|
|
Melatonin as a master regulator of cell death and inflammation: molecular mechanisms and clinical implications for newborn care
Cell Death & Disease volume 10, Article number: 317 (2019) Cite this article
85k Accesses
219 Citations
152 Altmetric
Abstract
Melatonin, more commonly known as the sleep hormone, is mainly secreted by the pineal gland in dark conditions and regulates the circadian rhythm of the organism. Its intrinsic properties, including high cell permeability, the ability to easily cross both the blood–brain and placenta barriers, and its role as an endogenous reservoir of free radical scavengers (with indirect extra activities), confer it beneficial uses as an adjuvant in the biomedical field. Melatonin can exert its effects by acting through specific cellular receptors on the plasma membrane, similar to other hormones, or through receptor-independent mechanisms that involve complex molecular cross talk with other players. There is increasing evidence regarding the extraordinary beneficial effects of melatonin, also via exogenous administration. Here, we summarize molecular pathways in which melatonin is considered a master regulator, with attention to cell death and inflammation mechanisms from basic, translational and clinical points of view in the context of newborn care.
멜라토닌은
일반적으로 수면 호르몬으로 알려져 있으며,
주로 어두운 환경에서 송과체에서 분비되어 생물의 생체 리듬을 조절합니다.
멜라토닌의 내재적 특성에는
높은 세포 투과성,
혈액-뇌 장벽과 태반 장벽을 쉽게 통과하는 능력, 그리고
자유 라디칼 제거제(간접적인 추가 기능 포함)로서의
내인성 저장고 역할이 포함됩니다.
이러한 특성들은
멜라토닌을 생물의학 분야에서
보조제로서의 유익한 용도로 활용할 수 있게 합니다.
멜라토닌은
다른 호르몬과 유사하게 세포막상의 특정 수용체를 통해 작용하거나,
다른 분자들과의 복잡한 교신 메커니즘을 통해
수용체 독립적 기전을 통해 효과를 발휘할 수 있습니다.
멜라토닌의 놀라운 유익한 효과에 대한 증거가 점점 더 증가하고 있으며,
이는 외인성 투여를 통해 이루어지기도 합니다.
본 논문에서는
신생아 관리의 맥락에서 기본적, 번역적, 임상적 관점에서
멜라토닌이
세포 사멸 및 염증 메커니즘의 주조절자로 작용하는 분자 경로를 요약합니다.
Similar content being viewed by others
Partial protective effects of melatonin on developing brain in a rat model of chorioamnionitis
Article Open access12 November 2021
Article Open access02 June 2021
Article Open access15 January 2024
Facts
Melatonin is a ubiquitous molecule with natural and powerful antioxidant proprieties and administration of exogenous melatonin is safe
Melatonin exerts anti-inflammatory effects mainly by inhibiting inflammasome activation
Melatonin exerts its antiapoptotic activities mainly by blocking caspase 3 cleavage and mPTP opening
“Oxygen radical diseases of neonatology” refers to the oxidative stress that has a leading role in the pathogenesis of neonatal morbidities and pathologic conditions
Open questions
How endogenous melatonin contrast the oxidative stress that has a leading role in the pathogenesis of neonatal morbidities and pathologic conditions?
Which are the intracellular targets of melatonin?
How could melatonin improve the treatment of neonatal disease?
What factors ultimately determine the melatonin efficacy as an adjunctive treatment in sepsis, chronic lung disease and hypoxic–ischemic encephalopathy of the term and preterm infants
사실
개방형 질문
Introduction
Melatonin (N-acetyl-5-methoxytryptamine) is a ubiquitous molecule present in nature that carries out many functions1, manifesting enormous versatility and diversity. More commonly known as the sleep hormone, melatonin also has antioxidant, anti-inflammatory, antiapoptotic, and many other crucial properties2,3. In mammals, this multitasking indolamine is synthesized in the pineal gland in a circadian manner in response to the photoperiodic information received via the retinohypothalamic pathway4,5. It is directly released into the bloodstream, where it is distributed to all tissues6,7. Melatonin has two important functional groups that determine its specificity and amphiphilicity: the 5-methoxy group and the N-acetyl side chain. In particular, due to its amphiphilic characteristics, melatonin can diffuse and easily cross all morpho-physiological barriers, such as the placenta or the blood–brain barrier8,9, and it can enter all cells of the body, influencing the function of a variety of tissues10. Pineal synthesis is timed by the suprachiasmatic nucleus of the hypothalamus, depending on the light–dark cycle over a 24-h period5. Melatonin is mainly produced during the dark phase, and the maximal plasma concentration of this serotonin-derived hormone usually occurs 4–5 h after darkness onset11. Light stimulus activates melanopsin breakdown in retinal photoreceptive ganglion cells that, via the retinohypothalamic pathway, induce the inhibition of melatonin synthesis12; as a consequence, during the daily light period, its level is low or even undetectable13. Throughout life, melatonin levels tend to be significantly reduced. In the blood, once secreted from the pineal gland, melatonin is usually bound to albumin, metabolized to 6-hydroxymelatonin by cytochrome P-450 isoforms and conjugated, in the liver, to produce the principal urinary metabolite, 6-sulfatoxy-melatonin, which is finally eliminated through the kidney14. However, melatonin is not exclusively produced in the pineal gland, but it is also locally synthesized in several cells and tissues, such as the retina, the gastrointestinal tract, and the innate immune system10. The synthesis in extrapineal sites presumably does not follow circadian rhythms, except for the retina, and mainly works as a local antioxidant15,16.
Studies have proposed that mitochondria are the primary sites of melatonin synthesis17. Mitochondria are major sources of free radicals, and in addition to being commonly used to treat disoriented circadian clocks due to jet lag and other disturbances (i.e., sleep inefficiency)18, melatonin has been widely used as an antioxidative therapy19 and its use dates back to 1993 (refs. 20,21). The direct antioxidant and free radical scavenging properties of melatonin are mainly due to its electron-rich aromatic indole ring, which makes it a potent electron donor that can significantly reduce oxidative stress3,22. Over this direct action, melatonin can further activate melatonin (MT) 1 and MT2 receptors (Fig. 1), upregulating antioxidative defensive systems by increasing the expression or activity of antioxidant enzymes such as superoxide dismutase and glutathione peroxidase23.
소개
멜라토닌 (N-아세틸-5-메톡시트립타민)은
자연에 널리 존재하는 분자로,
다양한 기능을 수행하며1
엄청난 다기능성과 다양성을 보여줍니다.
일반적으로 수면 호르몬으로 알려진 멜라토닌은
항산화, 항염증, 항아포토시스 등
포유류에서 이 다기능 인돌아민은
시계 주기적으로 송과체에서 광주기 정보를 통해
망막-시상하부 경로를 통해 전달받은 신호에 반응하여 합성됩니다4,5.
이는 혈류로 직접 방출되어
멜라토닌은
특이성과 암피필릭성을 결정하는 두 가지 중요한 기능 그룹을 가지고 있습니다:
5-메톡시 그룹과 N-아세틸 측쇄입니다.
특히
암피필릭 특성으로 인해 멜라토닌은
태반이나 혈액-뇌 장벽과 같은 모든 형태-생리학적 장벽을 확산하고 쉽게 통과할 수 있으며8,9,
신체 내 모든 세포에 들어가 다양한 조직의 기능을 영향을 미칩니다10.
멜라토닌의 합성은
뇌하수체의 상시교차핵에 의해 조절되며,
24시간 주기의 빛-어둠 주기에 따라 조절됩니다5.
멜라토닌은
주로 어둠 단계에서 생성되며,
이 세로토닌 유도 호르몬의 최대 혈장 농도는
어둠 시작 후 4–5시간 후에 발생합니다11.
광 자극은
망막 광수용체 신경절 세포에서 멜라노프신 분해를 활성화하며,
이는 망막-시상하부 경로를 통해 멜라토닌 합성을 억제합니다12;
결과적으로
일일 광 기간 동안 그 수준은 낮거나 심지어 검출되지 않을 수 있습니다13.
