 성질로 인해 핵자라는 명칭으로 따로 구분되기도 한다. 원자핵의 반지름은 ?를 원자의 핵자 수라고 했을 때 대략 1.07�3? 펨토미터로 근사된다.[23] 핵자들은 굉장히 짧은 거리에 작용하는 힘인 핵력으로 서로 결합되어있는데, 2.5 펨토미터까지는 이 힘이 정전기력보다 강하기 때문에 양성자들이 서로 밀어내는 힘보다 끌어당기는 힘이 더 강하여 서로 결합될 수 있다.
같은 원소에 속하는 원자들은 같은 갯수의 양성자를 가지는데, 이 갯수를 원자 번호라 한다. 양성자와는 달리 같은 종류의 원자끼리도 서로 다른 갯수의 중성자를 지닐 수 있다. 이처럼 양성자의 수는 같으나 중성자의 수는 다른 원자들의 관계를 동위원소라 하고, 더 세분화하여 핵종을 여러 가지로 나누기도 한다.
양성자 수와 중성자 수가 다른 원자들은 쉽게 방사성 붕괴를 일으킨다. 그러나 원자 번호가 커져서 양성자의 갯수가 많아질수록 원자핵의 안정에 필요한 중성자의 갯수가 늘어나게 된다. 따라서 양성자 수에 대한 중성자 수의 비율은 방사성 동위 원소 원자핵의 안정성을 나타내는 지표가 되기도 한다.
전자, 양성자, 중성자는 모두 파울리 배타 원리를 따르는 페르미온이다. 그러므로 양자적으로 동일한 상태의 입자가 동시에 두 개 이상 존재할 수 없다.
핵융합을 통해 중수소의 원자핵이 만들어지고 있다. 두 개의 양성자가 충돌해 하나의 양성자와 하나의 중성자를 이루고, 이 과정에서 전자의 반물질인 양전자(e+)와 중성미자가 방출된다.
매우 높은 에너지를 통해 원자핵의 양성자나 중성자 갯수를 변화시킬 수 있다. 이런 기술로 여러개의 원자를 강하게 충돌시켜 무거운 원자핵을 합성하는 핵융합이 가장 대표적이다. 핵융합을 위해서는 쿨롱 장벽을 뛰어넘을 만큼 높은 에너지가 필요한데, 태양의 중심에서 충분한 에너지의 공급을 통해 핵융합이 꾸준히 이루어지고 있음이 알려져 있다. 이와는 반대로 큰 원자핵을 두 개 이상의 작은 원자핵으로 나누는 과정인 핵분열도 있다. 이 핵분열은 고에너지의 아원자 입자나 광자를 원자핵에 충돌시킴으로써 유도할 수 있다.
핵융합 후의 원자핵은 그 재료들의 원자핵의 질량의 합보다 더 작은 질량을 가진다. 이 질량의 차이만큼의 에너지는 감마선과 베타 입자로 빠져나가게 되는데, 이는 알베르트 아인슈타인의 질량-에너지 등가 공식 ?를 따라 감소한 질량 ?이 빛의 속력 ?를 두 번 곱한 만큼의 에너지가 방출된다.[24]
전자 구름
이 부분의 본문은 원자 궤도 및 전자 배치입니다.
고전 역학에 의하면 입자는 어떤 위치 x에 도달하기 위해 V(x)만큼의 에너지가 필요하다. 따라서 에너지가 E밖에 없다면 x1과 x2 사이에 위치해야 한다.
원자 내의 전자들은 핵의 양성자에 의해 전자기력으로 포섭되어 있다. 에너지의 관점에서 보자면, 전자는 원자핵을 둘러싼 정전기적 퍼텐셜 우물에 둘러쌓여 있어서, 이를 탈출하려면 일정 수준 이상의 에너지가 추가로 필요한 상태이다. 핵에 더 가까이 위치한 전자일수록 더 강한 인력이 작용하게 되고, 결국 원자 중심에 가까울 수록 전자가 탈출하기 위해 필요한 에너지가 더 많이 필요한 것이다.
수소꼴 원자의 오비탈 모양. g오비탈 이상은 나타나 있지 않다.
전자는 다른 입자들과 마찬가지로 파동-입자 이중성을 가진다. 전자 구름이란 퍼텐셜 우물 내에 형성된 정상파로서 전자가 분포하고 있다는 것을 의미한다. 이 형태는 전자가 각 위치에 존재할 확률을 계산함으로써 유추할 수 있는데, 이를 원자 궤도 또는 오비탈이라고 부른다. 오비탈들은 크기나 형태, 방향에 있어서 같은 것이 하나도 없다. 또한 각각 다른 에너지 준위를 가지고 있고 양자화되어있어서, 충분한 에너지를 가진 광자를 흡수한다면 더 높은 에너지 준위의 오비탈로 전자가 이동할 수 있다. 이와 유사하게 너무 높은 에너지의 광자가 조사된다면 자연방출을 통해 광자를 방출하면서 오히려 더 낮은 에너지의 오비탈로 전자가 이동할 수도 있다. 각 오비탈간 에너지 차이는 선스펙트럼을 관찰하여 알아낼 수 있다.
전자를 떼기 위해 필요한 에너지인 이온화 에너지는 핵자를 뗄 때 필요한 에너지보다 많이 작다. 일례로, 정상상태의 수소 원자에서 전자를 떼어내려면 13.6 eV가 필요하지만, 중수소의 원자핵을 쪼개기 위해서는 2.23 MeV가 필요하다. 원자핵에서 멀리 떨어져 있는 전자는 근처의 원자로 이동하거나, 아니면 여러 개의 원자핵에 동시에 포섭될 수 있다. 분자가 바로 이러한 형태의 화학 결합으로 형성된다. 공유 결합으로 형성된 결정이나 이온 결정같은 경우는 이처럼 단순하게 분석할 수 없다.[25]
원자론의 과학자와 현대 원자와 관련된 이론
원자 단위의 물리학은 원자 광학과 나노 과학에서 이루어진다. 이들 실험은 원자를 옮기고 운동 속도를 조정하며 이루어진다. 원자보다 더 작은 원자핵의 물리학은 핵물리학과 입자물리학의 주제가 된다.