One very interesting feature of free-energy devices is that although various devices which appear to be completely different and have different apparent applications, the background operation is often the same. It is clear that a sharp positive going DC electric pulse interacts with the surrounding energy field, making large quantities of free-energy available for anyone who has the knowledge of how to gather and use that extra energy.
Let me stress again that “over-unity” is an impossibility. Over-unity suggests that more energy can be taken out of a system than the total energy which goes into the system. This is not possible as you can’t have more than 100% of anything. However, there is another perfectly valid way of looking at the operation of any system, and that is to rate the output of the system relative to the amount of energy that the user has to put in to make it work. This is called the “Coefficient Of Performance” or “COP” for short. A COP = 1 is when all of the energy put in by the user is returned as useful output. A COP>1 is where more useful energy comes out of the device than the user has to put in. For example, a sailing boat in a good breeze transports people along without the need for the energy of movement to be supplied by the crew. The energy comes from the local environment and while the efficiency is low, the COP is greater than 1. What we are looking for here is not something to tap wind energy, wave energy, sunlight energy, river energy, thermal energy or whatever but instead we want something which can tap the invisible energy field which surrounds us all, namely the “zero-point energy” field.
For this, let us look at pulsing circuits used by a wide range of people in a number of apparently quite different devices. An electrical “pulse” is a sudden voltage rise and fall with very sharply rising and falling voltages. However, pulses are seldom generated as isolated events when working with practical devices, so it is probably better to think of a train of pulses, or a “waveform” with very sharp rising and falling edges. These can be called oscillators or signal generators and are so commonplace that we tend not to give them a second thought, but the really important factors for using an oscillator for zero-point energy pick-up is the quality of the signal. Ideally, what is needed cab a perfect square wave with no overshoot, and the voltage level never going below zero volts, or a complex waveform, also with very sharp attack and decay times. These waveforms are a good deal more difficult to generate than you might imagine.
Even in these days of sophisticated solid-state electronic devices, the best method of creating a really sharp voltage pulse is still considered to be a spark gap, especially one which has the spark chopped off suddenly by the use of a strong magnetic field at right angles to the spark gap. For an example of this style of operation, consider the following device.
Frank Prentice’s COP=6 Pulsed Aerial System. Electrical Engineer Frank Wyatt Prentice of the USA invented what he described as an ‘Electrical Power Accumulator’ with an output power six times greater than the input power (COP = 6). He was granted a patent in 1923 which says:
My invention relates to improvements in ELECTRICAL POWER ACCUMULATORS and the like, wherein the earth, acting as rotor and the surrounding air as a stator, collects the energy thus generated by the earth rotating on it’s axis, utilises it for power and other purposes.
In the development of my WIRELESS TRAIN CONTROL SYSTEM for railways, covered by my United States Letters Patent Number 843,550, I discovered that with an antenna consisting of one wire of suitable diameter supported on insulators, three to six inches above the ground and extending one half mile, more or less in length, the antenna being grounded at one end through a spark gap, and energised at the other end by a high frequency generator of 500 watts input and having a secondary frequency of 500,000 Hz, would produce in the antenna, an oscillatory frequency the same as that of the earth currents and thus electrical power from the surrounding media was accumulated along the length of the transmission antenna and with a closed oscillatory loop antenna 18 feet in length run parallel with the transmission antenna at a distance of approximately 20 feet, it was possible to obtain by tuning the loop antenna, sufficient power to light to full candle power a series bank of 50 sixty-watt carbon lamps. Lowering or raising the frequency of 500,000 Hz resulted in a diminishing of the amount of power received through the 18 foot antenna.
Likewise, raising the transmission antenna resulted in a proportionate decrease of power picked up on the receiving antennae and at 6 feet above the earth no power whatsoever was obtainable without a change of voltage and frequency.
It is the objective of my generic invention to utilise the power generated by the earth, by the means described here and illustrated in the drawings. The two drawings show simple and preferred forms of this invention, but I wish it to be understood that no limitation is necessarily made as to the exact and precise circuits, shapes, positions and structural details shown here, and that changes, alterations and modifications may be made when desired within the scope of my invention and as specifically pointed out in the claims.

Referring particularly to Fig.1, 1 and 2 are alternating current feed wires supplying 110 volts 60 cycles per second to a high-frequency generator. 3 is a switch with poles 4 and 5, while 6 and 7 are the connections to the high-frequency transformer 8, which is used to step-up the frequency to 500 kHz and the voltage to, say, 100 kV. 9 is an inductor, 10 is a spark gap, 11 is a variable capacitor, 12 is the primary winding and 13 the secondary winding of transformer 8. The secondary winding is connected to ground through variable capacitor 16, and wire 17. Wire 14 connects transformer 8 to the main transmission antenna 19 which is supported along it’s length on insulators 20. Spark gap 21 is positioned between the main transmission antenna 19 and the ground 24, passing through connecting wire 22 and variable capacitor 23. The main transmission antenna 19, can be any desired length.

In Fig.2, 25 is a closed oscillating loop antenna of any desired length. For greatest efficiency, it is run parallel with the main transmission antenna 19 of Fig.1. Wire 26 is connected to the secondary winding 27 of a step-down transformer which winding then goes to ground 31 through variable capacitor 29. The primary winding 32 of the step-down transformer has variable capacitor 33 connected across it and it feeds directly into winding(s) 34 of frequency transformer(s) which supply current through winding(s) 35 to a motor “M” or other electrical load(s).
Having described the drawings, I will now describe the operation of my invention. Operate switch 3 to connect the input power. Adjust spark gap 10 and variable capacitor 11 so that 100,000 volts at a frequency of 500,000 cycles per second is delivered to step-up transformer 8 of Fig.1. Next, adjust spark gap 21 of the transmission antenna 19 so that all (voltage) peaks and nodes are eliminated in the transmission of the 100,000 volts along the antenna by the current surges across spark gap 21. The high-frequency alternating current flowing through spark gap 21 passes through variable capacitor 23 to ground 24 and from there, back through the ground to earthing point 18, through variable capacitor 16 and back to winding 13 of transformer 8. As the 500,000 Hz current is the same as the earth-generated currents and in tune with it, it naturally follows that accumulation of earth currents will amalgamate with those for transformer 8, providing a reservoir of high-frequency currents to be drawn upon by a tuned circuit of that same 500 kHz frequency, such as that shown in Fig.2, where the antenna 25 is turned to receive a frequency of 500 kHz, which current then passes through transformer 27, any frequency-adjusting transformer(s), and on to power the load(s) 38.

The return of current through the earth from transmission antenna 19, is preferable to return through a wire as the ground return current picks up more earth currents than a wire does. I also prefer under certain conditions, to use a single antenna wire in place of the closed loop antenna shown in Fig.2. Under certain operational requirements, I have had improved performance by having the transmission antenna elevated and carried on poles many feet above the earth, and with that arrangement it is necessary to use a different voltage and frequency in order to accumulate earth currents.
This system of Frank’s effectively applies very sharply pulsed DC pulses to a long length of wire supported in a horizontal position not far above the ground. The pulses are sharp due to both the spark gap on the primary side of the transformer, along with the spark-gap on the secondary (high voltage) side of the transformer. An input power of 500 watts gives a 3 kW power output from what appears to be an incredibly simple piece of equipment.
Dave Lawton. A solid-state semiconductor circuit which has proved successful in producing pulses like this is shown as part of Dave Lawton’s replication of Stan Meyer’s Water Fuel Cell. Here, an ordinary NE555 timer chip generates a square wave which feeds a carefully chosen Field-Effect Transistor the BUZ350 which drives a water-splitter cell via a combined pair of choke coils at point “A” in the diagram below.
Stan Meyer used a toroidal ferrite ring when he was winding these choke coils while Dave Lawton uses two straight ferrite bars, bridged top and bottom with thick iron strips. Chokes wound on straight ferrite rods have been found to work very well also. The effects are the same in all cases, with the waveform applied to the pipe electrodes being converted into very sharp, very short, high-voltage spikes. These spikes unbalance the local quantum environment causing vast flows of energy, a tiny percentage of which happens to flow into the circuit as additional power. The cell runs cold, and at low input current, quite unlike an ordinary electrolysis cell where the temperature rises noticeably and the input current needed is much higher.

John Bedini uses this same pulsing of a bi-filar wound coil to produce the same very short, very sharp voltage spikes which unbalance the local energy field, causing major flows of additional energy. The figure shown here is from his US patent 6,545,444.

John has produced and generously shared, many designs, all of which are basically similar and all using a 1:1 ratio bi-filar wound transformer. This one uses a free-running rotor with permanent magnets embedded in it’s rim, to trigger sharp induced currents in the windings of the coil unit marked “13b” which switches the transistor on, powering winding “13a” which powers the rotor on its way. The pick-up coil “13c” collects additional energy from the local environment, and in this particular circuit, feeds it into the capacitor. After a few turns of the rotor (dictated by the gear-down ratio to the second rotor), the charge in the capacitor is fed into a second “on-charge” battery.