평생 동안 멜라토닌 수준은
크게 감소하는 경향이 있습니다.
혈액에서 송과체에서 분비된 멜라토닌은
일반적으로 알부민과 결합되며,
사이토크롬 P-450 이소형에 의해 6-하이드록시멜라토닌으로 대사되고,
간에서 6-설파토-멜라토닌으로 결합되어
주요 요로 대사산물로 생성되며,
최종적으로 신장을 통해 배설됩니다14.
In the blood, once secreted from the pineal gland, melatonin is usually bound to albumin, metabolized to 6-hydroxymelatonin by cytochrome P-450 isoforms and conjugated, in the liver, to produce the principal urinary metabolite, 6-sulfatoxy-melatonin, which is finally eliminated through the kidne
그러나
멜라토닌은 송과체에서만 생성되는 것이 아니라
망막, 소화관, 선천성 면역 체계 등
여러 세포와 조직에서 국소적으로 합성됩니다10.
송과체 외 부위에서의 합성은
망막을 제외하고는
일주기 리듬을 따르지 않으며,
https://pmc.ncbi.nlm.nih.gov/articles/PMC5643098/
연구들은
미토콘드리아가 멜라토닌 합성의 주요 장소라고
제안했습니다17.
미토콘드리아는 자유 라디칼의 주요 원천이며,
시차로 인한 생체 리듬 장애(즉, 수면 효율 저하) 치료에 널리 사용되는 멜라토닌은
항산화 치료제로도 널리 사용되어 왔으며18,
그 사용은 1993년까지 거슬러 올라갑니다(참조: 20,21).
멜라토닌의 직접적인 항산화 및 자유 라디칼 제거 특성은
주로 전자 풍부한 아로마틱 인돌 고리 구조에 기인하며,
이는 강력한 전자 공급원으로 작용하여 산화 스트레스를 크게 감소시킵니다3,22.
이 직접적인 작용 외에도 멜라토닌은
멜라토닌(MT) 1 및 MT2 수용체를 활성화시켜(그림 1)
슈퍼옥사이드 디스뮤타제 및 글루타티온 과산화효소와 같은 항산화 효소의 발현 또는 활성을 증가시켜
항산화 방어 시스템을 활성화시킵니다23.
Fig. 1: Mechanisms of action of melatonin.
Melatonin can exert its effects by acting through receptor-independent mechanisms, which involve the direct interaction of melatonin and other molecules, and they are mainly related to its antioxidant and radical scavenging action (a). As any other hormone, melatonin can also act through specific cellular receptors, by membrane melatonin receptors, called MT1 and MT2, which are seven transmembrane-spanning proteins belonging to the G-protein-coupled receptor (GPCR) superfamily, by the cytosolic enzyme QR2 (also called MT3), or through the nuclear receptors RZR/ROR (b)
멜라토닌은 수용체 독립적 메커니즘을 통해 작용하여 효과를 발휘할 수 있으며, 이는 멜라토닌과 다른 분자 간의 직접적인 상호작용을 포함하며, 주로 그 항산화 및 자유 라디칼 제거 작용과 관련이 있습니다 (a).
다른 호르몬과 마찬가지로 멜라토닌은 특정 세포 수용체를 통해 작용할 수 있으며, 이는 막 결합형 멜라토닌 수용체인 MT1과 MT2(G-단백질 결합 수용체(GPCR) 초가족에 속하는 7개의 막을 관통하는 단백질)를 통해, 세포질 효소 QR2(MT3라고도 함)를 통해, 또는 핵 수용체 RZR/ROR(b)를 통해 작용합니다.
MT1 and MT2 are seven transmembrane-spanning proteins belonging to the G-protein-coupled receptor (GPCR) superfamily24, which exhibit high-affinity binding and could be activated at low concentrations of melatonin (pM–nM)25. Furthermore, a third melatonin-binding site (MT3) has been characterized and identified as the cytosolic enzyme quinone reductase 2 (QR2), a known detoxifying enzyme that reduces menadione and other quinones26,27. Moreover, melatonin is also a ligand for nuclear receptors, such as retinoid orphan receptors (or retinoid Z receptors), ROR/RZRα, and ROR/RZRβ28,29,30 (Fig. 1).
MT1과 MT2는 G-단백질 결합 수용체(GPCR) 초가족에 속하는 7개의 막을 관통하는 단백질로, 높은 친화성 결합을 나타내며 멜라토닌의 낮은 농도(pM–nM)에서 활성화될 수 있습니다.25 또한, 세 번째 멜라토닌 결합 부위(MT3)가 특성화되어 세포질 효소인 퀴논 환원효소 2(QR2)로 확인되었습니다. QR2는 메나디온과 다른 퀴논을 환원시키는 알려진 해독 효소입니다26,27. 또한 멜라토닌은 레티노이드 고아 수용체(또는 레티노이드 Z 수용체)인 ROR/RZRα 및 ROR/RZRβ28,29,30(그림 1)과 같은 핵 수용체의 리간드이기도 합니다.
Pathophysiological processes where melatonin plays important roles
Antiapoptotic activity
Almost all the studies that monitored the melatonin-dependent antiapoptotic activities include disease models characterized by the presence of a hypoxic–ischemia (HI) event. HI describes a pathological condition in which an organ is subjected to harmful reduction in oxygen levels (hypoxia) and a deficit in blood supply (ischemia). This clinical picture entails the activation of several different pathways, and melatonin is known to modulate most of them, especially cell death. Mitochondria are organelles with key functions in the adaptive and maladaptive responses to brain injury31; indeed, they are strongly involved in cell death pathways, such as apoptosis, necrosis, and autophagy32, which cause an important portion of neuronal damage in the perinatal HI event (Fig. 2). In vitro experiments and neonatal animal models of HI suggested a very complex network of cell death cascades, highlighting a continuum from apoptosis to necrosis33,34. In other words, the coexistence of necrotic and apoptotic markers inside the same cell shape a heterogeneous phenotype characterized by a mixture of suicide program activation33. In the immature brain of rodents, the cell death continuum is more switched versus apoptosis; indeed, HI drives cell death through Bcl-2 family members35,36. Under these conditions, mitochondria permeabilize, and proapoptotic factors, such as cytochrome c (Cyt C) and the apoptosis-inducing factor (AIF), are released into the cytosol. Melatonin administration reversed this phenotype by adopting a compensatory mechanism aimed at increasing Bcl-2 protein expression, blocking Bax proapoptotic activity via the SIRT1/NF-kB axis with a consequent and significant inhibition of Cyt C release and the lack of apoptosome formation and caspase 3 activation37 (Fig. 2). The AIF pathway, together with increased levels of cleaved caspase 3, is recognized as the main inductor of apoptosis in the damaged brain of neonatal rodents38, even if their action becomes less pronounced once the brain matures39. Beneficial effects have also been reported by the use of melatonin in brain-injured mice 24 h after reperfusion with a selective action involving caspases 3 inhibition40. Nevertheless, melatonin also contributes to antiapoptotic activities via the Akt axis by preventing the decrease in pAkt and pBad levels upon HI injury41,42 (Fig. 2).
항아포토시스 활성
멜라토닌에 의존하는 항아포토시스 활성을 모니터링한 대부분의 연구는
저산소-허혈(HI) 사건이 특징인 질환 모델을 포함합니다.
HI는
장기가 유해한 산소 수준 감소(저산소증)와 혈액 공급 부족(허혈)에 노출되는
병리적 상태를 설명합니다.
이 임상적 소견은 여러 다른 경로의 활성화로 이어지며,
멜라토닌은 이 중 대부분을 조절하는 것으로 알려져 있습니다,
특히 세포 사멸에 대한 조절이 두드러집니다.
미토콘드리아는
뇌 손상에 대한 적응적 및 비적응적 반응에서 핵심 기능을 수행하는 세포 소기관입니다31;
실제로 이들은
아포토시스, 괴사, 오토파지 등 세포 사멸 경로에 강하게 관여하며,
이는 신생아 HI 사건에서 신경 세포 손상의 중요한 부분을 차지합니다(그림 2).
체외 실험과 신생아 동물 모델에서 HI는 매우 복잡한 세포 사멸 캐스케이드 네트워크를 보여주며, 아포토시스에서 괴사로 이어지는 연속체를 강조합니다33,34. 즉, 동일한 세포 내 괴사 및 아포토시스 표지자의 공존은 자살 프로그램 활성화의 혼합으로 특징지어지는 이질적인 표현형을 형성합니다33. 쥐의 미성숙 뇌에서 세포 사멸 연속체는 아포토시스보다 더 많이 전환됩니다; 실제로 HI는 Bcl-2 가족 구성원을 통해 세포 사멸을 유도합니다35,36. 이러한 조건 하에서 미토콘드리아는 투과성을 잃고, 사이토크롬 c (Cyt C) 및 아포토시스 유도 인자 (AIF)와 같은 프로아포토시스 인자가 세포질로 방출됩니다. 멜라토닌 투여는 Bcl-2 단백질 발현을 증가시키는 보상 메커니즘을 통해 이 표현형을 역전시켰습니다. 이는 SIRT1/NF-kB 축을 통해 Bax의 프로아포토틱 활성을 차단함으로써 사이토크롬 c(Cyt C) 방출의 유의미한 억제, 아포토소ーム 형성 및 카스파제 3 활성화의 결여를 초래했습니다37 (그림 2). AIF 경로는 신생아 설치류의 손상된 뇌에서 세포 사멸의 주요 유발 인자로 인정되며, 분해된 caspase 3의 증가와 함께 작용합니다38. 그러나 뇌가 성숙함에 따라 그 작용은 덜 두드러집니다39. 멜라토닌은 재관류 후 24시간 후에 뇌 손상 마우스에서 선택적 작용을 통해 caspase 3 억제를 통해 유익한 효과를 보고되었습니다40. 그러나 멜라토닌은 HI 손상 시 pAkt 및 pBad 수준 감소 방지 통해 Akt 축을 통해 항아포토시스 활성에 기여합니다41,42 (그림 2).
Fig. 2: Antiapoptotic mechanisms operated by melatonin.
Endogenous levels of melatonin and exogenous administration confer to injured cells protection from many cell death forms including apoptosis, necroptosis, mPTP-driven cell death, and autophagy. Melatonin is high cell permeable and its beneficial effects are mediated by both MT1/2-dependent and MT1/2-independent mechanisms. Once in the cytoplasm it blocks the Ripk3 cascade, Drp1 activation, and Bax-dependent cytochrome c (Cyt. C) release caused by external insults; as a result, the cell receives pro-survival signals. Melatonin localizes also in mitochondria where PEPT1/2 and GLUT channels are postulated to be new transporters of this hormone in the organelle. In mitochondria, melatonin modulates mitochondrial permeability transition pore (mPTP) opening and counteracts oxidative stress
멜라토닌의 내인성 수준과 외인성 투여는 손상된 세포가 아포토시스, 네크로토시스, mPTP에 의해 유발되는 세포 사멸, 및 오토파지 등 다양한 세포 사멸 형태로부터 보호합니다. 멜라토닌은 높은 세포 투과성을 가지고 있으며, 그 유익한 효과는 MT1/2 의존적 및 MT1/2 독립적 메커니즘을 통해 매개됩니다.
세포질에 들어간 멜라토닌은
외부 자극에 의해 유발되는 Ripk3 캐스케이드, Drp1 활성화, 및 Bax에 의존적인 사이토크롬 c (Cyt. C) 방출을 차단합니다.
이로 인해 세포는 생존 신호를 받게 됩니다.
멜라토닌은
미토콘드리아 내에서도 국소화되며,
PEPT1/2 및 GLUT 채널이 이 호르몬의 새로운 운반체로 제안되고 있습니다.
미토콘드리아에서 멜라토닌은
미토콘드리아 투과성 전환 구멍(mPTP)의 개방을 조절하고
산화 스트레스를 억제합니다.
Modulation of the permeability transition pore
Studies have reported that mitochondria permeabilize due to the mitochondrial permeability transition pore (mPTP) opening, a pathophysiological event that, under favorable conditions, causes an increase in permeability of the inner mitochondrial membrane and leads to mitochondrial depolarization, swelling, and the activation of the apoptotic and necrotic pathways43; for these reasons, mPTP is widely considered as the final step of cell demise44. Even though the exact structure of the mPTP, as well as its assembly kinetics, is still unknown, interesting findings suggested that dissociation of F1FO ATP synthase dimers45 and the c subunit pore-forming part46 have an important role in mitochondrial permeability transition (mPT) and constitute a valid therapeutic approach in pathologies subjected to widespread cell death47,48. It is no coincidence that melatonin, in addition to having a plethora of beneficial effects, executes neuroprotection by modulating mPTP activity49,50. Indeed, melatonin is highly permeable to cell membranes and easily crosses the blood–brain barrier51, ensuring a good therapeutic profile for brain diseases, and is also able to accumulate into mitochondria, probably via GLUT/SLC2A and PEPT1/2 carriers52,53. Studies have shown how its use in mitochondria isolated from rodent brains and subjected to Ca2+-induced mPTP conferred protection from mitochondrial swelling and membrane depolarization49 and prevented Cyt C release and cardiolipin peroxidation54 via mPTP inhibition (Fig. 2). Moreover, the benefits of melatonin are appreciable in mitochondria isolated from aged rodent brains where chronic treatment allows for antiapoptotic effects and increased cellular respiration as the young mitochondria counterparts. The exact nature of this modulation (direct or indirect) is still evolving. In 2004, Andrabi et al. claimed a direct inhibition of mPTP by melatonin55, but he never identified the target pore protein; instead, a more recent study revealed that melatonin-mediated mPTP inhibition would be highly dependent on the MT1 receptor as mitochondrial protective effects did not occur in the presence of luzindole compound, an MT blocking agent56. Although melatonin-dependent mPTP modulation has been widely described with concordant results, related molecular mechanisms have only been proposed. Zhou et al. proposed two mechanisms by which (i) melatonin pretreatment represents an interfering mechanism for Ripk3/PGAM5/CypD axis execution, desensitizing cells to necroptosis triggered by RipK3 activation, PGAM upregulation, and CypD phosphorylation50 in endothelial cells; and (ii) melatonin avoids mPTP opening and mitophagy-mediated cell death by suppressing mitochondrial fission following ischemia reperfusion injury that in turn restored bound VDAC1-HK2 (ref. 57), limiting cell death in the cardiac microvasculature. However, whether melatonin plays the same role in HI brain injuries is unknown.
미토콘드리아 투과성 전환 구멍의 조절
연구 결과에 따르면
미토콘드리아는
미토콘드리아 투과성 전환 구멍(mPTP)의 개방으로 인해
투과성이 증가하는 병리생리학적 사건이 발생하며,
이는 적절한 조건 하에서 내막의 투과성 증가,
미토콘드리아 탈분극, 부종, 그리고
세포 사멸 및 괴사 경로의 활성화로 이어집니다43;
이러한 이유로 mPTP는
세포 사멸의 최종 단계로 널리 인식되고 있습니다44.
mPTP의 정확한 구조 및 조립 동역학은 아직 알려지지 않았지만, F1FO ATP 합성효소 이량체45의 분리와 c 서브유닛의 구멍 형성 부분46이 미토콘드리아 투과성 전환(mPT)에 중요한 역할을 하며, 광범위한 세포 사멸을 동반하는 질환에서 유효한 치료 접근법으로 제시되었습니다47,48. 멜라토닌은 다양한 유익한 효과를 갖는 것 외에도 mPTP 활성을 조절하여 신경 보호 작용을 수행합니다49,50. 실제로 멜라토닌은 세포막에 높은 투과성을 가지고 혈액-뇌 장벽을 쉽게 통과합니다51, 이는 뇌 질환에 대한 우수한 치료 프로파일을 보장하며, GLUT/SLC2A 및 PEPT1/2 운반체를 통해 미토콘드리아에 축적될 수 있습니다52,53.