The rotor is desirable but not essential as the coils marked 1 and 2 can self-oscillate, and there can be any number of windings shown as 3 in the diagram. Winding 3 produces very short, sharp, high-voltage spikes, which is the essential part of the design. If those sharp pulses are fed to a lead-acid battery (instead of to a capacitor as shown above), then an unusual effect is created which triggers a link between the battery and the immediate environment, causing the environment to charge the battery. This is an amazing discovery and because the voltage pulses are high-voltage courtesy of the 1:1 choke coils, the battery bank being charged can have any number of batteries and can be stacked as a 24-volt bank even though the driving battery is only 12 volts. Even more interesting is the fact that charging can continue for more than half an hour after the pulsing circuit is switched off.
It can be tricky to get one of these circuits tuned properly to work at peak performance, but when they are, they can have performances of COP>10. The major snag is that the charging mechanism does not allow a load to be driven from the battery bank while it is being charged. This means that for any continuous use, there has to be two battery banks, one on charge and one being used. A further major problem is that battery banks are just not suitable for serious household use. A washing machine draws up to 2.2 kilowatts and a wash cycle might be an hour long (two hours long if a “whites” wash and a “coloureds” wash are done one after the other which is not uncommon). During the winter, heating needs to be run at the same time as the washing machine, which could well double the load.
It is recommended that batteries are not loaded much beyond their “C20” rate, that is, one twentieth of their Amp-Hour nominal rating. Say that 85 Amp-Hour deep-cycle leisure batteries are being used, then the recommended draw rate from them is 85 Amps divided by 20, which is 4.25 amps. Let’s push it and say we will risk drawing double that, and make it 8.5 amps. So, how many batteries would we need to supply our washing machine assuming that our inverter was 100% efficient? Well, 2,200 watts on a 12-volts system is 2,200 / 12 = 183 amps, so with each battery contributing 8.5 amps, we would need 183 / 8.5 = 22 large, heavy batteries. We would need twice that number if we were to treat them right, plus twice that again for household heating, say 110 batteries for an anyway realistic system. That sheer size of battery banks is not realistic for your average householder or person living in an apartment. Consequently, it appears that the Bedini pulse-charging systems are not practical for anything other than minor items of equipment.
However, the really important point here is the way that when these short pulses are applied to a lead-acid battery, a link is formed with the environment which causes large amounts of energy to flow into the circuit from outside. This is extra “free-energy”. Interestingly, it is highly likely that if the pulses generated by Dave Lawton’s water-splitter circuit shown above, were fed to a lead-acid battery, then the same battery-charging mechanism is likely to occur. Also, if a Bedini pulse-charging circuit were connected to a water-splitting cell like the Lawton cell, then it is highly probable that it would also drive that cell satisfactorily. Two apparently different applications, two apparently different circuits, but both producing sharp high-voltage pulses which draw extra free-energy from the immediate environment.
The Tesla Switch. It doesn’t stop there. Nikola Tesla introduced the world to Alternating Current (“AC”) but later on he moved from AC to very short, sharp pulses of Direct Current (“DC”). He found that by adjusting the frequency and duration of these high-voltage pulses, that he could produce a whole range of effects drawn from the environment - heating, cooling, lighting, etc. The important point to note is that the pulses were drawing energy directly from the immediate environment. Leaving aside the advanced equipment which Tesla was using during those experiments and moving to the simple-looking 4-battery Tesla Switch, we discover the same background operation of sharp voltage pulses drawing free-energy from the environment.
Consider the Electrodyne Corp. circuit (shown in "The Manual of Free-Energy Devices and Systems", 1986) tested by them for a period of three years:
 Please note that when I shared this circuit diagram several years ago, someone persuaded me that the diodes were shown the wrong way round, and because of that, I have shown these diodes incorrectly. The diagram above is the one shown by the Electrodyne Corp. staff, and is correct.
As the switching used by this device was a mechanical device which has six switches where three are ON and three are OFF at any moment, the Electrodyne Corp. staff present the circuit diagram like this:
 With switching like this:
 It is recommended that this simple-looking circuit has an inductive load, preferably a motor, but consider the results of that very extended period of testing. If the switching rate and switching quality were of a sufficiently high standard, then the load could be powered indefinitely. The batteries used were ordinary lead-acid batteries, and after the three years of tests, the batteries appeared to be in perfect condition. Their tests revealed a number of very interesting things. If the circuit was switched off and the batteries discharged to a low level, then when the circuit was switched on again, the batteries returned to full charge in under one minute. No heating occurred in the batteries in spite of the massive charging rate. If the circuit was switched off and heavy current drawn from the batteries, then heat would be produced which is quite normal for battery discharging. The system operated lights, heaters, television sets, small motors and a 30-horsepower electric motor. If left undisturbed, with the circuit running, then each battery would charge up to nearly 36 volts with no apparent ill effects. Control circuitry was developed to prevent this over-charging. This, of course, is easy to do as all that is required is to place a relay across one battery and have it disconnect the circuit when the battery voltage reaches whatever voltage is considered to be a satisfactory maximum voltage.
These test results show spectacular battery charging and battery performance, quite outside the normal range associated with these ordinary lead-acid batteries. Are they being fed very short, very sharp pulses, like the previous two systems? It would look as if they were not, but one other very interesting piece of information coming from Electrodyne is that the circuit did not operate correctly if the switching rate was less than 100 Hz (that is 100 switchings in one second). The Electrodyne switching was done mechanically via three discs mounted on the shaft of a small motor.
One other detail reported by the Electrodyne testers, is that if the switching speed exceeded 800 times per second, that it was “dangerous” but unfortunately, they didn’t say why or how it was dangerous. It clearly was not a major problem with the batteries as they were reported to be in good shape after three years of testing, so definitely no exploding batteries there. It could well be as simple a thing that the voltage on each battery rose so high that it exceeded the voltage specifications of the circuit components, or the loads being powered, which is a distinct possibility. It is possible that at more than 800 pulses per second, the charging produced excessive cooling which was not good for the batteries.
It is generally accepted that for a circuit of this nature to work properly, the switching has to be very sudden and very effective. Most people have an immediate urge to use solid-state switching rather than the mechanical switching used by Electrodyne. A 'thyristor' or 'SCR' might be suitable for this, but the sharp switching of a PCP116 opto-isolator driving an IRF540 FET is impressive and a TC4420 FET-driver could substitute for the opto-isolator if preferred. It is possible that having a slight delay after the switches have turned On and Off, can prove very effective.
The Electrodyne Corp. staff used three identical discs mounted on the shaft of a motor as shown above. This allows the contact "brushes" to be located on opposite sides of the discs. There are, of course, many possible alternative constructions and I have been asked to show how I would choose to build this type of mechanical switching. The common idea of using mechanical relays is not very practical. Firstly, relays have trouble switching at the speeds suggested for this circuit. Secondly, with a contact life of say, two million and a switching speed of just 100 times per second, the relays would reach their projected lifespan after two weeks of operation, which is not a very practical option.
The objective is to have a simple construction which produces several switching for each revolution of the motor, easy adjustment of the timing of two separate sets of three switches (one set being OFF when the other set is ON), a construction which can be taken apart and then assembled again without altering the timing, and an electrical connection method which is straightforward. Obviously, the construction needs to use components which are readily available locally, and ideally, only require simple hand tools for the construction.
This suggested construction allows adjustment of the timing for both the start of the first set of switches and the start of the second set of switches. It should also be possible to introduce a short gap between the operation of these two sets of switches. This particular design is assuming a gap between each switching operation as that may be beneficial.
The switch contacts are rigid arms, pulled against the rotating drum by springs. The contacts touching the drum can be of various types and the ones shown are brass or copper cheese-head screws or bolts which are particularly convenient as they allow standard solder tags to be used to make the connections to the switch wires which then run across to ordinary electrical screw connectors, all of which can be accessed from above. I would suggest that four screw connectors should be used as a block as that allows them to be fastened in position with two screws which then stops them rotating when the wires are being tightened. There should not be any need for the conducting inserts in the switching cylinder to be particularly wide in the direction of rotation.
A practical construction method might be:
 The contact arms are shown as attached to each other in pairs. A lower level of construction accuracy can be allowed if they are all kept separate and a spring used for each arm rather than one spring for two arms as shown in the drawing. I strongly recommend that the switching drum be solid and the brass or copper insets be a fair thickness and keyed securely into the drum. The surface of the inserts should be very gently eased into exact alignment with the surface of the drum, possibly by the very careful use of a small file or with a lathe if you are luck enough to have access to one.
The pivots for all of the switching arms can be a length of threaded rod with lock nuts at each end. There should be almost no movement of the switching arms when the drum is spinning, so no enormous precision is needed for the holes in the switching arms, through which the threaded rod runs. Having said that, it must be understood that each switch in the set of three, must turn On and OFF at the same time, so the contacts on the spring-loaded arms must slide on to and off the conducting strips in the switching cylinder, at exactly the same time.
The drawing shows three conducting inserts at each of eight evenly-spaced positions around the circumference of the drum. The number around the drum is not critical although this suggestion gives eight switchings per revolution. If you choose to use a different number, you need to remember that the positioning of the arms underneath the drum will be different. You need to arrange it so that just after one set runs off its conducting strips that the other set slides on to it's conducting strips. Both sets of switches must not be ON at the same time as that short-circuits the batteries, which is probably not a good idea.
The timing adjustment is achieved by moving the supporting block slightly, by easing the four clamping screws, sliding the block and tightening the screws again. This, of course, is done when the drum is not rotating.
Each set of six switching arms needs to have all of the arms exactly the same length between the sliding contact (shown as a bolt head) and the pivot hole. Each of the conducting strips inset into the drum, need to be aligned exactly and be exactly the same width, otherwise the switching action will be ragged and not properly synchronised.
The supports for the switching arms can be either a single block with slots cut in it or the easier construction shown, where it is fabricated from several standard rectangular pieces and glued and/or screwed together.
The unequal amount of conducting strip compared to the non-conducting part means that there will be a timing gap between each pair of On/Off switchings. In spite of that, the battery switching will be a 50% Duty cycle as required. The switching sequence will then be: On / Off / Pause, On / Off / Pause, On / Off / Pause ….. and that may well be a desirable arrangement as having an inter-pulse delay can be very good for battery charging.
However, please don’t imagine that the Tesla Switch described here is a ‘plug-and-play’ device which you can switch on and it will give you the sort of outputs mentioned above, as that is very much not the case. You need to see the Tesla Switch as being a long-term development project with high potential.
If you use the Tesla Switch circuit with manual switches and run each phase for many minutes before altering the switching, it can give up to four times better performance than running the load off the four batteries in parallel. That is not what the Tesla Switch is all about.
The Tesla Switch is one of the more difficult devices to get operational, in spite of the fact that it appeals to a large number of people. There are three possible modes of operation. If the diodes are turned the wrong way round so that they can feed current from each battery, then the operation will definitely be COP<1 but it will be a good deal better than operating without the switch circuit in place.
The second way has only been achieved by John Bedini as far as I am aware. This is where the circuitry is the same but the circuit components and connecting wires are adjusted very carefully to produce circuit resonance. When that happens, the circuit becomes self-powering although there is little or no extra power for other devices. The third way was developed and tested over three years by staff of the Electrodyne Corporation in America. In this version, the diodes are reversed and they only feed sharp voltage spikes back to the batteries, through the diodes which supposedly don’t allow current to flow in that direction. This is a very different form of operation where the operating power flows into the circuit from the local environment. The batteries need to be ‘conditioned’ through long periods of being operated this way as the ‘cold electricity’ used in the circuit is the opposite of the ‘hot electricity’ which the batteries have been using up to now. This long conditioning period is generally enough to make the average builder give up and believe that the circuit just doesn’t work. Dave Lawton was faced with exactly the same type of problem when he attempted to replicate Stan Meyer’s “Water Fuel Cell”. It appeared ‘dead’ and produced nothing during a whole month of testing, and then it suddenly burst into life, producing large amounts of HHO gas mix for almost no electrical input. Without his exceptional patience, Dave would never have succeeded. I believe that the same applies to the Tesla Switch when wired correctly with the diodes blocking current flow from the batteries – it is likely to take long-term and patient testing before the system swings into life.
One experimenter who did not believe the diodes could possibly work that way round, tested the arrangement and discovered that in spite of the theory, in practice, the reverse-biased diodes actually pass very sharp voltage spikes to the batteries, so the effect may well be like a slick version of John Bedini's battery pulsing circuits.
Mechanical switching appears to work very well indeed, but if we decide to try using electronic circuitry, then we need to get an exact 50% Mark/Space ratio using a switching circuit, and so the following style of circuit might be used with a multi-turn preset resistor in position “A”:
 Here, the frequency is not noticeably affected by adjustment through a very wide range of Mark/Space settings. The output from Pin 3 needs to drive a very sharp switching combination such as a TC4420 FET driver connected to IRF540 FETs.
Perhaps the circuit might be something like this:
 This circuit allows the Mark-Space ratio to be adjusted without altering the frequency, and the frequency can be adjusted without affecting the Mark-Space setting in any way. In the Tesla Switch circuit, three switches need to be in their On position and the other three switches in their Off position, so we will arrange this by using the ordinary NE555 timer circuit shown above, with it's adjustable Mark-Space ratio (that is, variable On-to-Off ratio). We will use this circuit to drive six opto-isolators which will turn the six transistors On and Off in groups of three as required. To get the very high switching speed needed, PCP116 opto isolators should be used and although these are difficult to find, every effort should be made to get them as they enhance the switching speed.
Variable resistors come in a wide range of types. It is probably best to use a preset type as they are very easy to adjust and hold their settings very solidly. Also, when the correct setting is found, the component will be left on that position permanently. Some common types are:
 where some can be adjusted from the top and others adjusted from the side. All of them can be mounted directly on the strip-board or printed circuit board used to construct the circuit.
However, the problem is to decide the direction of current flow and provide solid state components accordingly, as the Tesla Switch circuit almost certainly does not run with conventional electronic design. If you were to reverse the diodes shown in the first circuit diagram in this section, then the circuit will remain solidly COP<1 although some people have managed an operational improvement of 32 times over just using the batteries straight to power the load. With the diodes as shown in the first two diagrams in this section, the circuit operates by drawing in energy from the environment and that operates in an entirely different way in a circuit.
It is interesting to note that in the 1989 patent US 4,829,225 granted to Yury Podrazhansky and Phillip Popp, their evidence is that batteries charge much better and have a longer life if they are pulsed in a specific way. Their formula is that the battery should be given a powerful charging pulse lasting for a period of time between a quarter of a second and two seconds, the pulse being the Amp-Hour rating of the battery. That is, for an 85 AHr battery, the charging pulse would be 85 amps. That pulse is then followed by a discharging pulse of the same, or even greater current but only maintained for only 0.2% to 5% of the duration of the charging pulse. Those two pulses are then followed by a resting period before the pulsing is repeated. They quote the following examples of their experiences when using this method:
 Interestingly, this appears to confirm the charging potential of the Tesla Switch style of operation, especially if there is a short rest period between the two sets of switch operations.
Bozidar Lisac. Recently, a patent application has been lodged on what is effectively the Ron Cole one-battery switch and the Tesla Switch. I must admit to being highly doubtful about the notion of using capacitors as an energy source (unless the switching frequency is so high that the capacitors have insufficient time for their voltage to drop significantly), I am including the re-worded patent here. Some experimenters have reported overall battery energy gains with switching speeds of 0.5 Hz or less, which means that in circuits of that type, mechanical switching should give a reasonable switch contact life. This patent has needed a fair degree of attention as the person writing it does not have a full grasp of English and confused the word "load" with the word "charge". Let me say again, that the following patent application is included here primarily for interest sake, rather than being the definitive way of making a circuit of this type.
Patent Application US20080030165 7th February 2008 Inventor: Bozidar Lisac
METHOD AND DEVICE FOR SUPPLYING A LOAD WITH ELECTRIC ENERGY RECOVERY
ABSTRACT In the invention an electric current circulates from the battery UB, through the electric motor M, and the diode D1 charges the capacitors CA and CB, connected in parallel, which, once charged, are connected in series, giving rise to a difference in voltage in relation to the battery, causing half the charge of the capacitors to be returned to the battery through the diode D2, whilst with a new parallel connection, the capacitors recharge, this charge being equal to that which had been previously transferred from the capacitors to the battery, so that by means of the cyclic connection of the capacitors in parallel and series the energy is transferred from the battery to the capacitors and from the capacitors to the battery, thus considerably extending the range of the battery and operation of the motor.
OBJECT OF THE INVENTION This invention relates to a method and device enabling the electrical energy with which a charge is supplied to be recovered using a self-rechargeable electricity source in which, which by means of a circuit, the current circulating from an accumulator or battery through a load, e.g. a motor, is fully returned to the same, thereby considerably extending its range.
More specifically, two capacitors that are connected cyclically from parallel to serial and vice versa are charged through a motor during the connections in parallel, whilst in series connection, when its voltage doubles, they return the electricity, recharging the battery. This source represents a closed system which does not require an energy supply from the outside, except to compensate for the losses produced, the range of the battery being limited by the number of charges and discharges that the same technically permits.
BACKGROUND TO THE INVENTION A load, such as an electric motor, is connected to a battery or accumulator with a certain charge, which will be progressively discharged by it, this discharge being directly proportional to the connection time and to the current circulating through the motor. It is therefore necessary to supply fresh energy from an external source to recharge it. Systems that enable the energy consumed by the load to be reused are not known in the state of the art.
DESCRIPTION OF THE INVENTION A first aspect of the invention relates to a method for supplying a load with recovery of electrical energy, which comprises supplying a load with electrical energy deriving from the first electrical energy accumulator, and returning at least a proportion of that electrical energy after it passes through the load to the first accumulator for the purpose of recovering the energy supplied.
The electrical energy, after passing through the load, is recovered by second electrical energy accumulator, from where it is transferred to the first accumulator, giving rise to cyclic transfer of electrical energy between the first and second energy accumulators.
The recovery of energy from the second accumulator and transfer to the first accumulator may be achieved without passing the energy through the load. In another alternative implementation, the energy is recovered from the second accumulator and passed to the first accumulator through the load, in which case the polarity of the load is reversed during the recovery of energy through the load.
The transfer of energy is brought about by cyclically connecting two or more electrical energy accumulators between parallel and serial connections.
A second aspect of the invention relates to a device for supplying a load with recovery of electrical energy, which comprises a first electrical energy accumulator and a second electrical energy accumulator, where the load is connected between the first and second accumulators. The device may be provided in one embodiment with a unidirectional connection device, for example, a diode which is connected in parallel to the load, causing circulation of the electrical energy recovered after passing through the load, and via which the electrical energy is returned to the first accumulator.
The first electrical energy accumulator may be a battery. The second electrical energy accumulator might be two or more capacitors with switching to cyclically connect them between parallel and serial connection configurations.
The invention constitutes a self-rechargeable source of electrical energy which enables the range of a battery to be considerably extended so that the current circulating from the same through a motor charges two capacitors connected in parallel, up to the voltage level of the battery, by means of contacts. These capacitors, once charged, are connected in series, producing double their voltage, and they then return the energy to the battery, thereby extending its range. Once the losses have been compensated for, the duration of the extended range depends on the charging and discharging properties of the capacitors.
The existence of the difference in voltage between the battery and the capacitors connected both in parallel and in series, and which give rise to the displacement of energy from the battery to the capacitors and vice versa, is used to supply the motor connected between the battery and the capacitors, comprising the self-rechargeable source of electrical energy.
When connected in parallel, the capacitors are charged through a motor and a diode, and when connected in series, they are charged through another diode, the voltage of the motor being half that of the battery. On the other hand, if the motor is connected between the battery and the serially-connected capacitors, the latter, which are charged in parallel through a diode and are discharged by means of the motor and the other diode, will supply the motor with a voltage equal to that of the battery, whilst a capacitor connected in series to the winding of the motor guarantees its operation without loss of power.
Instead of the two capacitors, two batteries connected in series and another two connected in parallel may be used, between which batteries a motor is connected, the current circulating in this case from the batteries connected in series through the motor to the batteries connected in parallel. The serially-connected batteries are then connected in parallel, by means of switching contacts, and the other two parallel-connected batteries are then connected in series, reversing the direction of the current, whilst the connections of the motor are inverted by means of the simultaneous switching of other contacts in order to maintain the polarity and direction of rotation of the motor.
In one possible embodiment of the invention, another two capacitors and a transformer with two primary windings, or a motor with two windings are added to the device previously described, each pair of capacitors cyclically switching from parallel to serial connection and vice versa so that during the parallel connection cycles, two of the capacitors are charged through one of the windings up to the voltage level of the battery at the same time that the other two capacitors are connected in series, double their voltage and are discharged by means of a second winding to the battery.
The reduced level of energy losses brought about mainly by the dissipation of heat and in the capacitors, as well as by the charge factor of the batteries, is compensated for from an external source, and because the sum of the current circulating through a winding of the motor or transformer charging two of the capacitors and the current simultaneously circulating from the other two capacitors through the second winding, recharging the battery, plus the current which is supplied from the external source, is equal to zero, because of the work carried out by the motor or the loads which are connected to the alternating voltage induced in the secondary of the transformer, no discharge of the battery takes place.
DESCRIPTION OF THE DRAWINGS In order to supplement the description now being given, and with the aim of contributing to a better understanding of the characteristics of the invention, according to a preferred practical embodiment, a set of drawings is attached as an integral part of this description, in which, for informative and non-restrictive purposes, the following is shown:
Fig.1 shows a practical circuit in which, by means of switching, two capacitors connected in parallel are charged from a battery through a motor and a diode, and after the contacts are switched, they are connected in series, thereby discharging the battery through another diode.
Fig.2 shows a practical circuit in which, through switching, the two capacitors are connected in parallel and are charged from a battery through a diode, and after the switching of the contacts they are connected in series, thereby charging the battery through the motor and the other diode.
Fig.3 shows the connection of the two batteries in series, connected through a motor to another two batteries connected in parallel, and which, by means of contacts, switch alternatively, this giving rise to effects similar to those described in relation to the use of the capacitors.
Fig.4 shows the electrical diagram corresponding to the connection between the battery and the two pairs of capacitors of a transformer with two primary and one secondary winding, in which an alternating voltage is induced which is rectified, filtered and converted to a sinusoidal voltage.
Fig.5 shows the electrical diagram of an alternating current motor with two windings connected between the battery and two pairs of capacitors.
Fig.6 shows the electrical diagram of a direct current motor with two windings connected between the battery and two pairs of capacitors, in which two switch contacts ensure their correct polarisation and direction of rotation.
PREFERRED EMBODIMENT OF THE INVENTION In a preferred embodiment shown in Fig.1, the load consists of a direct current motor M, the battery UB, and the second accumulator which consists of a pair of capacitors CA and CB. The capacitors CA and CB are connected to each other in parallel by means of two switches S1 and S2. These capacitors are charged through the motor M and diode D1 to a voltage level equal to that of the battery UB, the charge being Q = (CA+CB)UB, and while these capacitors are being charged, the motor M is rotating.
 When both capacitors are fully charged, they are connected in series by the switch contacts S1 and S2. This produces a voltage which is twice the value of the voltage of the battery UB, resulting in the charge which is given by Q = 2 x UB x (CA+CB) / 2 which is Q = (CA+CB)UB, which shows that once charged, the charge Q of both capacitors is identical both in parallel and in series.
Diodes D1 and D2 ensure that current flow through the motor M is only ever in one direction. Immediately after capacitors CA and CB are connected in series, they return half of their charge through diode D2. Switches S1 and S2 then connect the capacitors CA and CB in parallel. In this arrangement, they start off with half of the battery voltage. They charge immediately, regaining the battery voltage through the motor M and the diode D1.
By means of repeated cyclic switching of the capacitors CA and CB from parallel to serial connection mode, the current circulating from the battery UB through the motor M to the capacitors, and from these to the battery, recharging it and extending its range, constitutes a self-rechargeable source of electrical energy.
 In a second practical embodiment shown in Fig.2, the motor M is connected between the battery UB and the capacitors CA and CB by means of the diode D2. The capacitors are charged directly through the diode D1 and are discharged through the motor M and the diode D2, the values of the charges on the capacitors CA and CB previously described in the example shown in Fig.1 remain unchanged, the difference in this circuit is that the voltage applied to the motor M is the full battery voltage in this case.
The charging rate of the capacitors CA and CB is determined by the intensity of the current flowing through the motor M, to which is connected in parallel, the capacitor CM which guarantees that the operation of the motor is maintained at maximum power. It is possible to substitute a battery, preferably a rapid charge battery, for capacitor CM.
 In another embodiment shown in Fig.3, the first and second accumulators consist of pairs of batteries B1, B2 and B3, B4. Therefore, in this embodiment, two pairs of batteries are used instead of the capacitors CA and CB. Batteries B and B2 are connected to the switches S1 and S2, and the pair of batteries B3 and B4 are connected to the switches S3 and S4. The switches S1 to S4, connect the pairs of batteries with which they are associated, into series or parallel configurations, depending on the position of the switches.
While the batteries B1 and B2 are connected in parallel, the other two batteries B3 and B4 are connected in series, and the motor M rotates as a result of the difference in voltage between the batteries, as it is connected between both pairs of batteries. At the same time, the current circulating through the motor from the serial connected batteries recharges the two parallel-connected batteries. The switches S1 to S4, which connect the batteries B1 and B2 in series and the batteries B3 and B4 in parallel then switch, thus reversing the direction of the current flow, and at the same time, the switches S5 and S6 change positions in order to maintain the correct polarity for the motor and its direction of rotation.
The two capacitors and the batteries may be switched by means of any mechanical, electromechanical, electrical, electronic or other element that meets the conditions described with the purpose of obtaining a self-rechargeable electrical energy source. These switching operations may be controlled by any known method, for example, a programmable electronic circuit.
In the preferred embodiments previously described, the load consists of a direct current motor, but as an expert in the field may understand, the load may also consist of any type of resistive (?) and/or inductive load.
 Another preferred embodiment is shown in Fig.4, where a transformer T with two primary windings L1 and L2 is connected between the battery UB and the two pairs of capacitors C1 and C2, plus C3 and C4, causing the two capacitors C1 and C2 to switch their connections from parallel to serial and back again by means of the contacts S1 and S2, and causing the capacitors C3 and C4 to switch by means of contacts S3 and S4, so that during the cycles of connection of the capacitors C1 and C2 in parallel, the latter are charged via the winding L1 up to the voltage level of the battery, whilst at the same time the capacitors C3 and C4 are connected in series and provide double their voltage, the battery being discharged by means of the winding L2, in which case the charging and discharging currents to circulate in the same direction. On the other hand, during the cycles of connection in parallel of the capacitors C3 and C4, which are charged through the winding L2 up to the battery voltage level, the capacitors C1 and C2 are connected in series to provide double their voltage and are discharged into the battery through the winding L1. The direction of the charging and discharging current therefore changes, thus inducing in the secondary winding L3 an alternating voltage whose frequency depends on the speed of switching of the contacts mentioned, and after being rectified by means of the bridge of diodes P and filtered by the capacitor CP, the resultant DC voltage is converted to a sinusoidal voltage by means of a circuit K.
The connection in parallel of one pair of capacitors and the connection in series of the other pair take place at the same time. Therefore the sum of the current circulating from the battery through one of the windings, charging two of the capacitors, and the current circulating from the other two capacitors through the other winding to the battery, is approximately zero.
From an external energy source FE the minimum energy losses caused essentially by dissipation of heat and in the capacitors, as well as by the charging factor of the battery, are compensated for, with the result that the sum of the current circulating from this source external to the battery and the charging and discharging currents of the capacitors is equal to zero. Therefore the battery is not discharged and its range does not depend on the work developed by the motors or the loads connected to the secondary winding L3 of the transformer T, since the greater the power of the loads, the higher the intensity of the charging and discharging currents of the capacitors.
 Fig.5 shows another embodiment in which an alternating current motor M is connected to two windings L1 and L2 so that during the connections in parallel of the capacitors C1 and C2, the latter are charged by means of the winding L1 at the same time that the capacitors C3 and C4, connected in series, are discharged by means of the winding L2 to the battery UB, the charging and discharging current circulating through the windings in the same direction. The capacitors C1 and C2 are then connected in series and the capacitors C3 and C4 are connected in parallel. The direction of the charging and discharging current of the capacitors is therefore reversed, thus producing at terminals of the motor an alternating voltage with a frequency that depends on the speed of switching of the contacts. The energy losses caused are compensated for from an external source FE, the sum of the current circulating from this source to the battery and the currents circulating through the two windings during charging and discharging of the capacitors being equal to zero. The battery is therefore not discharged as a result of the work developed by the motor.
 Fig.6 shows the connection of a direct current motor M to two windings L1 and L2 between the battery UB and the two pairs of capacitors C1 and C2 plus C3 and C4, so that during the connections in parallel two of the capacitors are charged by means of the winding L1, and during the simultaneous connections in series, the other two capacitors are charged by means of the winding L2 to the battery. Coinciding with the switching of the contacts S1, S2, S3 and S4, which connect to each pair of capacitors from parallel to serial and vice versa, the contacts S5 and S6 switch, polarising the windings of the motor so that the charging and discharging currents of the capacitors circulate in the same direction, producing a direct voltage. The sum of the current supplied from the external source FE and the charging and discharging currents of the capacitors is equal to zero, and thus there is no battery discharge
Bob Boyce’s Toroid. Consider also, Bob Boyce’s very effective pulsed toroid system. As the waveform fed to the toroid has to have very sharp rising and falling voltages, the toroid needs to be able to handle very high frequency signals, far higher than the number of pulses per second fed to the toroid. If the rising edge is very sharp (and it needs to be so fast that it won’t show on a 150 MHz oscilloscope), then as far as the toroid is concerned, there may be a similar falling edge one nano second later and so it needs to be able to respond to that sort of frequency. Consequently, the material and the windings need to be selected very carefully.
The toroid is a 6.5 inch iron-dust unit from MicroMetals, part number “T650-52” and it can be purchased through their website and it can be purchased in small quantities via their "samples requests", which can be submitted here
 There are four windings made on this core. The wire chosen to wind the transformer is most important. Bob uses solid teflon-covered silver-plated copper wire. It is very important that this wire is solid core and not stranded as stranded wire does not work here (due to the generation of inter-strand, phase-differential induced eddy currents). At this time, a supplier of this wire is here.
Before any winding is done, the toroid is given a layer of the yellow 1P802YE winding tape available in 3" rolls, both the 1" and 2" widths from: here. It is very important to avoid using fiberglass winding tape anywhere in the construction of this wound toroid. Bob comments on this as follows: “Big warning here !!!! DO NOT USE FIBERGLASS WINDING TAPE !!!! A big box of 3M winding tape was ordered by accident so I tried it to see if it would work. It not only suppressed the acousto-resonance response of the entire wound toroidal core, but for some strange reason it also caused the electrostatic pulse response of the secondary to reverse polarity as well as reducing the signal amplitude to a mere 10% of what it was !! It totally negated the benefit of the teflon insulation”.
Having covered the toroid with a layer of the 1P802YE winding tape, the secondary winding is made. Again, it is very important that the teflon-covered, silver-plated solid copper wire is used. This is not a system which provides COP>1 performance if any old components are thrown together carelessly during the building process.
The winding turns must be evenly spaced where they fan out from the center of the core. They are tightly packed side by side in the centre opening and they must be wound tightly and the gaps between adjacent turns along the outer edge must be exactly the same. This is not to make the winding look “pretty” but if this is not done, then it will cause magnetic field errors that will lower the overall efficiency when the toroid is being used.
The secondary winding is made using 16 gauge wire which covers the entire length of the toroid as shown here:
 If the spaces between the wires are not quite even, then the turns can be pushed into exactly the right place. It is sometimes convenient to use two-inch lengths of plastic strimmer line placed between the turns in order to get the spaces between the turns exactly the same. These can be held in place with a strip of the yellow winding tape:
 The picture above has been taken to show what a partially prepared secondary winding looks like when its windings are being moved into their exact positions. When a section of the windings has been spaced accurately, the triangular gaps between the evenly-spaced turns are filled in with beeswax, made pliable using a heat gun. A plastic bottle pushed into the central hole can be helpful when doing this filling. When the beeswax has hardened on both sides of the toroid, the process is then repeated for the next group of turns.
When the winding is complete, with even spacing of the turns and the gaps filled with beeswax, the whole of the toroid is then covered with a layer of the yellow winding tape, as shown here:
 So, to recap: the toroid is wrapped in tape, the secondary winding completed, extending the entire way around the toroid, the windings carefully spaced out so that the gaps around the outer edge of the toroid are exactly equal, the winding gaps filled with beeswax, and then the toroid covered with a layer of the yellow tape. There will normally be anything from 127 to 147 turns in the secondary winding due to manufacturing tolerances in the insulation of the wire and so the overall wire length will be about 100 feet.
The primary windings are now wound on top of the tape layer covering the secondary winding. As with the secondary, the direction of the turns is very important.
 Please note that every winding starts by passing over the toroid and then being brought up on the outer side ready for the next turn. Each of the following turns proceed in a counter-clockwise direction, and finishes by passing under the toroid. Every winding is created in this way and the quality of workmanship is very important indeed when making these windings. Each winding needs to be tight and positioned exactly with turns touching each other in the centre of the toroid and positioned on the outer edge with exactly equal spaces between each turn. Your construction work has to be better than that of a commercial supplier and needs to reach the quality demanded by the military.
The three primaries are wound on top of the tape which covers the secondary winding. These three primary windings are spaced out equally around the toroid, that is, at 120 degree centres and the leads of the secondary winding are taken out through the gap between two of the primary windings and not taken out through the middle of a primary winding. As with the secondary winding, the primary winding turns are spaced out exactly, held in place with beeswax, and then tightly taped over. The primaries can have more than a single layer, and they are wound with the same direction of winds as the secondary, and with the same care for exact turns spacing as needed for the secondary winding. Tape the entire core well with tightly-stretched PVC electrical tape after winding, to ensure that the primary windings do not move and then add an outer layer of the winding tape.
This toroid pulls in additional energy from the immediate environment when driven by very high quality voltage pulsing applied to each of the three primary windings. The full details of this system have not yet been disclosed, but Bob has said in open forum that he has demonstrated his toroid being pulsed with the secondary not connected to anything and the output is triple the current at twice the input voltage, with is COP=6. When the ends of the secondary are joined together the output current doubled, giving COP=12, that is, twelve times as much power output as the input which Bob had to supply to get that output. This is, of course, not a case of energy being created (which is not possible) but instead, it is a case of eleven times the input power being drawn in from the surrounding environment.
I have never seen the circuitry for this, but it may be as shown here:
 As the output voltage is doubled, the battery bank being charged can be double the voltage of the battery supplying the input power. The choke in the lead from the input battery positive is to direct the power generated to the charging batteries. Each primary winding is driven by it’s own separate oscillator which has adjustable frequency and adjustable Mark/Space ratio, or “Duty Cycle”. The Duty Cycle is set initially to about 25% which means that the input power is turned off for three quarters of the time. The highest frequency oscillator is adjusted to give the largest charging output current. Then, the middle frequency oscillator is adjusted to give the highest charging output. Finally, the lowest frequency oscillator is adjusted to give the highest charging output. When that has been done, the Duty Cycle of each oscillator is lowered as far as possible without lowering the charging rate. An oscilloscope is not needed for any of these adjustments.
It should be noted that what was marked as the “Start” of each primary winding in the diagrams showing how each winding is done, is connected to positive power supply line and the end marked “Finish” is connected to the output of the oscillator. This connection arrangement is very important because connecting them the other way round is likely to give a much lower performance.
The three oscillators are quite independent of each other and are free-running. In other words, they are not synchronised in any way and will produce all sorts of different combinations of composite output waveforms as a result of this arrangement. It must be noted that this is not a system which produces a rotating magnetic field as the windings are not pulsed sequentially. As already mentioned, the voltage output waveform from each of the oscillators must have very sharp rise and fall times and the output must, of course, be capable of supplying sufficient current to power the primary windings.
I have never seen an explanation of how this system works, and please remember that the circuit shown above is based on my guesswork and does not come from Bob Boyce. However, I will now suggest a possible mechanism for the way that the circuit works, and for it, let us assume that there is only the highest frequency oscillator connected: When there is an output pulse from the oscillator, a powerful current passes through the primary winding to which it is connected. This generates a strong magnetic pulse. But, since the winding is around a high-quality toroidal core, nearly all of the magnetic flux races around the toroid instead of radiating outwards. That magnetic pulse induces an electrical pulse in both of the other two primary windings, and so all three windings provide a current surge to the battery bank being charged. One pulse in, produces three pulses out, which matches the observed tripling of the input current.
(This suggests that if there were four primary windings that there would be an increased COP result for that arrangement. If that were done, then the fourth oscillator might run at around 85,600 Hz). The short-circuiting of the ends of the secondary winding produces a further increase in the output. I would suggest that this may be due to the fact that the turns ratio of the primary-to-secondary winding, produces a much higher voltage in the secondary winding. If the ends of the secondary winding are connected, then that induced voltage will generate a strong electrical current flowing through the secondary winding. That current will in turn, generate an even greater magnetic pulse, both in the toroid and in the primary windings which are wound around the secondary winding. This enhanced magnetic pulse may account for the enhanced electrical output to the battery bank being charged. Please remember that this not a matter of fact, but just a suggestion which I am putting forward as being a possible explanation of how the circuit is functioning.
Please remember that the toroid has to be able to handle frequencies far higher than the pulsing rate which is applied to it. A high-frequency waveform looks like this:
 If you apply that frequency to Bob's toroid, then the toroid needs to be able to handle the waveform cleanly, without degrading it in any way. For this sort of application, an iron-dust toroid such as the MicroMetals product is essential. What many people have difficulty in seeing, is that even if the overall frequency of the signal is lower, as shown here:
 in order for the rising edge of the waveform to be handled cleanly, the toroid has to be able to handle a very high frequency signal. The toroid doesn't "know" that the leading edge of the waveform is not going to be followed by a whole stream of very short, very fast, high-frequency pulses. So the toroid has to be able to handle high-frequency waveforms in order to deal with the very sharply rising leading edge which is essential for the successful operation of this and many other free-energy devices.
Bob Boyce has experimented with the much more dangerous rotating magnetic fields type of circuitry and he says: While working as an engineer for a government subcontractor, I became aware of a problem with a switcher power supply, which under certain temperature and load conditions, would go into over unity operation. Sometimes these would fail in a big way and totally destroy the load. There was far more damage than the power source to the power supply was capable of delivering. The power supply used an on-board toroidal coil wound with teflon insulated, silver-plated solid copper wire on Honeywell powdered iron cores. I guess that this was what started my interest in this. When I went into business for myself, I had the time to devote to research and experimentation.
My early radiant energy research and experimentation were with attempting replications of Tesla and Moray devices, as well as many others. I found a copy of Dr. Hans A. Niepers’ book “Revolution” ISBN 3-925188-07-X. In that book there is information about many devices related to the conversion of gravity field energy.
My first foray into a 3-phase device was during experimentation with a g-strain energy absorber as theorised by professor Shinichi Seike. Needless to say, the results were not what I expected when I connected a 3-phase air core toroid to the 3-phase outputs of the g-strain energy absorber board.
I had been doing these experiments at home and that was where my lightning strike injury occurred in 1995. That put an end to my 3-phase research for a number of years. When I did start back into it, I soon tired of the expense of burned out electronics and loads. I went back to the lower powered single-phase transformers and stuck with that until I worked out some of the control issues which would allow me to get back into the 3-phase design in a more controlled manner. I wish that I had heard of Steven Mark sooner as that would probably have saved me some time. Like Steven, I learned to have a very healthy respect for this stuff.
The interesting part is that the experiment was not running at the time of the lightning strike, but the strike did enter the room where I had been running an earlier experiment with the 3-phase toroid driven by the g-strain energy absorber board. I am under the impression that the running of the experiment had somehow imprinted an energy pattern upon me which may have attracted the lightning to me. The lightning entered the room, entered my right hand, exited my right ankle and left the room via the telephone line. I was quite understandably shaken up, but I was able to drive myself to St Mary’s Hospital (in West Palm Beach, Florida), where I was treated in the emergency room, and released. The pain in my chest afterwards was something which I would not wish upon anyone! All I could really do was to take pain pills until the pain subsided. Considering that I had a well-grounded (by three 20-foot long half-inch diameter copper pipes, one connected to each leg of the base, and a 20-foot long half-inch diameter copper pipe at each guy point) 160-foot radio tower only twenty feet away from that room, the entire house should have been protected under the “cone of protection” provided by that tower. That particular lightning strike defied all common sense of good lightning protection. It was as if it targeted me directly, despite the well-protected location. I have had avalanches occur since then, but I make darned sure that I am very well protected against lightning before running any of these experiments now. I have had the metal building struck but it has not penetrated inside. There are 8-foot long, five-eighths inch diameter copper clad steel ground rods at each corner of the building. I have an 8-foot by 10-foot PVC utility building in which I can run an experiment while I watch on a closed-circuit TV monitor, from the safety of my metal building.
The core does provide stability. I use a low-permeability core in order to avoid saturation from the bias. The lower the frequency, the fewer impulses (kicks) there are per second which results in a lower power density but it also lowers the relativistic effects in the core. So sure, it is a trade-off of control versus power. If the controller were to be fitted totally within the “eye of the storm”, that is, in the centre of the toroid space, then the power density could be greatly increased. My main concern would be losing control in a runaway situation with the controller ignoring command signals from the outside due to these relativistic timing changes. Energy induced in even DC control wiring can override those control signals. You would not want to be anywhere near that if it happened.
I do not like to use ferrite or laminated iron cores. With their high permeability, they can only be used at very low frequencies and very low power densities.
One of the features of this power source is that it seems to adapt to the load (within reason, of course). Load impedance is fairly important for getting maximum power output, due in part, to the High-Frequency portion of the energy riding on the DC output. Momentary short-circuiting of the output does result in a plasma-like discharge arc.
From what I can see, my toroid and that of Steven Mark do look to be very similar. The primary differences that I can see are the core material and the number of poles. It sounds and looks like Steven Mark used stranded copper wire and 4 poles, while I use powdered iron and 3 poles in my current device. Otherwise, both seem to build up a swirling electromagnetic vortex during operation.
Over the years, I have used other core materials with varying degrees of success. I started out with laminated iron cores on 2-phase devices bin the mid 1980s and ten progressed to air-core 3-phase devices in the early 1990s. One of the first units on which I tried 3-phase operation was a Seike “g-strain energy absorber” which I had connected to a hand-wound 3-phase air-core toroidal coil. Talk about uncontrolled operation! But I kept at it, unaware of the dangers. Since I was no longer doing the HHO gas research at that time, I was obsessed with trying to replicate Tesla and Moray research on a shoestring budget. After my lightning strike injury in 1995, I mothballed that line of research until I had the time, energy and funds to continue. I refused to apply this 3-phase design to practical application until the control issue cold be solved.
One technique which can be used to improve the power density at low frequencies is to go from 3 primaries to 6 primaries, that is, two phased sets of 3-phase drive coils.
In March 2012 a similar style of circuit design is to roll out the first 200 commercial units from a company in South Africa. The web site of Stirling Allan covers many of the details of these units. The expected price for a self-powered 5 kilowatt unit is US $6000 and there are other units of up to 40 kilowatt output. Stirling has visited the company in South Africa and witnessed the device in operation and was due to receive one of these units in March 2012, but delivery has been delayed due to the batteries stopping operating after three months of use.
Don Smith. Don Smith is a very talented American who has understood all of Tesla's work and has produced literally dozens of practical devices based on his understanding. You will find more specific details in chapter 3, but in broad outline, a twelve-volt battery can be used to generate the pulsing magnetic field needed to nudge the local environment into providing massive amounts of electrical energy. The device described in detail in chapter 3, has an output of around 160 kilowatts, which is far, far more than any individual would need. In other words, it is a device which could easily power your home, and considering that an electric car needs about 65 kilowatts, one could easily power a vehicle, making it into a fuel-less mode of transport. This is not magic, just standard electrical theory being applied correctly for a change.
The key component in many of Don's devices is the humble, commercial power supply used to drive neon sign displays. This module produces some 9,000 volts at a frequency of 35,100 Hz (cycles per second). As Don points out, when you double the pulsing frequency and double the pulsing voltage, the available power goes up by a factor of sixteen times, because the effect of both of these things is squared. You will recall that Bob Boyce is pulsing his toroid very sharply at 42,000 Hz and that high frequency has a major effect on the power produced in his system.
Don then boosts his working voltage further with a step-up transformer called a Tesla Coil. This brings us into an area of massive power. People have the very mistaken idea that a Tesla Coil can only produce voltage and not current. The reality is that if the primary coil is positioned in the centre of the secondary coil, then the voltage and current produced will be roughly the same, and that is a very, very high level of power. One device of Don's looks like this:
 This prototype is actually more complicated than it needs to be. It uses three very high-voltage capacitors which are not necessary if you opt for a slightly different method of construction. However, in this version, the twelve-volt battery (which is not shown), powers a true sine-wave inverter in order to provide the mains voltage and frequency needed by the neon-tube driver circuit. The voltage limitations of the capacitors, in particular, the 8,000-volt output storage capacitors, make the 9,000 volt output of the neon-tube driver too much for safe usage. To deal with this, Don uses a Variac-style variable transformer to lower the voltage supplied to the neon-tube driver circuit, and this lets him limit the output voltage to the 8,000 volts of the output storage capacitors.
A key detail is that the wire length in the turns of the short primary winding of the Tesla Coil is exactly one quarter of the wire length of the turns in the long secondary winding. This makes the coils resonate which is a vital factor in the operation. The final, exact tuning, can be done by sliding the primary coil to a slightly different position. In this prototype, Don chose to do the final fine tuning by attaching a small capacitor across each of the windings. This is not necessary.
In the prototype shown above, Don then uses four diodes to rectify the output to DC to feed the storage capacitors. This results in an 8,000 volt supply which can provide 20 amps of current. That is an output power of 160 kilowatts, and is limited by the output capacitor voltage rating.
Don points out that it is not necessary to do it that way and instead, a step-down transformer can be used to lower the output voltage and boost the available current. If this is done, then the voltage limitations disappear (provided that you are using very high-voltage cables) and so no Variac is needed and no high-voltage capacitors are needed either.
There are two options. Either you can aim for a mains-voltage, mains-frequency, AC output, or you can produce a DC output and use an off-the-shelf inverter to run any mains equipment powered by the device. With the first option, Don connects a single resistor across the primary of the step-down transformer and that drags the frequency down to the wanted level, provided that the resistor has the right value:
 The alternative method which aims for a DC output does not need to alter the frequency:
 In both of these cases, the twelve volt driving battery can be charged continuously by part of the output power, and there are various ways of doing that. However, care needs to be taken that the battery is not overcharged as the input power is very low.
You will notice the similarity between Bob Boyce's toroid system and Don Smith's Tesla Coil system. In each case, a very carefully wound circular winding is pulsed at high frequency, and in each case, substantial amounts of excess electrical power becomes available, flowing in from the surrounding environment, courtesy of the pulsating magnetic field.
Tariel Kapanadze produced a similar style of device which is self-powered and produces a mains electricity output. He has demonstrated this for a TV documentary:
 and any details available are in chapter 3.
The Insights of Vladimir Utkin Vladimir has recently issued a paper in which he describes some of the very important work done by himself and members of a Russian forum. He has major insights into the work of Tesla, Don Smith and others. With his kind permission, here is his paper:
FREE-ENERGY: NIKOLA TESLA SECRETS FOR EVERYBODY
 by Vladimir Utkin u.v@bk.ru
FIRST SECRET All of Tesla’s secrets are based on ELECTROMAGNETIC FEEDBACK
EXPLANATION: An ordinary energy system comprises a generator and motor (common view), and can be completed with an electric current feedback as shown here in electrical circuit (a)
 In case (a), the system once started, will slow down and stop because of friction, resistance and so on. Nikola Tesla arranged a feedback loop for the electromagnetic field: case (b), and he said:
ELECTROMAGNETIC FIELD FEEDBACK DESTROYS THE INTERACTION SYMMETRY This means that an action no longer has an equal and opposite reaction
In case (b), once started, the system will accelerate in spite of friction, resistance and so on (provided that the phase of the electromagnetic feedback is positive and is sufficiently large). In order for an electromagnetic field to exist in a motor, there must be some energy input, and Tesla said:
ENERGY GENERATION BY IT’S OWN APPLICATION
QUESTION: How can you produce positive electromagnetic field feedback?
AN ANSWER: The simplest and well-known example is Michael Faraday’s unipolar motor, as modified by Nikola Tesla:
 An ordinary unipolar motor consists of a magnetised disk, and a voltage applied between the axis and a point on the circumference of the disc as shown in (a) above. But an ordinary unipolar motor can also consists of an external magnet and a metal disc with a voltage applied between the axis and a peripheral point on the disc as in (b) above. Tesla decided to modify this version of the unipolar motor. He cut the metal disc into helical sections as shown here:
 In this case, the consumption of current produces an additional magnetic field along the axis of the disc. When the current-carrying wires are tilted in one direction, their magnetic field augments the main external magnetic field. When the wires are tilted in the other direction, their magnetic field reduces the main external magnetic field. So, the current flow can increase or reduce the external magnetic field of the unipolar motor.
Amplification is not possible without applying power If it is possible to arrange a magnetic field feedback loop for mechanical devices, then it is probably possible to arrange it for solid-state devices like coils and capacitors. The others parts of this article are devoted to devices which use coils and capacitors. All of the examples in this article are only intended to help your understanding of the principles involved. Understanding would be made easier if we pay attention to the ferromagnetic shielding of the second coil in the transformer invented by Nikola Tesla:
 In this case, the ferromagnetic shield separates the first and second coils in the transformer from each other, and that shield can be used as magnetic field feedback loop. This fact will be useful for understanding the final part of this article. It is also helpful to consider the properties of the electrostatic field.
ELECTROSTATICS (scalar field and the longitudinal electromagnetic waves)
Comment: Mr. Tesla said, “there is radiant energy, perpendicular to the surface of any charged conductor, produced by a scalar electromagnetic field, thus giving rise to longitudinal electromagnetic waves”.
 At first glance, this contradicts the age-old experience in studying the electromagnetic field (according to modern concepts, any electromagnetic field has components which are perpendicular to the direction of the propagated electromagnetic wave), also, Maxwell's equations describe an electromagnetic field as a vector. However, the first impression is erroneous, and no contradiction exists.
Definitions of Physics: Any conductor has both inductance and capacitance, that is, the ability to accumulate charge on it’s surface. A charge on the surface of a conductor creates an electric field (electrostatic field). The potential (voltage) at any point of the electric field is a scalar quantity!!! (That is, it is a scalar electric field ...).
 If the electric charge of the conductor varies with time, then the electrostatic field will also vary with time, resulting in the appearance of the magnetic field component:
 Thus, the electromagnetic wave is formed (with the longitudinal component of E ...).
REMARK: In order to understand how a longitudinal wave interacts with conductive bodies, one needs to read the section of electrostatics entitled "Electrification by Influence". Particularly interesting are Maxwell's equations where they mention the displacement current.
Now we come to the first secret:
SECRET 1
The power source in Nikola Tesla’s free energy device, the amplifying transformer, is a
SELF-POWERED L-C CIRCUIT
EXPLANATIONS:

AN EXAMPLE OF UNLIMITED VOLTAGE RISE (Based on batteries and a switch)
 EXPLANATION: Batteries 1 and 2 are connected to the capacitor C alternately, through the inductances L. Voltage on capacitor C and the voltage from the batteries are increasing. As a result, there can be unlimited voltage rise. When the voltage on the capacitor reaches the desired level, it is connected to the load.
COMMENT: Two diodes were used to avoid synchronisation requirements. Manual or relay switching can be used. One implementation used a spark gap to connect the output load but a switch is an alternative method.
TIMELINE FOR THE PROCESS:

The schematics can be simplified, and only one battery used (load is connected in the same way).
 COMMENT: Maybe Alfred Hubbard used an idea shown as option B, in some versions of his transformer
 COMMENT: If you want to get a self-powered circuit, you have to arrange some kind of energy feedback to the batteries. But, is this an actual FE technology? I am not sure….
QUESTION: Is this the only way to do it? No, of course not - there are different ways of doing it. For example, you can use fields inside and outside of some LC circuits. How can we do that?
For more secrets read the following parts…
HOW DO WE GET THIS RESULT?
AN ANSWER: You need to charge the capacitor using the electric component of the electromagnetic field of the inductor (using the displacement current of Maxwell’s equations)
 EXPLANATION When the electric field in capacitor C is decaying, due to feeding electrical current into an inductor (not shown), the external electric field generated by the inductor tries to charge this capacitor with the inductor’s displacement current. As a result, the capacitor draws energy in from the surrounding electromagnetic field, and the capacitor’s voltage rises cycle by cycle.
IMPLEMENTATION A – a central capacitor is used:

IMPLEMENTATION B – no capacitors are used:
 In this case instead of using a capacitor, the capacitance between the two sections of inductor L provides the necessary capacitance.
HOW DO WE START THE PROCESS? In implementation A, you must charge the capacitor and connect it to the inductor to start the process. In implementation B, you must use an additional pulsing or “kicking” coil, which starts the process by providing a pulse in either the electrical field or the magnetic field (shown later on).
HOW DO WE STOP THE PROCESS? The process of pumping energy can continue uninterrupted for an unlimited length of time and so the question arises; how do you stop the device if you should want to?. This can be done by connecting a spark gap across the coil L and the resulting sparking will be sufficient to stop the process.
THE “KICKING” PROCESS WITH AN ELECTRIC FIELD Use an additional special “kicking” coil, which can generate short powerful magnetic pulses, and install an amplifying Tesla coil along the electrical vector of the electromagnetic field of this coil.
 The electrical field of the driving pulse or “kicking” coil will charge the spread capacitors of the inductor, and the process will be started. Use pulses as short as possible in “kicking” coil, because the displacement current depends on the speed of the changes in the magnetic field.
THE “KICKING” PROCESS WITH A MAGNETIC FIELD It is not possible to “kick” the process by displacement of the amplifying Tesla coil in the uniform changing magnetic field of the “kicking” coil, because the output voltage on the ends of the Tesla amplifying coil will be equal to zero in this case. So, you must use a non-uniform magnetic field. For that you must install a “kicking” coil, not in the centre of the amplifying Tesla coil, but positioned away from the centre
 IS THAT ALL TRUE, AND THE BEST TECHNIQUE TO USE? No, it is not! Nikola Tesla found more subtle and more powerful method – his bi-filar pancake coil!
BI-FILAR PANCAKE COIL – MAY BE THE BEST METHOD The voltage between adjacent turns in an ordinary coil is very low, and so their ability to generate additional energy is not good. Consequently, you need to raise the voltage between adjacent turns in an inductor.
Method: divide the inductor into separate parts, and position the turns of the first part in between the turns of the second part, and then connect end of the first coil to the beginning of the second coil. When you do that, the voltage between adjacent turns will be the same as the voltage between the ends of the whole coil !!!
Next step – rearrange the position of the magnetic and electric fields in the way needed for applying amplifying energy (as described above). The method for doing this is – the flat pancake coil where the magnetic and electric fields are arranged in exactly the way needed for amplifying energy.
 Now, it is clear why Tesla always said that his bi-filar pancake coil was an energy-amplifying coil !!!
REMARK: for the best charging of the natural self-capacitance of the coil, you have to use electric pulses which are as short as possible, because the displacement current as shown in Maxwell’s equation, depends to a major degree on the speed of the change in the magnetic field.
THE DUAL-LAYER CYLINDRICAL BI-FILAR COIL Instead of the standard side-by-side cylindrical bi-filar coil, the coil winding may also be arranged in two separate layers, one on top of the other:

THE ELECTRO – RADIANT EFFECT (Inductance in an electrostatic field)
EXPLANATION The primary coil in Tesla’s transformer is the first plate of the capacitor. The secondary coil - is the second plate of the capacitor. When you charge a capacitor C from your source of energy, you charge a wire of the primary coil also. As a result, a wire of the secondary coil is charging also (as a return from ambient space).
In order to start the process, you have to remove charge from the primary coil (by arranging a jump in potential in ambient space). When this is done, a huge displacement current occurs – as a result of that potential jump. Inductance catches this magnetic flux, and you have energy amplification.
If this process is operating, then you generate a magnetic field in ambient space.
COMMENT: The capacitance of the wire of the primary coil is very low, and so it takes very little energy to charge it, and a very short spark to discharge it (without removing charge from the capacitor C).
COMMENT: Notice that the spark gap must be connected to the ground as, in my opinion, this is a very important feature of this process, but Mr Tesla did not show grounding. Perhaps this needs to be a separate grounding point.
REMARK: In my opinion, this technology was also used in Gray’s device and in Smith’s devices and in both cases the spark gap was connected to the ground.
ALSO: Pay attention to the words used in Gray’s patent “…. for inductive load”.
And, pay attention to Smith’s words “I can see this magnetic field, if I use a magnetometer”.
MODERN IMPLEMENTATIONS in self-powered L-C circuits
EXAMPLE 1 Using a bi-filar coil as the primary coil in a resonant Tesla transformer By Don Smith
 Explanation: The bi-filar primary coil is used as primary for energy amplification, and is pulsed through the spark gap.

EXAMPLE 2 By Mislavskij Is comprised of two capacitor plates sandwiching a ferrite ring core with a coil wound on it:
EXPLANATION When a capacitor is charging (or discharging), this “displacement” current flow generates a magnetic field in the vacuum in a circular form (Maxwell’s equations). If a coil is wound on a ferrite toroid placed between the plates of the capacitor, then a voltage is generated in the turns of that coil:

Also, if an alternating current is applied to the coil wound on the ferrite toroid, then voltage is generated on the capacitor plates.
If an inductor and a capacitor are combined in an L-C circuit, then there are two cases inside such an L-C circuit:
a) energy amplification and b) energy destruction
The situation depends on how the coils and capacitor are connected together
 COMMENT: If the direction of the turns in the coil wound on the ferrite core is reversed, then the wires connecting the coil to the capacitor plates need to be swapped over as well.
The first experiments with a ferrite core inside a capacitor were made in 1992 by Mislavskij (a 7th-year pupil of the Moscow school), and so it is known as “Mislavskij’s transformer”
THE SAME APPROACH? By Don Smith
In this arrangement, the capacitor is charged by sparks and powerful displacement current is produced. The transformer with the ferromagnetic core is collecting this current.
 COMMENT: This schematic diagram is very rough, and lacking in details. It will not perform correctly without back-electromagnetic force suppression of some kind (see below).
SECRET 1.1 Back-EMF suppression in a resonating Tesla coil Version 1
The primary and secondary coils, and the ground connection in this Tesla coil are arranged in special manner:
 Explanation: The exciting (driving) current and the load current in an electromagnetic field, are perpendicular to each other as shown here:
 COMMENT: In order to get an energy gain, the frequency of excitation of the primary coil must be the resonant frequency of the secondary coil.