연구 결과, 쥐 뇌에서 분리된 미토콘드리아에 칼슘(Ca2+)에 의해 유발된 mPTP에 멜라토닌을 투여했을 때 미토콘드리아 부종과 막 탈분극을 방지했으며49, mPTP 억제를 통해 사이토크롬 C 방출과 카르디올리핀 과산화를 방지했습니다54(그림 2). 또한, 노화된 쥐 뇌에서 분리된 미토콘드리아에서 멜라토닌의 이점은 만성 투여를 통해 항아포토시스 효과와 젊은 미토콘드리아와 유사한 세포 호흡 증가를 보여줍니다. 이 조절의 정확한 메커니즘(직접적 또는 간접적)은 여전히 연구 중입니다. 2004년 Andrabi 등55은 멜라토닌이 mPTP를 직접 억제한다고 주장했지만, 표적 포어 단백질을 식별하지 못했습니다. 대신 최근 연구에서는 멜라토닌에 의한 mPTP 억제가 미토콘드리아 보호 효과가 luzindole 화합물(MT 차단제) 존재 시 발생하지 않았다는 점에서 MT1 수용체에 크게 의존적임을 밝혔습니다56. 멜라토닌에 의존적인 mPTP 조절은 일관된 결과와 함께 널리 보고되었지만, 관련 분자 메커니즘은 아직 제안된 단계에 머물러 있습니다.
Zhou 등(Zhou et al.)은 두 가지 메커니즘을 제안했습니다:
(i) 멜라토닌 사전 처리가 Ripk3/PGAM5/CypD 축의 실행을 방해하는 메커니즘으로 작용하여, RipK3 활성화, PGAM 상향 조절, CypD 인산화50에 의해 유발된 세포의 네크로토시스 감수성을 감소시킨다는 것입니다;
(ii) 멜라토닌이 허혈-재관류 손상 후 미토콘드리아 분열을 억제함으로써 mPTP 개방과 미토파지 매개 세포 사멸을 방지하며, 이는 결합된 VDAC1-HK2를 복원하여 심장 미세혈관에서의 세포 사멸을 제한한다는 것입니다(참조 57).
그러나 멜라토닌이 HI 뇌 손상에서 동일한 역할을 하는지는 아직 알려지지 않았습니다.
Modulation of autophagy
Autophagy is engaged in intracellular material recycling to sustain cell bioenergetics58. The knowledge of melatonin as an autophagy modulator derives mainly from HI studies59,60,61,62. The interplay between melatonin and autophagy is discordant; indeed, if some studies showed that the hormone is able to significantly downregulate autophagy in different disease models63,64,65, other reports failed to confirm those findings, providing evidence for an enhancement of the autophagic process upon melatonin treatment66,67,68. Even when considering the same disease picture, for instance, the perinatal HI event, studies have shown how melatonin could prevent60 or enhance59 the autophagic response to the pathologic insult (Fig. 2).
Regardless of how and in which way melatonin modulates autophagy, it has been confirmed as a very important and functional protective agent69.
자가포식의 조절
자가포식은
세포의 생체 에너지를 유지하기 위해 세포 내 물질의 재활용에 관여합니다58.
멜라토닌이
자가포식 조절제라는
사실은 주로 HI 연구에서 밝혀졌습니다59,60,61,62.
멜라토닌과 자가포식 사이의 상호 작용은 일관적이지 않습니다.
실제로, 일부 연구에서는 이 호르몬이 다양한 질병 모델에서 자가포식을 현저하게 억제할 수 있음을63,64,65 보여준 반면, 다른 연구에서는 이러한 결과를 확인하지 못했으며, 멜라토닌 치료에 따라 자가포식 과정이 강화된다는 증거를 제시했습니다66,67,68. 예를 들어, 주산기 HI 사건과 같은 동일한 질병을 고려한 연구에서도, 멜라토닌이 병리학적 손상에 대한 자가포식 반응을 예방60하거나 강화59할 수 있는 방법이 연구를 통해 밝혀졌습니다 (그림 2).
멜라토닌이 자가포식을 어떻게, 어떤 방식으로 조절하는지에 관계없이,
멜라토닌은 매우 중요하고 기능적인 보호제라는 것이
확인되었습니다69.
Melatonin as a potent and widespread anti-inflammatory agent
Several studies have shown that melatonin can regulate the activation of the immune system, reducing chronic and acute inflammation70,71,72,73.
Experimental and clinical data suggest that melatonin exerts its anti-inflammatory effects by modulating both pro- and anti-inflammatory cytokines in various pathophysiological situations73,74. Since different cytokines are associated with inflammatory diseases, wherein the balance between proinflammatory and anti-inflammatory molecules determines the clinical outcome to some degree, melatonin could modulate serum inflammatory parameters. In addition, melatonin inhibits the expression of cyclooxygenase (COX) and inducible nitric oxide synthase (iNOS)75 and limits the production of excessive amounts of prostanoids and leukotrienes and nitric oxide (NO), as well as other mediators of the inflammatory process, such as chemokines and adhesion molecules73,76 (Fig. 3).
멜라토닌은 강력한 항염증제로 널리 알려져 있습니다
여러 연구에서 멜라토닌이 면역 체계의 활성화를 조절하여 만성 및 급성 염증을 감소시킨다는 것이 밝혀졌습니다70,71,72,73.
실험적 및 임상적 데이터는 멜라토닌이 다양한 병리생리학적 상황에서 프로- 및 항염증성 사이토카인의 조절을 통해 항염증 효과를 발휘한다는 것을 시사합니다73,74. 염증성 질환에서는 프로염증성 및 항염증성 분자 간의 균형이 임상적 결과에 일정 부분 영향을 미치기 때문에, 멜라토닌은 혈청 염증 매개체를 조절할 수 있습니다. 또한 멜라토닌은 사이클로옥시게나제(COX)와 유도성 산화질소 합성효소(iNOS)의 발현을 억제하며75, 프로스타노이드, 류코트리엔, 산화질소(NO)와 같은 염증 과정의 매개체 및 케모카인, 접착 분자 등 과도한 양의 생산을 제한합니다73,76 (그림 3).
Fig. 3: Anti-inflammatory effects of melatonin.
Melatonin is mainly reported to possess anti-inflammatory properties by inhibiting inflammasome activation, thus inhibiting caspase-1 activation, cytokines release, and pyroptosis. In addition, melatonin can also inhibit the expression of the cyclooxygenase (COX) and inducible nitric oxide synthase (iNOS) by inhibiting nuclear NF-κB traslocation
In nonneuronal tissues, experimental studies have demonstrated that melatonin inhibits NO production induced by lipopolysaccharide (LPS) that induce the activation of the immune response77. The addition of melatonin, in a micromolar range, prevents LPS-induced iNOS expression in cultured rat endothelial cells and aortic rings77; this effect is not dependent on the activation of G-protein-coupled melatonin receptors but on nuclear factor-kappa B (NF-κB)77. Indeed, NF-κB triggers a cascade of molecular events, some of which may be potential key targets for the treatment of inflammation, and melatonin performs part of its anti-inflammatory functions by modulating nuclear NF-κB translocation73,78,79. Furthermore, melatonin is mainly reported to inhibit inflammasome activation70,80. Recently, Liu et al.80 demonstrated that this indole reduced LPS-induced inflammation and thus NLRP3 inflammasome formation in mouse adipose tissue by acting on the expression of inflammasome genes, including NLRP3, ASC, and thereby caspase-1 and IL-1β. In addition, the proinflammatory form of cells, called pyroptosis, was also strongly inhibited by melatonin80,81 (Fig. 3).
The anti-inflammatory properties of melatonin have also been extensively studied in models of cardiac sepsis78,79,82, where melatonin blunted the NF-κB/NLRP3 connection and activation78,79,82. To conclude, and accordingly to the data summarized here, melatonin is considered a potent molecule that has received increasing attention in the management of a large variety of diseases with an inflammatory etiology7,70,71,72,73,79 (Fig. 3).