COMMENT: Excitation with just a single spark is possible.
COMMENT: In Mr. Tesla’s terminology, this is pumping charges or charge funneling, the charge is coming from the ground (which is a source of energy).
POTENTIAL (VOLTAGE) DISTRIBUTION ON THE COIL

EXPLANATION: The task of the oscillating circuit is to create a local electromagnetic field with a large electrical component. In theory, it would only be necessary to charge up the high voltage capacitor just once and then a lossless circuit would maintain the oscillations indefinitely without needing any further power input. In reality, there are some losses and so some additional power input is needed.
THESE OSCILLATIONS ACT AS A "BAIT", ATTRACTING CHARGE INFLOW FROM THE LOCAL ENVIRONMENT. Almost no energy is needed in order to create and maintain such a "bait"...
The next step is to move to this "bait" to one side of the circuit, close to the source of the charges which is the Ground. At this small separation, breakdown occurs and the inherent parasitic capacitance of the circuit will be instantly recharged with energy flowing into the circuit from outside.
At the ends of the circuit there will be a voltage difference, and so there will be spurious oscillations. The direction of this electromagnetic field is perpendicular to the original field of the "bait" and so it does not destroy it. This effect is due to the fact that the coil consists of two opposing halves. The parasitic oscillations gradually die out, and they do not destroy the “bait” field.
The process is repeated spark by spark for every spark which occurs. Consequently, the more often sparks occur, the greater the efficiency of the process will be. The energy in the "bait" experiences almost no dissipation, providing a much greater power output than the power needed to keep the device operating.
TESLA SCHEMATICS
COMMENT: Don Smith named this technology “Bird on the wire”. The bird is safe on the wire until a spark occurs.
 COMMENT: Mr. Tesla named this technology a “charge funnel” or “charge pump”
THE PRINCIPLE OF THE TECHNOLOGY 1. This Free-Energy device generates an AC electrical potential in ambient space (“bait” for electrons), 2. Electrons flowing through the load, flow in from the environment, attracted by this “bait” (pumped in)
NOT A SINGLE ELECTRON USED FOR EXCITING AMBIENT SPACE NEEDS TO FLOW THROUGH THE LOAD

POSSIBLE DESIGN FOR THE “CHARGE PUMP” or “CHARGE FUNNEL”
By Edwin Gray Probable Schematic for Edwin Gray’s Cold Electricity Circuit

EXPLANATION: This schematic is a simplification of Gray’s patent, produced by Dr. Peter Lindemann for greater clarification in his book

A POSSIBLE DESIGN FOR THE “CHARGE PUMP” or “CHARGE FUNNEL”
 EXPLANATION: The charging system is unable to “see” the field inside a charging capacitor.
COMMON VIEW OF RESONANCE: Resonance is not destroyed if you short-circuit or open a “pumping” capacitor.
 COMMENT: You can add an ordinary, very large capacitor in parallel with the “pumping” capacitor for more impressive results.
Don Smith illustration
 COMMENTS: You have to use an alternating E-field, in order to charge the capacitor. But, Smith marked the North and South poles in his drawing. I think that this is true for only one instant. Diodes are not shown in his drawings, which indicates that his device as shown, is, to my mind, not complete.
THE EXTERNAL APPEARANCE OF ED GRAY’S TUBE EXPLANATION: Gray’s tube with it’s two internal grids is seen in the middle. Two diodes are underneath the acrylic sheet (???). A Leiden Jar is located on the left (???) The HF HV coil is behind Gray’s tube (???)

A POSSIBLE DESIGN FOR THE “CHARGE PUMP” or “CHARGE FUNNEL” THE TESTATIKA by Paul Bauman EXPLANATION: The central electrode in the jars (capacitors) is for the excitation of ambient space; the two external cylinders are the plates of the charging capacitors.
 EXPLANATION: The charging mechanism is unable to “see” the field inside the charging capacitors. COMMENT: For more details read the section on asymmetrical capacitors.
A POSSIBLE DESIGN FOR THE “CHARGE PUMP” or “CHARGE FUNNEL” COMMENT: This is based on Tesla’s schematics
 COMMENT: First, you need to arrange a “voltage killer” barrier on one side of the Tesla coil. This is to create a “BLIND” charging system which can’t “see” the charge on the capacitor (see below for more detail on “blindness”).
COMMENTS: Huge capacitor means: as much ordinary capacitance as possible. Effectiveness depends on voltage and coil frequency, and current in the node. Effectiveness depends also on the frequency at which the excitation spark occurs. It is very similar to Don Smith’s devices.
 COMMENT: For more details read part devoted to Avramenko’s plug…
POSSIBLE DESIGN FOR THE “CHARGE PUMP” or “CHARGE FUNNEL”
 EXPLANATION: The charging system is unable to “see” the field inside the charging capacitor
COMMENT: For more details read part devoted to Avramenko’s plug…
COMMENT: An ordinary piece of wire can be used in some versions of this device, read below….
ENERGY REGENERATION BY L/4 COIL COMMENT: This system is based on wireless energy transmission through the ground
 COMMENT: Energy radiated to ambient space lowers the efficiency of this process COMMENT: The Receiver and Transmitter coils must have the same resonant frequency
 COMMENT: Possible alternative arrangement:
 COMMENT: A metal sheet can be used instead of a long wire
The “COLD” and “HOT” ends of a Tesla Coil by Donald Smith COMMENT: If the excitation coil L2 is positioned in the centre of coil L2, then the Tesla Coil will have a “cold” end and a “hot” end. A spark gap can only be connected to the “hot” end. You cannot get a good spark if the spark gap is connected to the “cold” end.

COMMENT: This is very important for practical applications, so read Don Smith’s documents for more details.
 COMMENT: It is easy understand the “Hot” and “Cold” ends, if one end of Tesla Coil is grounded…
The Grounded Tesla coil – a hidden form of energy EXPLANATION: We can look at the Tesla coil as a piece of metal. Every piece of metal can be charged. If Tesla coil is grounded, it has an extra charge delivered from the ground, and has an extra energy also. But, it can be find out only in electrostatics interactions, not in electromagnetic one.

Comment: This diagram shows only one instant, after half a cycle, the polarities will be swapped over.
Question: How can we use this fact?
Answer: We have to arrange an electrostatic interaction:
Comments: Extra capacitors can be used for charging them.
This looks like Smith’s plasma globe device. Maybe, he used this technology.
This can be used in charge pump technology for excitation by an alternating electrical field, read the section on the charge pump or charge funnel.
The wiring can be different to that shown above.
Examples of grounded bifilar (multi-strand) coils From Tariel Kapanadze in his 100 KW device

from Steven Mark in big TPU

from Donald Smith

 Both of the two out of phase outputs were used and both connected to the step-down transformer.
1. Between sparks: There is no current in the step-down transformer and so the two ends of L2 are at the same voltage.
2. During a spark: Parasitic capacitors (not shown) of L2 (it’s up and down parts) are discharged to the ground, and current is produced in the step-down transformer. One end of L2 is at ground potential. But, the magnetic field of this current in L2 is perpendicular to the resonating field and so has no influence on it. As a result of this, you have power in the load, but the resonance is not destroyed.
COMMENTS: In my opinion, these schematics have errors in the excitation section. Find those errors.
Excitation by a single spark is possible.
In the terminology of Mr. Tesla, this is a ‘charge pump’ or ‘charge funnel’.
The charges are coming from the Ground which is the source of the energy.
There are more secrets in the following parts.
SECRET 1.1 Back EMF suppression in a resonance coil Version 2
Primary and secondary coils are placed on a rod core. All of the coils are arranged in special manner. The primary coil is placed in the middle of the core. The secondary coil is in two parts which are positioned at the ends of the rod. All of the coils are wound in the same direction.
 Explanation: The electromagnetic fields produced by the resonant (excitation) current and the load current are perpendicular to each other:

So, although you have power in the load, resonance is not destroyed by that output power.
COMMENTS: The load must be chosen so as to get the maximum amount of power flowing into it. Very low loads and very high loads will both have close to zero energy flowing in them.
The secondary coil is shunting the primary coil, and so it has a current flowing in it even id no loads are connected.
The secondary coil can be adjusted for resonance too.
The “rod” material can be air, or other materials.
SECRET 1.1 Back EMF suppression in a resonance coil Version 3 (long line usage – bifilar usage)
EXPLANATION: It is very much like Version 1, but here, the two coils are combined into a single coil.
IT IS IMPOSSIBLE! (Without back EMF suppression) By Don Smith
Multi-coil system for energy multiplication
COMMENT: You decide how you think it was made. Maybe short-circuited coils will be useful…
Read the following parts to discover more secrets…
IMODERN OPTIONS? For Back EMF suppression Version 3
BI-FILAR USAGE By Tariel Kapanadze
BI-FILAR USAGE By Timothy Trapp
 COMMENT: See Trapp’s sites for more details
POSSIBLE CORE CONFIGURATION For back EMF suppression
COMMENTS: An ordinary excitation winding is wound all of the way around a toroidal core. A bi-filar output winding is wound around the whole of a toroidal core. Remember about the “Hot” and “Cold” ends of a bi-filar coil.
COMMENT: Remember about the “Hot” and “Cold” ends of the output coil

THE BASIS OF BACK EMF SUPPRESSION (Tesla patent)
SECRET 1.2 The Spark-Exciting Generator (“SEG”) (Charge delivering to LC circuit)

 EXPLANATION:
The spark delivers charge to the L-C circuit
The charge Q on a capacitor C with voltage U is: Q = U x C or U = Q / C
Where Q is a charge delivered by one spark.
During the excitation of the L-C circuit by the sparks, the capacitance C is constant. After N excitations, the voltage Un on C will be Un = N x Q / C And, energy En will be raised as N2. In other words, If the L-C circuit is excited by charges, we have energy amplification.
 COMMENT: You need to understand that a feedback loop in the electromagnetic field is a changing voltage level in the L-C circuit capacitor, a high-voltage transformer is connected to collect the excess energy.
WITHOUT SYNCHRONISATION
The Spark-Exciting Generator From Don Smith

MAINTAIN RESONANCE AND GET FREE-ENERGY !! EXPLANATION: It appears that we need to charge the capacitor circuit to an energy level which is greater than that of the source energy itself. At first glance, this appears to be an impossible task, but the problem is actually solved quite simply.
The charging system is screened, or "blinded", to use the terminology of Mr. Tesla, so that it cannot “see” the presence of the charge in the capacitor. To accomplish this, one end of a capacitor is connected to the ground and the other end is connected to the high-energy coil, the second end of which is free. After connecting to this higher energy level from the energising coil, electrons from the ground can charge a capacitor to a very high level.
In this case, the charging system does not "see" what charge is already in a capacitor. Each pulse is treated as if it were the first pulse ever generated. Thus, the capacitor can reach a higher energy level than of the source itself.
After the accumulation of the energy, it is discharged to the load through the discharge spark gap. After that, the process is repeated again and again indefinitely ...
COMMENT: The frequency of the excitation sparks, must match the resonant frequency of the output coil. (capacitors 2 and 14 are used to achieve this goal). This is multi-spark excitation.
COMMENT: Charges are pumping from the ground to 11-15 circuit, this device extracts charge from ambient space. Because of this, it will not work properly without a ground connection. If you need Mains frequency, or don’t want use an output spark, then read the following parts…
Asymmetrical transformers can be used (read the following parts)
POSSIBLE SEG ARRANGEMENT (From Russian forum)
 COMMENT: The L1 Tesla coil shown above, is energised by spark f1. Resonant, step-down transformer L2 is connected to the L1 Tesla coil by output spark f2. The frequency of f1 is much higher than that of f2.
SEG WITHOUT SYNCHRONISATION From Don Smith
REMARK: It must be adjusted by dimensions, materials (???)
EXPLANATION
REMINDER: An ordinary capacitor is a device for separating charges on it’s plates, the total charge inside an ordinary capacitor is zero (read the textbooks).
 There is an electrical field only inside the capacitor. The electrical field outside the capacitor is zero (because the fields cancel each other).
So far, connecting one plate to the ground we will get no current flowing in this circuit:
 REMINDER: A separated capacitor is a device for accumulating charges on it’s plates. The total charge on a separated capacitor is NOT zero (read the textbooks). So far, by connecting one plate of the separated capacitor to the ground we will get a current flowing in this circuit (because there is an external field).
 REMARK: We get the same situation, if only one plate of an ordinary capacitor is charged. So far, connecting an uncharged plate of an ordinary capacitor to the ground we get a current flowing in this circuit also (because you have an external field).

Alternately charging a capacitor’s plates Avramenko’s plug – is it a free energy device?
The principle: Each plate of a capacitor charges as a separated capacitor. Charging takes place in an alternating fashion, first one plate and then the other plate.
 The result: The capacitor is charged to a voltage which is greater than that which the charging system delivers.
Explanation: The external field of an ordinary charged capacitor is equal to or near zero, as noted above. So, if you charge plates as a separated capacitor (upload or download charge), the charging system will not “see" the field which already exists inside the capacitor, and will charge the plates as if the field inside the capacitor is absent.

Once a plate has been charged, begin to charge another plate.
 After the second plate of the capacitor has been charged, the external field becomes zero again. The charging system cannot "see" the field inside the capacitor once again and the process repeats again several times, raising the voltage until the spark gap connected to the output load discharges it.
REMARK: You will recall that an ordinary capacitor is a device for charge separation. The charging process of a capacitor causes electrons from on one plate to be "pumped" to another plate. After that, there is an excess of electrons on one plate, while the other one has deficit, and that creates a potential difference between them (read the textbooks). The total amount of charge inside the capacitor does not change. Thus the task of the charging system is to move charge temporarily from one plate to another.
The simplest Free-Energy device (???) REMARK: The capacitance of an ordinary capacitor is much greater than the capacitance of a separated plate capacitor (if it’s plates are close to each other).
 COMMENT: The time between S1 and S2 is very short.
 REMARK: This is an illustration of energy-dependence in a coordinated system.
REMARK: This is an illustration of the so-called Zero-Point Energy.
ASYMMETRICAL CAPACITOR (Current amplification???)
 COMMENT: The capacitance (size) of the plate on the right is much greater than that of the plate on the left.
 COMMENT: Charges from the ground will run on to the right hand plate UNTIL the moment when the external field drops to zero caused by the second spark (“S2”). It takes more charges flowing from the ground to annihilate the external field at the instant of the second spark, because the capacitance of the plate on the right is far greater. ‘More charge’ means ‘more current’, so you have achieved current amplification through this arrangement.
COMMENT: The field at the terminals of the plate on the right is not zero after both sparks have occurred, this is because a field remains due to the additional charges which have flowed in (‘pumped’) from the ground.
THE SIMPLEST ASYMMETRICAL CAPACITORS The most simple asymmetrical capacitors are the Leyden jar and the coaxial cable (also invented by Mr. Tesla).
 Apart from the fact that the area (capacitance) of the plates of these capacitors is different, and they therefore are asymmetrical, they have another property: The electrostatic field of the external electrode of these devices does not affect the internal electrode.
 EXPLANATION: This is caused by the fact that the electrostatic field is absent inside the metal bodies (see textbooks).
REMARK: This is true provided that the plates are charged separately.
CAPACITOR - TRIODE
 REMARK: Dr. Harold Aspden has pointed out the possibility of Energy Amplification when using this device.
THE PRINCIPLE OF THE “BLINDNESS” CHARGING SYSTEM IN THE SEG

EXPLANATION: A “short” coil is not able to see oscillations in “long” coil, because the total number of magnetic lines from “long” coil through “short” coil is close to zero (one half is in one direction and one half is in opposite direction).
COMMENT: This a private case of asymmetrical transformer, for more details read part devoted to asymmetrical transformers.
COMMENTS ABOUT THE SEG: All Back EMF schematics can be used in SEG
COMMENT: No current will be produced in the load unless there is a ground connection in any of these circuits. Is excitation possible with just a single spark (???)
FOR MORE ASYMMETRY IN SEG ? FOR ONE SPARK EXCITING IN SEG ? By Don Smith
COMMENT: This arrangement becomes more asymmetrical after excitation.
EXPLANATION Symmetry is destroyed by a spark
If the impedances of Ra and Rc are the same at the frequency produced by signal generator F1, then the resulting voltage at points A and B will also be identical which means that there will be zero output.

If the circuit is excited by the very sharp, positive-only, DC voltage spike produced by a spark, then the impedances of Ra and Rc are not the same and there is a non-zero output.
Here is a possible alternative. Please note that the position of the output coil must be adjusted, it’s best position depending on value of resistor Rc and the frequency being produced by signal generator F1.