비신경 조직에서 실험적 연구들은
멜라토닌이 면역 반응의 활성화를 유발하는
리포폴리사카라이드(LPS)에 의해 유도된 NO 생성을 억제한다는 것을 보여주었습니다77.
미크로몰 농도의 멜라토닌을 추가하면 배양된 쥐 내피 세포와 대동맥 고리에서 LPS에 의해 유발된 iNOS 발현을 억제합니다77; 이 효과는 G-단백질 결합 멜라토닌 수용체의 활성화에 의존하지 않으며 핵 인자-카파 B(NF-κB)에 의존합니다77. 실제로 NF-κB는 분자적 사건의 연쇄 반응을 유발하며, 이 중 일부는 염증 치료의 잠재적 핵심 표적이 될 수 있으며, 멜라토닌은 핵 내 NF-κB 이동을 조절함으로써 일부 항염증 기능을 수행합니다73,78,79. 또한 멜라토닌은 주로 염증체 활성화 억제 효과가 보고되었습니다70,80. 최근 Liu 등80은 이 인돌 화합물이 LPS에 의한 염증을 감소시키고 따라서 마우스 지방 조직에서 NLRP3 염증체 형성을 억제한다는 것을 보여주었습니다. 이는 염증체 유전자(NLRP3, ASC)의 발현을 조절함으로써 caspase-1 및 IL-1β의 활성을 억제하는 메커니즘을 통해 이루어졌습니다. 또한, 염증성 세포 형태인 피로토시스도 멜라토닌에 의해 강력히 억제되었습니다80,81 (그림 3).
멜라토닌의 항염증 효과는 심장성 패혈증 모델에서도 광범위하게 연구되었습니다78,79,82, 여기서 멜라토닌은 NF-κB/NLRP3 연결 및 활성화를 억제했습니다78,79,82. 결론적으로, 여기에서 요약된 데이터에 따라 멜라토닌은 염증성 기전을 가진 다양한 질환의 관리에서 주목받고 있는 강력한 분자로 간주됩니다7,70,71,72,73,79 (그림 3).
Analgesic and others modulatory roles of melatonin
The molecular pathways underlying the analgesic action of melatonin have not been completely addressed, and a plethora of mechanisms have been proposed, such as endorphin release from the pituitary gland83, modulation of the central GABAergic system84, and additional interaction with multiple receptor types. Those ligand-target bindings would include benzodiazepine, opioid, α(1)- and α(2)-adrenergic, serotonergic and cholinergic receptors85 and, notably, the fascinating issue of the anti-nociceptive role of melatonin seems to be mediated by MT1 and MT2 receptors themselves86,87,88. Studies have postulated that the cause may be ascribed to the reduction in the excitability of pain transmitting dorsal horn neurons via hyperpolarization due to MT1/2-melatonin binding89.
Among the effects provided by melatonin administration, the modulation of N-methyl-d-aspartate (NMDA) receptors and the conservation of myelin sheets in the central nervous system (CNS) are probably the least treated. NMDA receptors are sensitive to glutamate binding, the major excitatory neurotransmitter in the brain whose extracellular levels increase abnormally during insults, such as ischemia. Excessive release of glutamate and its binding with NMDA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), or kainite (KA) receptors promotes excitotoxicity cell injury with a consequent activation of many molecular pathways, resulting in intracellular calcium (Ca2+) overload90,91, reactive oxygen species (ROS) production, mPT, and cell swelling with brain edema92. Patch-clamp experiments demonstrated how melatonin is able to modulate NMDA receptor activity by the drastic attenuation of their currents in neurons located in the spinal cord dorsal horn93. Focused experiments conducted in rat striatum synaptosome preparations have reported that melatonin inhibits the excitatory response in a partially Ca2+-dependent manner in which the direct effect on membrane hyperpolarization promoted intracellular Ca2+ influx reduction94. The involvement of melatonin is dose-dependent, and if at physiological concentrations, it inhibited NMDA-induced current. At higher dosages, it also participated in the modulation of AMPA-glutamate binding. It follows that melatonin exerts powerful protective mechanisms against oxidative damage and excitotoxicity mediated by glutamate receptors95.
Melatonin as a neuroprotective agent was also recommended in those pathologies involving white matter damage96,97. Indeed, researchers have reported a plethora of positive effects with different exposures of melatonin following CNS trauma, such as axonal regrowth and sprouting, conservation of a given thickness of myelin sheet in oligodendrocytes, and improved nerve maturation96,97.
As reported in the previous paragraphs, melatonin is a widespread potent molecule that can reduce cellular damage. Melatonin has recently received increased attention for its enormous potential in a wide range of different pathologies. In the next section, we discuss the use of melatonin for newborn care.
멜라토닌의 진통 및 기타 조절 작용
멜라토닌의 진통 작용을 뒷받침하는 분자적 경로는 완전히 규명되지 않았으며,
뇌하수체에서 엔도르핀 분비83,
중추 신경계의 GABAergic 시스템 조절84,
다양한 수용체 유형과의 추가적 상호작용 등 다양한 메커니즘이 제안되어 왔습니다.
이러한 리간드-표적 결합에는
벤조디아제핀, 오피오이드, α(1)- 및 α(2)-아드레날린, 세로토닌 및 콜린성 수용체가 포함되며85,
특히 멜라토닌의 항통증 역할은 MT1 및 MT2 수용체 자체에 의해 매개된다는
연구들은
이 원인이 MT1/2-멜라토닌 결합에 의한 과분극화를 통해
통증 전달 후각 신경세포의 흥분성 감소에 기인할 수 있다고 제안했습니다89.
멜라토닌 투여가 제공하는 효과 중 N-메틸-d-아스파르테이트 (NMDA) 수용체의 조절과 중추 신경계 (CNS)의 마이엘린 시트 보존은 아마도 가장 덜 연구된 부분일 것입니다. NMDA 수용체는 뇌의 주요 흥분성 신경전달물질인 글루타메이트 결합에 민감하며, 허혈과 같은 손상 시 세포외 수준이 비정상적으로 증가합니다. 글루타메이트의 과도한 방출과 NMDA, α-아미노-3-하이드록시-5-메틸-4-이소옥사졸프로피온산(AMPA), 또는 카이니트(KA) 수용체와의 결합은 세포 독성 손상을 유발하며, 이는 많은 분자 경로의 활성화로 이어져 세포 내 칼슘(Ca2+) 과부하90,91, 활성 산소 종(ROS) 생성, mPT, 및 뇌 부종과 함께 세포 부종을 유발합니다92. 패치 클램프 실험은 멜라토닌이 척수 후각 신경세포에서 NMDA 수용체 활성을 조절하여 그 전류를 급격히 감소시킨다는 것을 보여주었습니다93. 쥐의 스트라이ATUM 시냅소좀 준비물에서 수행된 집중 실험은 멜라토닌이 부분적으로 Ca2+ 의존적 방식으로 흥분성 반응을 억제하며, 이는 막 과분극화에 대한 직접적인 효과가 세포 내 Ca2+ 유입 감소를 촉진한다는 것을 보고했습니다94. 멜라토닌의 관여는 용량 의존적이며, 생리적 농도에서는 NMDA 유발 전류를 억제합니다. 높은 용량에서는 AMPA-글루타메이트 결합 조절에도 참여합니다. 따라서 멜라토닌은 글루타메이트 수용체를 매개로 한 산화적 손상과 흥분독성에 대한 강력한 보호 메커니즘을 발휘합니다95.
멜라토닌은 백질 손상을 동반한 질환에서 신경 보호제로 권장되었습니다96,97. 실제로 연구자들은 중추신경계 외상 후 멜라토닌의 다양한 노출 조건에서 축삭 재성장 및 분지, 올리고덴드로사이트에서 미엘린 시트의 두께 유지, 신경 성숙 개선 등 다양한 긍정적 효과를 보고했습니다96,97.
앞서 언급된 바와 같이 멜라토닌은 세포 손상을 줄이는 강력한 분자로 널리 알려져 있습니다. 멜라토닌은 다양한 질환에서 엄청난 잠재력을 보여 최근 주목받고 있습니다. 다음 섹션에서는 신생아 관리에 멜라토닌의 활용에 대해 논의합니다.
Clinical utility in newborns
Oxidative stress has a leading role in the spectrum of neonatal disease processes, and it has been known for more than 160 years that hyperoxia has toxic effects on different organs. Saugstad98 in 2005 talked about the “oxygen radical disease of the newborn”: oxidative stress may involve different organs, often simultaneously, giving rise to different signs and different clinical manifestations.
Babies at birth are naturally exposed to the hyperoxic challenge due to the transition from the hypoxic intrauterine environment (pO2 of 20–25 mmHg) to extrauterine life (pO2 of 100 mmHg). This transition naturally increases oxidative stress, but the gap is even more significant for infants that require resuscitation at birth with supplemental oxygen. Newborns are often exposed to oxygen therapies, have low antioxidant defenses despite high levels of toxic radicals, and are more susceptible to infections, especially if born prematurely99. Furthermore, inflammation is strictly correlated with oxidative stress in many conditions that affect newborns. To counteract free radical damage, therapeutic strategies in preclinical and clinical trials have tried to increase the antioxidant status of term and preterm infants, and melatonin, which is safe, nontoxic, and effective, has developed a leading role. Indeed, the efficacy of melatonin has been tested against the “oxygen radical diseases of newborn”, giving promising results100,101,102 (Fig. 4).
신생아에서의 임상적 유용성
산화 스트레스는 신생아 질환의 다양한 과정에 주요 역할을 하며, 고산소증이 다양한 장기에 독성 효과를 미친다는 사실은 160년 이상 알려져 왔습니다. Saugstad98은 2005년에 “신생아의 산소 라디칼 질환”에 대해 언급했습니다: 산화 스트레스는 다양한 장기를 동시에 침범할 수 있으며, 다양한 증상과 임상적 소견을 유발할 수 있습니다.
신생아는 출생 시 저산소성 자궁 내 환경(pO₂ 20–25 mmHg)에서 산소 풍부한 자궁 외 환경(pO₂ 100 mmHg)로 전환되면서 자연스럽게 고산소증에 노출됩니다. 이 전환은 자연스럽게 산화 스트레스를 증가시키지만, 출생 시 보조 산소로 심폐소생술이 필요한 신생아에서는 이 격차가 더욱 큽니다. 신생아는 산소 치료에 자주 노출되며, 독성 라디칼 수치가 높음에도 불구하고 항산화 방어력이 낮고, 특히 조산아인 경우 감염에 더 취약합니다.99 또한, 신생아를 영향을 미치는 많은 질환에서 염증은 산화 스트레스와 밀접하게 연관되어 있습니다. 자유 라디칼 손상을 방지하기 위해 전임상 및 임상 시험에서 치료 전략은 만기 및 조산아의 항산화 상태를 향상시키는 것을 목표로 해왔으며, 안전하고 독성이 없으며 효과적인 멜라토닌이 선도적인 역할을 차지했습니다. 실제로 멜라토닌의 효능은 “신생아 산소 라디칼 질환”에 대해 테스트되었으며 유망한 결과를 보여주었습니다100,101,102 (그림 4).
Fig. 4: Clinical trial of melatonin in newborn care.
Melatonin clinical trial in full term infants (blue), in preterm pathologies (purple) or both (green). In yellow are reported studies of pharmacokinetic. HIE hypoxic–ischemic encephalopathy, IUGR intrauterine growth retardation, CLD chronic lung disease, PVL periventricular leukomalcia
Melatonin and sepsis
Sepsis is a major cause of morbidity and mortality in newborns, born both preterm and at term, with an incidence of 1–10 cases per 1000 live births and a mortality rate as high as 20% observed in very preterm newborns103. Although improvements in neonatal care have decreased the impact of early-onset sepsis in term infants, preterm babies remain at high risk for both early-onset and late-onset sepsis and their sequelae. According to the guidelines of the International Pediatric Sepsis Consensus Conference104, neonatal sepsis is defined as a clinical syndrome characterized by the presence of both infection and systemic inflammatory response syndrome (SIRS) and can cause severe neurological complications due to brain infection, as well as secondary hypoxemia resulting from septic shock, pulmonary hypertension and severe lung disease.
Clinically, SIRS includes respiratory symptoms, ranging in severity from mild tachypnea to respiratory failure, persistent pulmonary hypertension, irritability, lethargy, temperature instability, poor perfusion and hypotension, disseminated intravascular coagulation, poor feeding, vomiting and ileus. CNS involvement may presents with seizures, apnea, and depressed sensorium. It is accepted that bacterial infection induces sepsis via the production of endotoxins and the process is maintained by the inflammatory cascade and oxidative mechanisms that, once activated, operate independently from the presence of pathogens103. Intracellular redox changes are involved in the neonatal sepsis redox cycle and represent the main cause of cell dysfunction and mitochondria. As reported by Bajčetić et al. in 2014 (ref. 105), the immature innate immune system in neonates has a low capacity to generate ROS, so pro-oxidative processes in neonatal sepsis are limited to intracellular compartments of affected tissues. Moreover, neonatal cells appear to compensate for the infection-dependent mitochondrial dysfunction by extramitochondrial ATP production, and proliferating cells are particularly susceptible to apoptosis induced by oxidative stress105. This explains a higher incidence of long-term effects in neonatal sepsis survivors but also underlines the importance of different strategies for sepsis treatment both with antioxidant administration and pharmacologic inhibition of pro-oxidant pathways in addition to antibiotics.
Endogenous blood melatonin concentrations are higher in newborns with late-onset sepsis106, and its use as an adjuvant therapy in the treatment of sepsis is associated with improvement of clinical and laboratory outcomes107. In 2018, El-Gendy et al.108 published a study about the beneficial effect of melatonin in the treatment of neonatal sepsis that involved 40 septic neonates and concluded that the group who received melatonin had a significant improvement in clinical condition and serum parameters compared with the control group.
The review and meta-analysis of Henderson et al. enrolled 120 ill newborns from three different studies who were treated with melatonin as adjunctive therapies for sepsis. The results revealed statistically significant mean differences in C-reactive protein serum levels between groups at 24 h postadjunctive therapy with melatonin and a significant improvement of clinical condition in neonates from the intervention group compared to the control group within 3 days of therapy109. Based on clinicaltrial.gov, the recruitment phase of a randomized study aimed to assess the efficacy of melatonin as an adjuvant in the treatment of free radicals in septic preterm infants compared to the conventional approach alone was completed in Egypt (NCT03295162).
In conclusion, the use of melatonin as an adjunctive therapy for sepsis treatment significantly reduced inflammatory biomarkers and improved clinical conditions in neonates, but larger scale studies with higher validity are needed to demonstrate clear clinical benefits of the therapy103,105,107,108,109.
멜라토닌과 패혈증
패혈증은 조산아와 만삭아 모두에서 주요한 사망 및 질병 원인 중 하나로, 출생아 1,000명당 1~10건의 발생률과 매우 조산아에서 최대 20%의 사망률을 보입니다103. 신생아 의료의 개선으로 만기 출생아의 조기 패혈증 영향은 감소했지만, 조산아는 조기 및 후기 패혈증 및 그 합병증에 대한 위험이 여전히 높습니다. 국제 소아 패혈증 합의 회의(International Pediatric Sepsis Consensus Conference) 지침104에 따르면, 신생아 패혈증은 감염과 전신 염증 반응 증후군(SIRS)이 동시에 존재하는 임상 증후군으로 정의되며, 뇌 감염으로 인한 심각한 신경학적 합병증, 패혈성 쇼크로 인한 이차적 저산소혈증, 폐 고혈압 및 심각한 폐 질환을 유발할 수 있습니다.