Here is another possible arrangement. Here, the position of the output coil depends on L1 and L2:

A NOMOGRAPH

Using a nomograph: Draw a straight line from your chosen 30 kHz frequency (purple line) through your chosen 100 nanofarad capacitor value and carry the line on as far as the (blue) inductance line as shown above.
You can now read the reactance off the red line, which looks like 51 ohms to me. This means that when the circuit is running at a frequency of 30 kHz, then the current flow through your 100 nF capacitor will be the same as through a 51 ohm resistor. Reading off the blue "Inductance" line that same current flow at that frequency would occur with a coil which has an inductance of 0.28 millihenries.
MODERN OPTIONS IN SEG Back EMF suppression in resonance coil Version 3 By Don Smith
COMMENT: Please note that a long wire is used and one-spark excitation, where additional capacitors are used to create non-symmetry (???)
Version??? By Don Smith
 Multi coil system for energy multiplication
Version??? By Tariel Kapanadze

KAPANADZE PROCESS The process requires only 4 steps: STEP 1
An L-C (coil-capacitor) circuit is pulsed and it’s resonant frequency determined (possibly by feeding it power through a spark gap and adjusting a nearby coil for maximum power collection).
STEP 2The SEG process causes the energy level in the L-C circuit to rise. Power is fed via a spark gap which produces a very sharp square wave signal which contains every frequency in it. The L-C circuit automatically resonates at it’s own frequency in the same way that a bell always produces the same musical frequency when struck, no matter how it is struck.
STEP 3The output waveform from the L-C circuit is then manipulated to provide an output which oscillates at the frequency on the local mains supply (50 Hz or 60 Hz typically).
STEP 4Finally, the oscillations are smoothed by filtering to provide mains-frequency output power.

COMMENT: All of these processes are described in Kapanadze’s patents and so, no state or private confidential information is shown here. Kapanadze’s process is the SEG process.
COMMENT: As I see it, the main difference between the designs of Don Smith and Tariel Kapanadze is the inverter or modulator in the output circuit. At mains frequency you need a huge transformer core in a powerful inverter.
Read the following parts to discover more secrets…
MODERN OPTION Lowering the L-C frequency to mains frequency (Modulation)

COMMENTS: It is possible to use square waves instead of sine waves to ease the loading on the transistors. This is very similar to the output sections of Tariel Kapanadze’s patents. This method does not require a powerful transformer with a huge core in order to provide 50 Hz or 60 Hz.
Don Smith’s option (guessed at by Patrick Kelly)

COMMENT: There is no high-frequency high-voltage step-down transformer, but a step-down transformer is used for mains frequency which means that it will need a huge core.
FOR BOTH SCHEMATICS: You must choose the load in order to get the maximum power output. Very low, and very high loads will give almost no energy in the load (because the current flowing in the output circuit is restricted by the current flowing in the resonant circuit).
ILLUSTRATIONS FOR FREQUENCY LOWERING From Tariel Kapanadze


ENERGY GAIN (REMARKS on 1.1 and 1.2 SECRETS)
We must consider two options: 1. Back-EMF suppression . . . . . . . (1.1). 2. Excitation by a spark . . . . . . . . . (1.2).
THESE OPTIONS ARE DIFFERENT
However, in both cases, an increase of energy occurs due to the charges being pumped in from the ground. In the terminology of Mr. Tesla – “a charge funnel” or in modern terminology “a charge pump”.
1. In the first case, the problem for the oscillating circuit is to "create" an electromagnetic field which has a high intensity electrical component in ambient space. (Ideally, it is only necessary for the high-voltage capacitor be fully charged once. After that, if the circuit is lossless, then oscillation will be maintained indefinitely without the need for any further input power).
THIS IS A "BAIT" TO ATTRACT CHARGES FROM THE AMBIENT SPACE.
Only a tiny amount of energy is needed to create such a "bait"...
Next, move the "bait" to one side of the circuit, the side which is the source of the charges (Ground). The separation between the “bait” and the charges is now so small that breakdown occurs. The inherent parasitic capacitance of the circuit will be instantly charged, creating a voltage difference at the opposite ends of the circuit, which in turn causes spurious oscillations. The energy contained in these oscillations is the energy gain which we want to capture and use. This energy powers the load. This very useful electromagnetic field containing our excess power oscillates in a direction which is perpendicular to the direction of oscillation of the "bait" field and because of this very important difference, the output power oscillations do not destroy it. This vital factor happens because the coil is wound with two opposing halves. The parasitic oscillations gradually die out, passing all of their energy to the load.
This energy-gaining process is repeated, spark by spark. The more often a spark occurs, the higher the excess power output will be. That is, the higher the spark frequency (caused by a higher voltage across the spark gap), the higher the power output and the greater the efficiency of the process. Hardly any additional "bait" energy is ever required.
2. In the second case we must charge the capacitor circuit to an energy level higher than that of the source energy itself. At first glance, this appears to be an impossible task, but the problem is solved quite easily.
The charging system is screened, or "blinded", to use the terminology of Mr. Tesla, so that it cannot “see” the presence of the charge in the capacitor. To accomplish this, one end of a capacitor is connected to the ground and the other end is connected to the high-energy coil, the second end of which is free. After connecting to this higher energy level from the energising coil, electrons from the ground can charge a capacitor to a very high level.
In this case, the charging system does not "see" what charge is already in a capacitor. Each pulse is treated as if it were the first pulse ever generated. Thus, the capacitor can reach a higher energy level than that of the source itself.
After the accumulation of the energy, it is discharged to the load through the discharge spark gap. After that, the process is repeated again and again indefinitely ...
THIS PROCESS DOES NOT REQUIRE THE SUPPRESSION OF BACK-EMF
3. It should be noted, that option 1 and option 2 above could be combined.
SECRET 2 SWITCHABLE INDUCTANCE
The inductance is comprised of two coils which are positioned close to each other. Their connections are shown in front.

CONSTRUCTION: When constructing this arrangement there are many different options due to the various types of core which can be used for the coils:
1. Air-core 2. A ferromagnetic bar core 3. A ferromagnetic toroidal core 4. A transformer style ferromagnetic core.

PROPERTIES: (tested many times with a variety of cores) The value of the total inductance LS does not change if you short one of the inductors L1 or L2 (This may have been tested for the first time by Mr. Tesla back in the 19th century).
APPLICATION TECHNIQUE: This energy generation is based on the asymmetrical process: 1. Feed the total inductance LS with a current I 2. Then short-circuit one of the inductors (say, L1) 3. Drain the energy from inductor L2 into a capacitor 4. After draining L2, then remove the short-circuit from L1, short-circuit L2 and then drain the energy from L1 into a capacitor
QUESTION: Is it possible, using this method, to get twice the energy amount due to the asymmetry of the process, and if not, then what is wrong?
AN ANSWER : We need to start winding coils and performing tests.
EXAMPLES OF COILS ACTUALLY CONSTRUCTED
 A coil was wound on a transformer ferromagnetic core (the size is not important) with permeability 2500 (not important) which was designed as a power-supply transformer. Each half-coil was 200 turns (not important), of 0.33 mm diameter wire (not important). The total inductance LS is about 2 mH (not important).
 A coil was wound on a toroidal ferromagnetic core with permeability 1000 (not important). Each half-coil was 200 turns (not important), of 0.33 mm diameter wire (not important). The total inductance LS is about 4 mH (not important).
 An ordinary laminated iron core transformer intended for 50-60 Hz power supply use (size is not important) was wound with a coil placed on each of it’s two halves. The total inductance LS is about 100 mH (not important).
THE OBJECTIVE OF THE TESTS To make tests to confirm the properties of the coils, and then make measurements of the LS inductance both with coil L2 short-circuited and coil L2 not short-circuited, and then compare the results.
COMMENT: All of the tests can be done with just the toroidal coil as the other coils have been shown to have the same properties. You can repeat these tests and confirm this for yourself.
OPTION 1 These simple inductance measurements can be carried out with the help of an ordinary RLC (Resistance / Inductance / Capacitance) meter, such as the one shown here:

The measurements taken: The total coil inductance LS was measured without short-circuited coils, the figure was recorded. The L2 coil was then short-circuited and the inductance LS measured again and the result recorded. Then, the results of the two measurements were compared.
The result: The inductance LS was unchanged (to an accuracy of about a one percent).
OPTION 2 A special set-up was used, consisting of an analogue oscilloscope, a digital voltmeter and a signal generator, to measure a voltage on the inductance LS without L2 being short-circuited and then with L2 short-circuited.

After the measurements were made, all of the results were compared.
Schematic of the set-up:

The order in which the measurements were taken. The voltage on the resistor was measured using the oscilloscope and the voltage on the inductor was measured using the voltmeter. Readings were taken before and after short-circuiting L2.
The result: The voltages remained unchanged (to an accuracy of about one percent).
Additional measurements Before the above measurements were taken, the voltages across L1 and L2 were measured. The voltage on both halves was a half of the voltage on the total inductor LS.
COMMENT: The frequency of about 10 kHz was chosen because the coil did not have parasitic resonances at this frequency or at low frequencies. All measurements were repeated using a coil with a ferromagnetic E-shaped transformer core. All of the results were the same.
OPTION 3 Capacitor recharge. The objective was to match voltages on a capacitor, both before and after it being recharged by interaction with an inductor which could be connected into the circuit via a switch.

The experiment conditions A capacitor is charged from a battery and is connected to the inductor through the first diode (included to give protection against oscillations). At the moment of feedback, half of the inductor is shunted by the second diode (due to it’s polarity), while the inductance must remain unchanged. If after recharging the capacitor the capacitor voltage is the same (but with reversed polarity), then generation will have taken place (because a half of the energy remains in the shunted half of the inductor).
In theory, it is impossible, for an ordinary inductor consisting of two coils to do this.
The result :

The result confirms the prediction – the remaining energy is more than the capacitor gives to the coil (with an accuracy of 20%).
Test components: Capacitor 47 nano Farads, inductor LS is about 2 mH , Shotky silicon diodes BAT42, voltage used: 12 V.
THE RESULT VERIFICATION FOR OPTION 3 For verification of these results and in order to improve the accuracy, all measurements were repeated using alternative components.
Test components: Capacitor: 1.5 nano Farads; total inductance: 1.6 mH, germanium diodes: (Russian) D311, charging voltage: 5V.
The result: Confirmation of the previous measurements (a) shown below
(a) (b) The recharging accuracy was improved to 10 percent. Also, a check measurement was made without the second diode. The result was essentially the same as the measurement which used the shunting diode. The missing 10 percent of the voltage can be explained as losses due to the spread capacitor’s inductance and in it’s resistance.
CONTINUED TESTING The shunting diode was reversed and the test performed again:

The result: It seems that the charge is spot on…
Further testing An oscilloscope was connected to the coil instead of to the capacitor, in order to avoid influence of the first diode so the oscillations viewed were based on the inductance of the spread capacitors.


The result: The accuracy of capacitor recharging was improved to 5 percent (due to the removal of the influence of the first diode). After the main capacitor was switched off (by the diode), you can see oscillations caused by the spread capacitance of the inductors. Based on the frequency of the oscillations which were 4 to 5 times higher than that of the main capacitor, one can estimate the spread capacitance as being 16 to 25 times lower than the main capacitor.
Still further testing Testing of the oscillation circuit shunting, with the two cases combined (and without the first diode):

The result: A contour (oscillation circuit) is not destroyed, but it is shunted a lot. One can explain it by considering the moments when both diodes are conducting and so, shunt the circuit. As an addition, the voltage on the down diode is shown (the time scale is stretched). The negative voltage is close to maximum.

Still further testing Charging a capacitor by shunting current in oscillation mode.


Conditions: The addition of a charging capacitor of 47 nano Farads.
The result: A capacitor is charging without shunting the circuit. The final voltage on it is 0.8 V, and rises an falls of the voltage depend on the value of the capacitor.
THE OVERALL RESULTS OF THE TESTS (OPTIONS 1, 2 and 3) The symmetry of interaction in systems with electromagnetic field feedback (as with switched inductance) appears to be violated, and this implies that this arrangement could be used to generate energy.
COMMENT: You need to choose the load in order to get the maximum power output. Very low, and very high loads, will send almost no energy to the load.
ILLUSTRATION FOR SWITCHABLE INDUCTANCE

EXPLANATION: The circuit has two kinds of currents: the main current and the shunting current.

The main and the shunting currents run through the same output capacitor in one direction, if the output capacitor is discharged.

There is no shunting current, if the output capacitor is charged.
ILLUSTRATION FOR SWITCHABLE INDUCTANCE From Don Smith
 EXPLANATION: As Don Smith said, two detector receivers were combined, and one FE device was constructed.
 COMMENT: Don Smith produced this explanation as a PDF file; maybe you’ll be able to find it on the internet. COMMENT: The resistance of the load must be chosen so as to get the maximum possible power in it. COMMENT: The “board” does not contain an output circuit, because a couple of spark gaps and one step-down transformer can be used instead of diodes and a capacitor (this was pointe
MECHANICAL (INERTIAL) ANALOGUE OF SWITCHABLE INDUCTANCE From Tariel Kapanadze

 EXPLANATION: When one pendulum is stopping the other is accelerating. The controlling mechanism connects the pendulums to the output generator one after the other and so maintains the oscillations.
ILLUSTRATION FOR SWITCHABLE INDUCTANCE From Alfred Hubbard
 EXPLANATION: The center coil and all of the peripheral coils can “grasp” the same flux coming from the resonance coil. All other details are the same as in Smith’s version.
COMMENTS: In other words, you can use rods as the coil core, instead of a closed ferromagnetic core. But, this is not the only option in Hubbard’s device. He may have had another one, based on a different principle, perhaps the principle of energy amplification in an LC circuit as described earlier, but with switchable inductance being used.

MODERN OPTIONS? In switchable inductance Version 1 A coil has more inductance when some of it’s parts are short-circuited:

EXPLANATION: The central section of the coil and it’s two end sections are wound in opposite directions.
COMMENT: The coil shown in the picture above has twice the inductance, when it’s end sections are short-circuited (measurements made with the Chinese-built RLC test meter shown here:

But, this looks like resonance in an asymmetrical transformer ?????
Version 3 By Tariel Kapanadze
No description …???
Read on for further details….
THE BASIS OF SWITCHABLE INDUCTANCES (Tesla patent)
SECRET 3 THE ASYMMETRICAL TRANSFORMER With a magnetic field feedback loop (evolution of the 2nd secret)
LENZ LAW IS VIOLATED IN AN ASYMMETRICAL TRANSFORMER (Therefore it is not possible to use it as an ordinary transformer)
An asymmetrical transformer can have two coils: L2 and LS. Coil L2 is wound on one side of the toroidal core while LS is wound so that it encloses both the toroid and the coil L2 as shown here:
Optionally, this arrangement can be implemented with a wide range of styles of transformer core:

One option is to use the above (switched inductor) arrangement and add one more coil:

Now that you understand the operational principles of this system, you can use any configuration which you need. For example:
ILLUSTRATION FOR AN ASYMMETRICAL TRANSFORMER OF SOME KIND
THE MECHANICAL EQUIVALENT OF AN ASYMMETRICAL TRANSFORMER
This example shows an ordinary transformer, wound on an E-core plus an external excitation magnet:
In other words: L2 is still used, but instead of LS the exciting magnet is used.
The result: 1. The voltage developed across coil L2 depends on the number of turns in L2, but the short-circuit current through L2 does NOT depend on the number of turns in coil L2.
2. You need to choose the load connected to L2 in order to get the maximum power output. Very low, and very high loads, will give almost no power output.
RESONANCE IN AN ASYMMETRICAL TRANSFORMER
The first coil is used as a transmitter of energy, and the second coil as a receiver of energy.
It is very like radio broadcasting, where the receiver is located far away from the transmitter, and has no feedback. The first coil works in parallel resonance and the second coil in serial resonance (although the two schematic diagrams look alike).