임상적으로 SIRS는 경도의 호흡 곤란에서 호흡 부전까지 다양한 증상을 포함하며, 지속적인 폐동맥 고혈압, 자극성, 무기력, 체온 불안정, 혈류 장애, 저혈압, 전신성 혈관 내 응고, 영양 섭취 장애, 구토 및 장 마비 등이 포함됩니다. 중추신경계(CNS) 침범은 발작, 무호흡, 의식 저하로 나타날 수 있습니다. 세균 감염이 내독소 생산을 통해 패혈증을 유발하며, 이 과정은 염증 반응과 산화 메커니즘에 의해 유지됩니다. 이 메커니즘은 활성화되면 병원체의 존재와 무관하게 독립적으로 작동합니다. 세포 내 산화환원 변화는 신생아 패혈증의 산화환원 사이클에 관여하며, 세포 기능 장애와 미토콘드리아 손상의 주요 원인으로 작용합니다. Bajčetić 등(2014)의 보고(참조 105)에 따르면, 신생아의 미성숙한 선천성 면역 체계는 ROS를 생성하는 능력이 낮기 때문에 신생아 패혈증에서의 산화적 과정은 영향을 받은 조직의 세포 내 부위에 제한됩니다. 또한 신생아 세포는 감염에 따른 미토콘드리아 기능 장애를 미토콘드리아 외 ATP 생산으로 보상하며, 증식 중인 세포는 산화 스트레스에 의한 아포토시스(apoptosis)에 특히 취약합니다105. 이는 신생아 패혈증 생존자에서 장기적 합병증 발생률이 높은 이유를 설명하며, 항산화제 투여와 산화 촉진 경로의 약리학적 억제를 포함한 다양한 치료 전략의 중요성을 강조합니다.
신생아에서 후기 발병 패혈증 환자의 혈중 멜라토닌 농도는 더 높으며106, 패혈증 치료의 보조 요법으로 사용될 때 임상 및 실험실 결과 개선과 연관되어 있습니다107. 2018년 El-Gendy 등108은 신생아 패혈증 치료에서 멜라토닌의 유익한 효과를 조사한 연구를 발표했으며, 40명의 패혈증 신생아를 대상으로 한 연구에서 멜라토닌을 투여받은 그룹이 대조군에 비해 임상적 상태와 혈청 파라미터에서 유의미한 개선을 보였다고 결론지었습니다.
Henderson 등109의 리뷰 및 메타분석은 세 가지 다른 연구에서 멜라토닌을 패혈증의 보조 요법으로 투여받은 120명의 병든 신생아를 대상으로 진행되었습니다. 결과는 멜라토닌 보조 요법 후 24시간 시점에서 그룹 간 C-반응 단백질 혈청 수치에 통계적으로 유의미한 평균 차이를 보여주었으며, 치료 후 3일 이내에 개입 그룹의 신생아에서 임상적 상태가 대조군에 비해 유의미하게 개선되었음을 나타냈습니다. clinicaltrial.gov에 따르면, 이집트에서 진행된 무작위 연구의 모집 단계가 완료되었습니다. 이 연구는 멜라토닌을 보조 요법으로 사용해 패혈증 조산아의 자유 라디칼 치료 효과를 전통적 치료법 단독 대비 평가하는 것을 목표로 합니다(NCT03295162).
결론적으로, 멜라토닌을 패혈증 치료의 보조 요법으로 사용한 것은 신생아의 염증 생물학적 지표를 유의미하게 감소시키고 임상 상태를 개선했지만, 치료의 명확한 임상적 혜택을 입증하기 위해서는 더 큰 규모의 연구와 높은 신뢰성을 갖춘 연구가 필요합니다103,105,107,108,109.
Melatonin and preterm morbidity
As previously mentioned, oxidative stress has a leading role in the pathogenesis of preterm morbidities and pathologic conditions. Bronchopulmonary dysplasia (BPD), retinopathy of prematurity, intraventricular hemorrhage, and periventricular leukomalacia are only some examples110. Oxygen therapies used both in the delivery room and during hospitalization, immature organ development, and inflammatory/infective complications make the condition of preterm birth vulnerable to tissue injury111,112. Soon, melatonin could be used in preterm infants in the near future113,114, with the role of protective molecule against oxidative stress.
In addition, Gitto et al. in 2012 published a study suggesting a role for melatonin as an analgesic therapy during procedural pain in preterm babies, especially when inflammation is present. The Premature Infant Pain Profile score (PIPP score) was lower in 30 infants treated with common sedation plus melatonin during intubation and mechanical ventilation than in those treated with common therapy alone115. Likewise, the use of melatonin has rapidly spread; some authors proposed it for preterm babies affected by necrotizing enterocolitis116, for hemolytic hyperbilirubinemia-induced oxidative brain damage117, intrauterine fetal growth retardation118,119,120,121, chronic lung disease (CLD), and periventricular leukomalacia. Notably, melatonin did not reveal any side effects after single-dose administration to preterm babies born before 31 weeks of gestational age GA (for details, MIND phase II trial, NCT00649961).
Merchant et al.122 showed the difference between the pharmacokinetic profile in preterm babies and adults caused by immature liver and poor renal excretion and concluded that a 2-h infusion of 0.1 μg/kg/h increased plasma melatonin from undetectable to approximately peak adult concentration. The principal research objective of this multicenter double-blinded randomized placebo controlled trial was to determine the dose required to achieve physiological melatonin blood levels in preterm infants, similar to that of the mother and to define its pharmacokinetic profile in preterm infants. Additionally, in 2017, Carloni et al.123 showed the difference between pharmacokinetic profiles in premature newborns compared with adults, and despite the small sample size, they concluded that it is possible to obtain and maintain high serum concentrations using a single administration of melatonin repeated every 24/48 h.
Periventricular leukomalacia
Periventricular leukomalacia (PVL) is a diffuse damage of the cerebral white matter that extends beyond the periventricular regions found predominantly in preterm infants.
PVL is due to three main mechanisms: hypoxia/ischemia of the vascular border zone, inflammation, excitotoxicity and free radical attack. Furthermore, diffuse lesion of PVL affects oligodendrocytes, which are the most vulnerable cells to injury with resulting myelin loss124.
Melatonin could be considered as the first candidate for clinical trials of neuroprotection in preterm infants, thanks to the peculiarity of easily crossing the placental barrier and its effect in improving myelin content and oligodendroglia cell maturation125,126. PRIMELIP, a multicenter therapeutic trial (NCT02395783), tested its neuroprotective action when administered in the immediate prepartum period in very preterm infants.
Chronic lung disease
BPD, also known as CLD, is an important cause of respiratory illness in preterm newborns that results in significant morbidity and mortality. The epidemiology and pathology of BPD have changed over the past 50 years. “Old” BPD occurred in preterm infants with surfactant deficiency following respiratory distress syndrome (RDS). These infants required ventilatory support and high concentrations of supplemental oxygen therapies that induced lung damage with regions of atelectasis and regions of hyperinflation, epithelial injury, hyperplasia of airway smooth muscle, fibrosis, and pulmonary vascular hypertension. The improvement of neonatal RDS management as surfactant administration, antenatal glucocorticoid therapy, and less aggressive mechanical ventilation significantly decreased the morbidity and mortality of RDS and BPD in this population, shifting the demographics of BPD to earlier preterm infants (<29 weeks GA). As a consequence “new” BPD occurred at extremely low GA and is characterized by arrested alveolar-capillary development with larger, simplified alveoli; increased interstitial fibrosis and abnormal pulmonary vasculature; increased permeability with immature mechanisms for clearance of lung liquid; and recruitment of macrophages and neutrophils. These extremely low GA infants may not have surfactant deficiency or RDS but instead have early requirements for oxygen and ventilatory support due to multiple factors leading to “respiratory instability of prematurity”127,128,129. The management of RDS includes the prevention of hypoxemia and acidosis, the optimization of fluid management, the reduction in metabolic demands, the prevention of lung atelectasis and pulmonary edema, the reduction in lung damage due to aggressive mechanical ventilation, and the use of antioxidant strategies to minimize oxidant lung injury. Several investigators have reported that aggressive ventilatory strategies and oxygen therapy are the most important risk factors for lung disease. If oxygen radical-damaged tissues are present the premature lung is deficient in its antioxidant capacity. It follows that after oxygen injury, the inflammatory reaction develops, and IL1-β, IL-6, TNF-α and IL-8 are found in higher concentrations in babies who developed CLD130,131.
Furthermore, mechanical ventilation is a risk factor for cerebral inflammation and brain injury due both to the pulmonary inflammatory cascade, which migrates systemically to the brain, and to hemodynamic instability for the reduction in cardiac output and high pulmonary resistance caused by the distension of alveoli and compression of pulmonary capillaries132.
Gitto et al. published two studies in which approximately 100 newborns treated with melatonin as adjuvant antioxidant therapies of RDS were compared to 100 newborns conventionally treated. The authors concluded that melatonin treatment reduced proinflammatory cytokines in tracheobronchial aspirate, serum nitrite/nitare levels, and improved outcome because of its antioxidative actions130,131. Further studies are needed to investigate the possible use of melatonin as a preventive strategy of oxidative stress in preterm newborns. Thus, the preliminary results, i.e., the safety profile with high feasibility of administration, make melatonin a promising therapy for the prevention of BPD.
Melatonin and asphyxiated term infants
Perinatal asphyxia refers to a condition during labor in which impaired gas exchange leads to fetal hypoxemia and hypercarbia. It is identified by fetal acidosis as pH < 7.0 and it is used in association with the neurological signs to evaluate term newborn at risk for brain injury in the perinatal period. The frequency of perinatal asphyxia is approximately 2–3/1000 live births133. The neurodevelopmental consequences of brain injury include death, cerebral palsy, severe intellectual disabilities, blindness, deafness, and a number of minor behavioral and cognitive deficits. HI can develop acutely or chronically during the prenatal (maternal factors such as hypotension, infection, hypoxia), perinatal (umbilical cord accidents, uterine rupture, placental factors), or postnatal period (shock, anemia, respiratory, or cardiac arrest)134.
In the pathological changes of neonatal HI encephalopathy (HIE), the time of injury and the time of treatment play an important role because of the cascading reaction process and cell changes. According to Wang, based on significant differences in the pathophysiology and biochemistry of brain tissues, it is possible to divide HIE into three phases, all of which have apoptosis or necrosis of nerve cells as the final outcome of brain damage135,136.
The primary energy failure phase (phase I) occurs 0–6 h after HI injury. Because of hypoxia and acidosis in tissues and organs, reduced myocardial contractility, decreased arterial blood pressure, and reduced cerebral blood flow, some cells undergo primary death based on the severity and duration of HI. Clinically, the treatment strategies during phase I utilize conventional methods: patients should be treated with hypothermia, free radical scavengers (e.g., melatonin, erythropoietin, coenzyme Q10), excitatory amino acid receptor blocking agents, and/or neuroprotective agents.
The secondary energy failure phase (phase II) occurs 6–72 h after HI, and the deterioration of oxidative metabolism has a leading role. Despite adequate oxygenation and circulation, excitatory neurotransmitters and free radicals continue to be released, phosphorus reserves are depleted, inflammatory factors are involved, and brain injury is substantial; as the time progresses, nerve cell apoptosis begins. This phase is marked by the onset of seizures, secondary to excitotoxic edema, cytokine accumulation, and more serious mitochondrial dysfunction. Therefore, the treatment strategies during phase II follow the treatments employed during phase I: babies should be treated with anti-inflammatory, neuroprotective, or nerve regenerating agents (e.g., nerve growth factor), and stem cell transplantation.
The injury repair or chronic inflammation phase (phase III) occurs days, months, and years after HI insult. Based on the severity of the disease, the duration of HI and the effects of prior therapeutic interventions, there are generally two outcomes: one involves recovery, where the damaged brain tissue enters the repair process and the surviving neurons and glial cells begin to differentiate, proliferate, and regenerate; in the other outcome, the injured tissue continues to deteriorate, and the mechanism of the persisting damage involves gliosis with the loss of support of neurotrophic factors, persistent inflammatory receptor activation, and changes in microglia and astrocytes that continue to release harmful cytokines, which promote neuronal death and axonal injury. Even in this case, the treatment should include anti-inflammatory agents, neuroprotective agents, or nerve regenerating agents (e.g., nerve growth factor) and stem cell transplantation. Once the patient’s condition has stabilized, a rehabilitation program should be planned for the patient as early as possible135,137,138,139.
The literature reports that melatonin serum levels increase after HI, such as the endogenous neuroprotective response to brain injury135. Thus, melatonin appears to be a good candidate for neuroprotection because of its safety profile and different protective effects, including ROS scavenging, excitotoxic cascade blockade, and modulation of neuroinflammatory pathways140. In addition, if melatonin is used in combination with hypothermia, the neuroprotective effects are greater than hypothermia alone134,141,142,143,144,145,146. In 2015, Aly et al.147 published a randomized trial in which the melatonin/hypothermia group, at 5 days of life, had fewer seizures and fewer white matter abnormalities on MRI. The limitation of that study was the small number of patients, but the authors concluded that compared with healthy neonates, the HIE group had increased melatonin, SOD, and NO concentrations, and the combination of melatonin to therapeutic hypothermia in infants with HIE can improve neurodevelopmental outcome at 6 months of age with effective effects in reducing oxidative stress in terms of NO and SOD serum level reduction. Another example comes from the studies by Fulia148 demonstrating that melatonin exerted protective actions by reducing malondialdehyde and nitrite/nitrate levels in newborn blood, improving survival. More recently, Ahmad et al.149 published a randomized control trial using hypothermia or hypothermia plus melatonin in 80 babies with HIE where melatonin improved survival rate.
Based on clinicaltrial.gov, a dose escalation study to evaluate the efficacy of enteral melatonin in infants with HIE is underway (NCT02621944). The primary outcome is to identify the maximum dose tolerated, and the second aim is to evaluate neurological outcome.
A phase 3 trial to test the benefits of melatonin treatment in association with hypothermia in infants with HIE was withdrawn prior to enrollment in 2015 (NCT01904786). Another phase 1 and 2 trial was completed in Egypt to examine the effect of combining melatonin with whole-body cooling on brain injury and the outcome of neonates following perinatal asphyxia (NCT02071160).
Conclusions
Few conclusive results are available from clinical trials and from the literature (Fig. 4), despite encouraging data regarding melatonin as an adjunctive treatment in neonatal disease, particularly in term infants with HIE.
The goals of future clinical trials should be to establish the therapeutic range of melatonin dosage and the appropriate timing of administration to improve clinical condition and outcome.
References
Amaral, F. G. D. & Cipolla-Neto, J. A brief review about melatonin, a pineal hormone. Arch. Endocrinol. Metab. 62, 472–479 (2018).
Garcia-Navarro, A. et al. Cellular mechanisms involved in the melatonin inhibition of HT-29 human colon cancer cell proliferation in culture. J. Pineal Res. 43, 195–205 (2007).
Tan, D. X., Manchester, L. C., Esteban-Zubero, E., Zhou, Z. & Reiter, R. J. Melatonin as a potent and inducible endogenous antioxidant: synthesis and metabolism. Molecules 20, 18886–18906 (2015).
Claustrat, B., Brun, J. & Chazot, G. The basic physiology and pathophysiology of melatonin. Sleep. Med. Rev. 9, 11–24 (2005).
Pandi-Perumal, S. R. et al. Melatonin: Nature’s most versatile biological signal? FEBS J. 273, 2813–2838 (2006).
Cheung, R. T. et al. Preclinical evaluation of pharmacokinetics and safety of melatonin in propylene glycol for intravenous administration. J. Pineal Res. 41, 337–343 (2006).
Esposito, E. & Cuzzocrea, S. Antiinflammatory activity of melatonin in central nervous system. Curr. Neuropharmacol. 8, 228–242 (2010).
Carloni, S., Facchinetti, F., Pelizzi, N., Buonocore, G. & Balduini, W. Melatonin acts in synergy with hypothermia to reduce oxygen-glucose deprivation-induced cell death in rat hippocampus organotypic slice cultures. Neonatology 114, 364–371 (2018).
|
|