CONSEQUENTLY: You can get much more voltage on L2 than on LS
An experiment:

Conditions: The resonance frequency is about 10 kHz. The total inductance LS is 2.2 mH, the L2 inductance (same as the L1 inductance) is 100 mH, the ratio LS:L2 is 1:45 with an E-shape core, permeability is 2500.
The result: At the resonance frequency, there can be a voltage which is 50 times more on any parts (L1 or L2) matched with the total coil LS, and voltage changes on R are no more 15 percent.
The phase shift in voltage is about 90 degrees between LS and L2.
(The amplitudes were equalised)
Further An additional step-down coil LD was wound around L2, turns ratio 50:1 (matched with L2), and the load resistor RL = 100 Ohms was connected to it.
The result Changes in current consumption (estimated by measuring the voltage across R) are no more 15 percent.
MODERN OPTIONS IN USAGE OF AN Asymmetrical transformer By Don Smith
The schematic is like this:

COMMENTS: Between sparks, L2 has a voltage on it’s ends. If RL is connected directly to L2 then there will be no output current without resonance and there will be no output current without a spark.
MORE ACCURATE:

COMMENTS: L2 has no voltage on it’s ends (without a spark). This is ordinary back-EMF suppression, invented by Nikola Tesla.
 COMMENT: L2 has no voltage on it’s ends (without a spark).
Secret 3.1 THE ASYMMETRICAL TRANSFORMER BASED ON THE SHORT-CIRCUITED COIL
INTRODUCTION Remark: Voltage distribution on the shorted coil depends on the position of the exciting coil.
DESCRIPTION
CASE 1 The excitation coil is centered:
Result: We have the full period of the voltage distribution on the short-circuited coil
CONSTRUCTION OF THE ASYMMETRICAL TRANSFORMER based on the short-circuited coil
CASE 1 The short-circuited coil is wound in one direction

Result: The output does not influence the input in any way.
Explanation: The signal from the output coil generates zero voltage difference on the input coil.
Remark: The position of the coils should be adjusted in order to give the best result.
CASE 2 The short-circuited coil is wound in opposite directions from the centre outwards, and only half of the coil is short-circuited:

Result: The output has no influence on the input coil
Explanation: The signal from the output coil generates zero voltage difference on the input coil.
Remark: The position of the input coil needs to be adjusted to get the best result.
Remark: The coil’s position depends on permeability of the core. More permeability means more alike with distribution pointed at the beginning.
Best Position: To find the best coil position, connect the signal generator to the output, and then find the coil position which shows zero at the input terminals. Alternatively, use an RLC meter connected to the input terminals and then find the coil position which gives no change in reading when the output terminals are short-circuited (for both case 1 and case 2).
Comment: The length of the wire, the total length of the coil, and the diameter of the coil are not important. The number of turns in the input and output coils plays the same role as in an ordinary transformer, for both case 1 and case 2.
MODERN APPLICATIONS FOR SHORT-CIRCUITED COILS By Don Smith
CASE 1

CASE 2

REMARK: The position of the coils must be adjusted until the output has zero influence on the input.
REMEMBER: None of the (input) energy used for exciting ambient space should appear in the load.
AN EXAMPLE OF CASE 2
By Don Smith

COMMENTS: The output coil can be adjusted to resonate with the input coil, but this is not important for understanding the principle. Excitation with just one spark is possible (not in resonance), but the frequency of the sparks influences the output power directly.
 COMMENTS: The resonant frequency of the circuit is about 60-70 kHz, but dimmer is for 30-35 kHz. Voltage/frequency technology was used for adjusting the excitation frequency. Two parameters have to be adjusted: the position of the slider and the excitation frequency.
MODERN APPLICATION FOR SHORT-CIRCUITED COILS By William Barbat
US Patent Application number 2007/0007844
Self-Sustaining Electric-Power Generator Utilizing Electrons of Low Inertial Mass to Magnify Inductive Energy

COMMENT: In order to understand this device, you have to read Barbat’s patent application US 2007/0007844 A1: available here
COMMENT: I would like to point out that externally, it looks very much like Alfred Hubbard’s device.
AN EXAMPLE OF CASE 1 By Tariel Kapanadze
COMMENT: Adjust the positions of the coils to get the best result.
AN EXAMPLE OF CASE 1
By Steven Mark
TPU REMARK: An idea – an asymmetrical transformer based on the shorted-circuited coil:
REMARK: The positions of the coils must be properly adjusted, in order to have no transmission feedback from the output to the input. To understand this better, read the part which is devoted to switchable inductance.
EXPLANATION:
THE BASIS OF THE TPU
(Tesla Patent)
REMEMBER: The position of the coils must be adjusted. The easiest way to do this is to add or remove turns at the ends of the coils.

AN EXAMPLE OF CASE 2 By Tariel Kapanadze Mechanical device
MODERN USE OF SHORT-CIRCUITED COILS by Cherepanov Valera (‘SR193’ in Russian forum)

COMMENT: This arrangement does not have an OU effect, but it can be used for back-EMF suppression in resonance (spark excited) mode to get a laser effect (very exciting summation effects).

COMMENT: This was copied from this device of Tariel Kapanadze (???).
Don Smith

COMMENT: Mr. Tesla said: “The optimum relation for the main and additional coil is 3/4L and L/4”. Is that ratio used here?
COMMENT: If you don’t understand this schematic, look at simplest version of the coil.
 COMMENT: This is an instance of case 1 where the output coil was removed, and some of the turns of the short-circuited coil were used instead.
THE ASYMMETRICAL TRANSFORMER (BASED ON A SHORT-CIRCUITED COIL) COMBINED WITH A STEP-DOWN TRANSFORMER? By Don Smith
THE RELATIONSHIPS of Don Smith’s TPU size and position are important.
REMARK: Those relationships are used to produce an asymmetrical transformer
MECHANICAL ANALOGUE OF THE ASYMMETRICAL TRANSFORMER CASE 2 By Don Smith
Schematic:

REMEMBER: Any asymmetrical transformer must be adjusted.
REMARK: Don Smith placed magnets inside the coils, but that is not important for understanding the process as his device does not match the schematic.
SOME REMARKS ON ASYMMETRICAL IN-FRONT CONNECTION (Useful remarks)
Some turns were added on one half of the coil, and some turns were removed from the other half. An additional magnetic field H3 was created, with inductance - LD.

RESULT: A large part of the total inductance acts as an inductor, and a small part acts as a capacitor. This is a well known fact (read books). The total voltage on the coil is less than on it’s halves.

Here is the result of a capacitor discharging into this coil:
SECRET 4 CURRENT AMPLIFICATION
If a lot of asymmetric transformers are placed with a common flux flow through them, they will have no influence on this flux flow, as any one asymmetric transformer does not have any influence on the flux flow. If the secondary L2 transformer coils are then connected in parallel, this produces current amplification.

AS A RESULT You have an asymmetric transformer arranged in a stack:

For flat (uniform) field inside of LS, it can be arranged with additional turns at it's ends.
EXAMPLES OF COILS WHICH WERE ACTUALLY CONSTRUCTED

The coils are constructed from 5 sections, made from E-type ferrite core with a permeability of 2500, and wound using plastic-covered wire. The central sections L2 have 25 turns, and edge sections have 36 turns (to equalise the voltage on them). All sections are connected in parallel. The coil LS has magnetic field-flattening at it’s ends, and a single-layer winding LS was used, the number of turns depending on the diameter of the wire used.
The current amplification for these particular coils is 4 times. Changing LS inductance is 3% (if L2 is short-circuited)
SECRET 5 The power source in Nikola Tesla car “Red arrow” is FERROMAGNETIC RESONANCE

COMMENT: To understand electromagnetic feedback, you must consider the action to be like that of domains which have a group behaviour, or alternatively, spin waves (like a row of standing dominos falling over where each one is toppled by the previous one hitting it).
THE BASIS OF FERROMAGNETIC RESONANCE When a ferromagnetic material is placed in a magnetic field, it can absorb external electromagnetic radiation in a direction perpendicular to the direction of the magnetic field, which will cause ferromagnetic resonance at the correct frequency.
This is an energy-amplifying transformer invented by Mr. Tesla.
QUESTION: What use is a ferromagnetic rod in Free-Energy devices?
AN ANSWER: It can change magnetisation of the material along magnetic field direction without the need for a powerful external force.
QUESTION: Is it true that the resonant frequencies for ferromagnetics are in the tens of Gigahertz range?
AN ANSWER: Yes, it is true, and the frequency of ferromagnetic resonance depends on the external magnetic field (high field = high frequency). But with ferromagnetics it is possible to get resonance without applying any external magnetic field, this is the so-called “natural ferromagnetic resonance”. In this case, the magnetic field is defined by the local magnetisation of the sample. Here, the absorption frequencies occur in a wide band, due to the large variations possible in the conditions of magnetisation, and so you must use a wide band of frequencies to get ferromagnetic resonance.
A POSSIBLE PROCESS FOR ACQUIRING FREE-ENERGY
1. Subjecting a ferromagnetic to a short electromagnetic pulse even without an external magnetic field, causes the acquisition of spin precession (domains will have group behaviour, and so ferromagnetics can easily be magnetised).
2. Magnetisation of ferromagnetics can be by an external magnetic field.
3. Energy acquisition can be as a result of strong sample magnetisation caused by an external magnetic field of lesser strength.
COMMENT: You must use synchronisation for processes of irradiation and magnetisation of the sample.
USEFUL COMMENT: A ferromagnetic shield will not destroy the inductance of any coil placed inside it, provided that the ends of that coil are positioned on one side of the coil.
But, this coil can magnetise the ferromagnetic shield.
SECRET 5 CONTINUATION … TWO PERPENDICULAR COILS ON A COMMON AXIS (Standing waves, spin waves, domino effect, laser effect, open resonator, etc…)
EXPLANATION: Standing waves can be excited not only in Tesla’s “horseshoe” magnet, but also in Tesla’s ferromagnetic transformer (excited by sparks…
 COMMENT: Excitation can be arranged in different ways, by coils connection. The frequencies of oscillations in a coil depends on the number of turns in it (a big variation is possible due to this factor).
ACTUAL COILS
 COMMENT: The positions of the coils on the rods depends on whatever ferromagnetic material is being used, and on it’s size. The optimum arrangement has to be determined through experimentation.
A transformer can have two pairs of coils: exciting (tubes), resonance or load (inside) – see Tesla’s picture.
TOROIDAL VERSION OF AN ASYMMETRIC STACKED TRANSFORMER An inductor L2 is placed on the central ring between the short-circuits of the core, and the coil LS (not shown) is wound around all three rings, covering the whole of the toroid - this is an ordinary toroidal coil.
The number of short-circuits depends on your requirements, and influences on the current amplification.
THAT'S ALL - GOOD LUCK …
CONCLUSIONS
1. The Energy-Conservation Law is a result (not reason) of symmetrical interaction.
2. The simplest way to destroy symmetrical interaction is by using electromagnetic field feedback.
3. All asymmetrical systems are outside the area covered by the Energy-Conservation Law.
THE ENERGY CONSERVATION LAW CANNOT BE VIOLATED (The field covered by this law is only symmetrical interactions)
Walter Ford’s High-powered Crystal Set In the 1961 edition of the Electronics Experimenter’s Handbook, there is an interesting circuit from Walter B. Ford for a high-power crystal set capable of powering a 2.5-inch loudspeaker:

He says: Here’s a pint-sized crystal radio with enough power to drive a 2.5” speaker. This little unit's selectivity is far better than you would expect to find in a crystal receiver and volume is equal to that obtained with sets using a transistor. No external power source is required.
The unusual selectivity of this radio is due to its special double-tuned circuit. A pair of diodes connected as a voltage-doubler provides the extra power to operate the small speaker. An output jack is provided for headphone listening and for connecting the set to an amplifier.
Construction: The model was built on a 2.5” x 4.5" wooden chassis with a 3.5" x 4.5” metal front panel. However, size is not critical, and other materials can be substituted if desired.
Two standard ferrite loopsticks, L2 and L3, are used. Both must be modified by the addition of a second winding. L1 and L4, respectively. Each of the added windings consists of 22 turns of No. 24 cotton-covered wire wound on a small cardboard tube as shown in the picture. (Actually, any wire size from No. 22 to No. 28 with cotton or enamel insulation will do the job).
The diameter of the cardboard tube should be slightly larger than L2 and L3 so that L1 and L4 will slip over L2 and L3 easily.
Resistor R1 is used only for feeding the set into an amplifier; it should be omitted for both earphone and loudspeaker operation. Trimmer capacitor C2 should be soldered across the stator terminals of two-gang variable capacitor C1a/C1b as shown. The speaker and output transformer can be mounted wherever convenient.
If a metal chassis is used, then be sure to insulate the aerial and earth connection sockets from the chassis. When all of the parts have been mounted on the chassis, wire them together following the schematic and pictorial diagrams. Be sure that diodes D1 and D2 and capacitors C3 and C4 are connected correctly, paying attention to their polarity.
While this is interesting, what appears to be a key factor is contained in the drawings, where he states that the only important thing is that it is essential for the two sets of coils to be mounted perpendicular to each other:


Alignment and Operation. To align the receiver, connect it to an antenna and ground. The optimum length of the antenna varies with location, but 50 feet will usually be suitable in areas which receive several broadcast stations. Next, plug a high-impedance earphone into jack J1. Tune a station near the high frequency end of the broadcast band – say, 1500 kHz – and adjust the trimmer capacitors on variable capacitor C1a/C1b to get the loudest signal.
Trimmer capacitor C2 should then be adjusted for the best selectivity and volume over the entire broadcast band. Finally, Coils L1 and L4 can be moved to their optimum positions by sliding them backwards and forwards over coils L2 and L3. If a nearby station interferes with the reception of a weaker station, tune the slug of L2 to get minimum interference. For loudspeaker operation, simply unplug the earphone. Strong local stations should be received at fair volume.
How It Works: The receiver employs a double-tuned circuit feeding a crystal diode voltage-doubler/detector which drives a small loudspeaker. Radio frequency signals picked up by the antenna system are induced into coil L2 from coil L1. The desired signal is selected by the tuned circuit C1a/L2 and coupled through capacitor C2 to a second tuned circuit C1b/L3, which improves the selectivity by narrowing the radio frequency bandpass. The twice-tuned signal is then induced into coil L4 from coil L3.
The positive half of the radio frequency signal appearing across L4, passes through the 1N34A germanium diode D2 to charge capacitor C4. The negative half of the signal passes through diode D1 to charge capacitor C3. The polarity of the charges on C3 and C4 are such that the effective voltage is doubled. This voltage appears across the primary of output transformer T1 which converts the high-impedance signal to a low-impedance output suited to the loudspeaker.
While this looks like a very good design for a crystal set, the fact that it is insisted that the coil pairs must be mounted at right angles to each other raises an interesting parallel with the above work of Vladimir Utkin where he states that if the high-frequency excitation field is at right angles to the output coil, then there will be a free-energy inflow into the circuit from the local environment. Perhaps this crystal set design gains extra power to drive it’s loudspeaker from an inflow of environmental energy.
The "FLEET" ("Forever Lead-out Existing Energy Transformer") device is a self-powered electrical generator which has no moving parts and which can be constructed cheaply. It has been developed by a Hong Kong based team of people: Mr Lawrence Tseung, Dr. Raymond Ting, Miss Forever Yuen, Mr Miller Tong and Mr Chung Yi Ching. It is the result of some years of thought, research and testing and it has now reached an advanced stage of testing and demonstration and is nearly ready for commercial production.
Mt Tseung has applied his "Lead-out" theory to the category of low-power circuits known as the "Joule Thief" circuits. These circuits originated with an article by Mr Z. Kaparnik, in the "Ingenuity Unlimited" section of the November 1999 edition of the "Everyday Practical Electronics" magazine.
The initial circuit allowed the very last energy to be drawn from any ordinary dry-cell battery, and used to light a white Light-Emitting Diode ("LED") for use as a small torch. It allows a battery which is considered to be fully discharged, to drive the circuit until the battery voltage drops right down to 0.35 volts. The initial circuit uses a bi-filar coil wound on a ferrite ring or "toroid". Bi-filar means that the coil is wound with two separate strands of wire side by side, so that each adjacent turn is part of the other coil. A coil of that type has unusual magnetic properties. The Joule Thief circuit is like this:
 It is important to notice how the coil is wound and how it is connected. It is called a "toroid" because it is wound on a ring. The ring is made of ferrite because that material can operate at high frequencies and the circuit switches On and Off about 50,000 times per second ("50 kHz"). Notice that while the wires are wound side by side, the start of the red wire is connected to the end of the green wire. It is that connection which makes it a "bi-filar" coil instead of just a two-strand coil.
This "Joule Thief" circuit was then adapted by Bill Sherman and used to charge a second battery as well as lighting the Light-Emitting Diode. This was achieved by adding just one more component - a diode. The diode used was a 1N4005 type because that was to hand at the time, but Bill suggests that the circuit would work better with a very fast-acting Schottky-type diode, perhaps a 1N5819G type.
The circuit produced by Bill is:

When driven by a 1.5 single cell battery, this circuit produces about 50 volts with no load and can supply 9.3 milliamps of current when the output is short-circuited. This means that you could charge a 6-volt battery using a 1.5 volt battery.
“Gadgetmall” of the www.overunity.com Joule Thief forum has taken the circuit further and found a very interesting situation. He has modified the circuit and used a “batt-cap” which is a very high capacity, very low-loss capacitor. This is his circuit:

He has added an additional winding to his one-inch (25 mm) diameter ferrite toroid, and he uses that to power a 1 watt LED. Why he has done this is not immediately clear to me, except possibly, that it shows when the circuit is operating. He runs the circuit driven by a small rechargeable battery, which feeds 13 milliamps into the circuit, for a period of fourteen hours. At the end of that time, the batt-cap has gathered enough energy to fully recharge the driving battery in a minute or two, and then power a heater winding of nichrome wire (as used in mains-powered radiant heaters) for four and a half minutes. Alternatively, that amount of extra power could boil a kettle of water. The really interesting thing about this is that the driving battery gets recharged every time and so the circuit is self-sustaining although it is not a powerful circuit.
However, Mr Tseung has taken the Joule Thief circuit and modified it to become a circuit with a very serious output, moving it into a completely different category.
As a first step towards what the team calls their "Fleet" device, the toroid has been enlarged to a much greater diameter. The coil is now wound on a section of plastic pipe, 170 mm (6.5 inches) in diameter and 45 mm (1.75 inch) deep:

This section of pipe is "bi-filar" wound with two wires side by side as already described for the Joule Thief construction. As before, the start of one wire is connected to the end of the other wire. Then, the winding is given a layer of electrical tape to hold it in place and to provide an easy working surface for a second winding.
The wire used for the winding is the widely available red and black pair of wires, sometimes called "figure of eight" because the cut end of the wires looks like the numeral 8. The wire should be able to carry 2.5 amps. It must be side-by-side wire and not one of the twisted varieties. It looks like this:

The second winding is made in the same way but the connections are slightly different. As before, the end of the first wire is connected to the start of the second wire, but that connection is then insulated and not used in the following circuitry. This just connects the two windings one after the other, known technically as being connected "in series" and is the equivalent of making the winding with just a single strand of wire. The completed coil may look like this:

This particular design is still in it's early stages and so many different coils sizes and constructions are being tested:

The arrangement is for the inner winding of the toroid to be oscillated by the Joule Thief circuit already described. This causes a pulsating magnetic field to envelope the outer winding of the toroid, producing an electrical output which is capable of doing useful work. The really important thing about this arrangement, is the fact that the amount of power coming out of the circuit is very much greater than the amount of power needed to make the circuit operate. The additional power is led out of the local environment and drawn into the circuit, becoming available to do useful work.
The overall circuit then looks like this:

While the outer winding is shown here with thicker wire of a different colour, this is only to make the arrangement easier to understand. In reality, the outer winding is with exactly the same wire as the inner winding, and it will normally go all the way around the toroid. The total amount of wire needed to make the windings is about 70 metres and so it is normal to buy a full 100 metre reel of the twin-core wire, which allows both windings to be made and leaves spare wire for other things.
For those of you who are very technically minded, the output waveform looks like this:

and the voltage pulses in this output are occurring about 290,000 times per second.
What has worked better for me is using a bridge of four diodes rather than a single diode:

I have used this circuit, driven by a 1.5 volt battery, to charge 12-volt batteries, but the best results are in the five to six volt range. I have used this circuit to confirm COP>1 by charging one small 12V lead-acid battery with and identical battery, swapping the batteries over and repeating the process several times. The result was that both batteries gained genuine, usable power. I suspect that the effect would have been much greater if I had charged two or more batteries in parallel. The toroid was an 8-inch diameter, 10 mm by 12 mm off cut from a plastic pipe which happened to be to hand and the wire used was plastic covered 6-amp equipment wire, again, because it was to hand at the time. Winding the toroid and setting up the circuit was done in a single evening.
Overall, this is a very simple, cheap and easily constructed COP>10 device which has the potential of providing large amounts of free, useable, electrical power. With further development, it may well be possible to produce a version which could deliver the power needed by a whole household. It is also likely that these devices will become available for purchase a quite a low cost. All in all, this is a very important device and full credit must go to the development team who have carried the research to this point.
The Ed Gray Power System. The power tube presented to the public by Edwin Gray snr. operates by generating a series of very short, very sharp pulses using a spark gap. This device is reputed to have a power output which is one hundred times that of the power input. Ed Gray and his electric pulse motor are very famous, but as far as I am aware, nobody has successfully replicated this claimed performance. Further, an in-depth examination of the background details by Mr Mark McKay have turned up a number of facts which present a very different picture, and while it is perfectly correct to say that spark-gap pulses generate a good waveform for shocking the local zero-point energy field into the sort of imbalance which can provide a massive power inflow into a device or circuit, we need to be careful to get the full facts in this case.
 First, let us put the whole thing in its proper perspective. In May 1973, Cal-Tech in the US performed an independent assessment of an engine provided to them by Edwin Gray. They measured the input and the output and certified that the output power was 275 greater than the input power. This demonstrates clearly that excess power can be drawn into an engine and provide a performance which can power both the engine as well as doing additional useful work.
Having said that, it needs to be made clear that Edwin Gray did not build that small motor, did not understand how it worked, nor did he ever disclose the design in any of the patents which he obtained afterwards. We need to follow the sequence of events and notice when each thing happened. The history is as follows:
In 1957, a Russian immigrant to the USA, one Alexei Poppoff, showed Edwin Gray a circuit which he said that he had been shown by Nikola Tesla. Edwin Gray did not understand the circuit and had no idea how to create anything useful based on it. He then joined up with his next-door neighbour Marvin Cole, who held a Masters degree in Mechanical Engineering and who, unlike Gray, was able to understand the circuitry.
In 1958, Ed Gray left the Los Angles area in a hurry.
From 1958 to 1972 Marvin Cole, working alone, designed and built ever more powerful prototype engines, and it was a small one of these which was tested by Cal-Tech. In this period, Marvin also developed ever more powerful power supplies, which are the really important item in all of this.
In 1967, Ed Gray rejoins Marvin Cole and together from 1967 to 1972, they solicited venture capital and promoted the technology.
Early in 1972, Marvin Cole disappeared and never saw Gray again. It is not clear if he was intimidated, died, or just did not want to be involved in all the publicity and effort needed to turn the prototype engines into a commercial product. No matter what the reason, the result was that Edwin Gray was suddenly disconnected from the brains behind the project, and that left him in a very difficult position. He didn't want to let go of the dream of becoming rich through this spectacular development, and so he tried to continue the development on his own.
As already mentioned, in May of the following year (1973), Gray had a small Marvin Cole motor independently third-party tested at the famous Cal-Tech laboratory in Los Angles, where a measured input of just 27 watts produced a measured output of 10 horsepower (7460 watts). The objective was to provide solid evidence of a new technology which was capable of changing the world and so would attract investors. To further boost his image and convince potential investors, in that same year of 1973, Edwin staged demonstrations which jumped electromagnets up into the air, showing the strength of the power which drove the Marvin Cole engines.
It is very important to understand that all of Edwin Gray's patents were applied for after the departure of Marvin Cole. These do not disclose the technology tested by Cal-Tech and it must be understood that Edwin was very much afraid of revealing anything important in any of the patents in case some other person would understand the things which were a mystery to him and snatch away the prize of commercial success. So, please be aware that the patents where applied for solely to encourage investors and most definitely not to show any significant details.
Edwin then assembled a small team of people to attempt to understand and advance the work of Marvin Cole. However, the subsequent changes to the Cole implementations did not result in genuine, reliable working motors due to Gray's lack of understanding of the underlying energy-tapping methods used by Cole.
The Power Tube shown in Gray's patents has never been shown to provide the COP=100 energy performance which is sometimes mentioned, nor did it form part of Marvin Cole's system. Edwin Gray shows three of these Power Tubes driving one (failed version) motor, which is in direct conflict with Marvin Cole's technique which had 24 separate power supplies driving the motor. Please understand that the power-gathering mechanism of the Cole system is the key feature of all of the successful systems. Unfortunately, as far as I am aware, that technology has never been disclosed.
Just to clarify the differences, let me briefly outline my understanding of what Edwin Gray put forward as the power-gathering system of the motors which he attempted to develop after he parted company with Marvin Cole. Edwin shows three Power Tubes connected to the engine like this:
 Here, three separate sets of electromagnets inside the motor are pulsed in sequence by three separate identical circuits, each driving the electromagnets via a power Tube. Marvin Cole's system used twenty-four separate power-gathering circuits which drove twenty-four separate electromagnets inside the motor (Power Tubes were not used).
You may wish to try Edwin's Power Tube for yourself, so let me explain the basic details as I understand them. The overall circuit is like this:
 You will notice that the power driving the load does not come from the battery as the battery circuit produces the spark and nothing else. The load is driven by power picked up on the copper shells around the half inch (12 mm) diameter copper rod spark-gap electrode with its silver coated tips. The circuit supposedly operates as follows. The driving 12V battery “B1”, continuously powers an oscillator which uses transformer “T” to step the voltage up to a high level. This high voltage is full-wave rectified by a bridge of high-voltage diodes, and the resulting DC voltage is fed to capacitor “C”. If any malfunction causes this DC voltage to get too high for safety, the discharge contacts “D” cause the voltage to discharge via a spark to the earth connection. Under normal circumstances, the high voltage on “C” creates a spark in the power tube “P” when it’s circuit is completed by the closing of switch “A”, which is used to synchronise the power pulse to the rotation position of the electric motor windings. The switch drives a monostable circuit which delivers a very short enabling pulse to “V” the “one-way current switch” which is a powerful electronic triode valve. These days, it is very difficult to get a valve of that type and the best source is probably the power output valve from a World War Two radio transmitter.
The power tube “P” has a resistor shown in it. This was actually a block of carbon, and as such, will have had minimal electrical resistance. However, several different devices which appear to have COP>1 power outputs use a spark gap associated with a carbon electrode, so there may well be a second effect coming into play here. A key factor in this circuit is the fact that the power which drives the motor does not come from this electrical circuit at all, but from the apparently disconnected cylinders inside power tube “P”. This power is “cold” electricity, flowing into the circuit from the local environment. Remember that Floyd Sweet in his first measured test had a solid 500 watt electrical output from a power input of just 0.31 of a milliwatt.
In this circuit, the “MOTOR” represents just one of the coil windings inside the electric motor and instead of the power flowing through the motor being fed to ground as normal, it is fed to the +12 volts of battery “B2”. The objective was to charge battery “B2”, the charging current being limited by capacitor “C2”, the idea being that “B1” and “B2” could be swapped over when “B1” became discharged. This arrangement was soon discontinued and battery “B2” was charged from a standard car alternator driven by the engine in an entirely conventional manner. A rapid and abrupt electrical discharge is produced by generating a spark, and power pick-up is achieved by two copper cylinders surrounding the conductor which carries the spark current. There is more than one way of doing this. In the following diagram, the spark gap is shown exposed to make it easier to see, but in practice, the perforated copper shells extend to cover the spark gap:
 A full and detailed description of how it is believed that “Ed Gray’s” system works is given in Peter Lindemann’s book “The Free Energy Secrets of Cold Electricity” which is available via this website.
Tesla used this spark gap method with spark quenching provided by a strong magnetic field at right angles to the spark, in order to get really high-quality DC pulses with durations of one microsecond or less. Pulse trains of individual pulses with very short durations produce heat, spontaneous lighting, cooling, etc. depending on the frequency of the pulsing. The power tube is placed around a heavy-duty copper conductor which is pulsed, unbalancing the zero-point energy field and a tiny part of the resulting energy flow as the field moves back into equilibrium again, is captured by the surrounding perforated copper shells.
While the switching valve in the electronics circuit looks like a very difficult component to come by, the possibility of constructing one yourself should be considered. Essentially, a thermionic valve is a simple device. A heated filament at one end of the tube emits electrons. A high voltage along the length of the tube provides an electrical urge for those electrons to flow along the tube. A metal grid between the heated filament and the electrode at the far end of the tube can be used to prevent that current flow by connecting an opposing voltage to that grid. It is that grid voltage which is turned off very briefly to provide the current pulse to one set of motor windings. A seeming obstacle is producing the glass envelope for the valve, but there is actually no need for the valve to have a glass container and a wide range of other materials can be used. Another obstacle is creating a vacuum inside the valve housing, but it has been stated that the main reason why these valves have a vacuum inside them was mainly commercial, namely, an attempt to encourage people not to make their own. It is said that there is no reason why a thermionic valve should not have air inside it – the current flow is not a spark. I have no idea how accurate, or inaccurate, this information on valve construction is, but I strongly suspect that it is correct.
Marvin Cole's power system produced "cold electricity" which could power lights and other devices. It was frequently demonstrated that the output was not conventional electricity and powered light bulbs which were placed under water and at the same time, it was quite safe for a hand to be put into that same water along with the lit bulb. The glass of the conventional bulbs used in these demonstrations would have shattered when placed under water if they had been powered by conventional "hot electricity" as the sudden change in temperature would have broken the glass. Powered as they were by "cold electricity", they ran cool and so there was no stress on the glass when submerged in water.
The construction of the pick-up tube is not particularly difficult. It is comprised of a teflon (plastic) cylinder of about 80 mm diameter with teflon plates at each end, grooved to hold the pick-up cylinders in place. A pair of 12 mm diameter copper rods are positioned down the centre of the cylinder and provided with a means to adjust the gap between them where they meet. The rod ends form the spark gap and these ends are plated with silver. One rod has a graphite block inserted in it, using a push-fit connection into slots cut in the bar. This carbon insert is supposedly a resistor, but in fact it is an important part of the excess energy generation system. In some successful constructions of the tube an 8-inch long, half-inch diameter carbon rod with a silver tip, is used for one of the electrodes.
The two or three cylinder shells which pick up the Radiant Energy, are constructed from copper sheet. The gap between the outside of one cylinder and the inside of the surrounding cylinder is about 6 mm. These cylinders are more effective if they have a matrix of holes drilled in them. They are connected together electrically and the connection is led out through the teflon casing to feed the load circuit. The cylinder contains air rather than a vacuum or an inert gas. The copper cylinders are held in place by push-fit supports, one set positioned between the outside of the smaller cylinder and the inside of the larger cylinder. The second set are placed between the outside of the larger cylinder and the inside of the housing tube:

 The power tube is constructed this way because the Radiant Energy wave generated by the sharp pulse of current through the electrodes, radiates out at right angles to the electrodes.
Peter Lindemann points out that Ed Gray’s power conversion tube circuit is effectively a copy of Nikola Tesla’s circuit for doing the same thing:
 This was disclosed by Tesla in his ‘Philadelphia and St Louis’ lecture in 1893 and shows how loads can be powered when a high voltage source is pulsed by a magnetically-quenched sparks - this creates DC pulses of very short duration.
 The diagram above, illustrates the difference between the Magnetic field generated around a conductor fed with a pulse of Direct Current and the Radiant Energy waves created by that pulse. If a sharp current pulse is driven down a vertical wire, it causes two different types of field. The first field is magnetic, where the lines of magnetic force rotate around the wire. These lines are horizontal, and rotate clockwise when viewed from above. The magnetic field remains as long as the current flows down the wire.
The second field is the Radiant Energy wave. This wave will only occur if the current pulse is in one direction, i.e. it will not occur if the wire is fed with alternating current. The wave radiates out horizontally from the vertical wire in every direction in the form of a shock wave. It is a one-off event and does not repeat if the current in the wire is maintained. The Radiant Energy briefly unbalances the zero-point energy field and that causes an energy flow as the field moves back into equilibrium again. A tiny fraction of this massive, brief energy flow can be picked up and that collected energy is more than 100 times greater than the energy needed to generate the spark which triggered the energy flow in the first place. This is the energy which the tube was designed to collect. Consequently, the tubes are fed with a train of high-intensity, short-duration, DC pulses to generate repeated waves of Radiant Energy. It is the pick-up of the resulting excess energy which allows the motors run without the need for the batteries to be charged by any conventional source of current.
The Radiant energy wave is not restricted to a single plane as shown in the diagram above, which is intended to indicate the difference between the electromagnetic field circling around the wire, and the Radiant Energy field which radiates away from the wire. Both of these fields occur at all points along the full length of the wire as shown here:
 Radiant Energy, when converted to electrical power, produces a different kind of electrical power to that produced by batteries and by the mains supply. Power a motor with conventional electricity and it gets hot under load. Power the same motor by Radiant Energy electricity and under load the motor gets cold. Really overload it by stalling it and the motor housing is likely to be covered with frost. That is why this form of electricity is referred to as “cold” electricity.
In his book “Cold War Secrets - HAARP and Beyond”, Gerry Vassilatos quotes research work done in this area by Tesla and others:
Tesla’s Experiments: In 1889 Tesla began experimenting with capacitors charged to high voltages and discharged in very short time intervals. These very short pulses produced very sharp shockwaves which he felt across the front of his whole body. He was aware that closing a switch on a high-voltage dynamo often produced a stinging shock. This was believed to be static electricity and it occurred only at switch-on and only for a few milliseconds. However, in those few milliseconds, bluish needles of energy stand out from the electrical cables and they leak to ground, often through the bodies of any people standing nearby, causing immediate death if the installation is large. While the generators of that time were rated at some thousands of volts, these discharges were millions of volts in intensity. The generator problem was eliminated by the used of highly insulated switches which were provided with a very large ground connection.
 Tesla was intrigued by this phenomenon which appeared to match the effect of his capacitor discharges. He calculated that the voltages produced were hundreds of times greater than could be supplied by the capacitor or generator. It was clear that the power supplied was being amplified or augmented in some way, but the question was, from where was the extra energy coming?
Tesla continued to investigate through experiments, taking precautions against the high voltages being produced. He was soon able to produce these shockwaves whenever he wanted to. The shockwaves produced a stinging sensation no matter where he stood in his laboratory, and hands and face were particularly sensitive to the wave. These waves radiated out and penetrated metal, glass and every other kind of material. This was clearly not an electromagnetic wave, so he called the new wave ‘Radiant Electricity’.
Tesla searched the literature to find references to this radiant energy but he could not find much. In 1842, Dr. Joseph Henry had observed that steel needles were magnetised by a Leyden Jar spark discharge located on a different floor of the building. The magnetising wave had passed through brick walls, oak doors, heavy stone and iron flooring and tin ceilings to reach the needles located in a vault in the cellar.
In 1872, Elihu Thomson took a large Ruhmkorrf Spark Coil, attached one pole of the coil to a cold-water pipe and the other pole to a metal table top. This resulted in a series of massive sparks which electrified the metal door knob of the room and produced the stinging shockwaves which Tesla was investigating. He found that any insulated metal object anywhere in the building would produce long continuous white sparks discharging to ground. This discovery was written up briefly in the Scientific American journal later that year.
Tesla concluded that all of the phenomena which he had observed, implied the presence of “a medium of gaseous structure, that is, one consisting of independent carriers capable of free motion - besides the air, another medium is present”. This invisible medium is capable of carrying waves of energy through all substances, which suggests that, if physical, its basic structure is much smaller than the atoms which make up commonplace materials, allowing the stream of matter to pass freely through all solids. It appears that all of space is filled with this matter.
Thomas Henry Moray demonstrated this energy flow passing through glass and lighting standard electric light bulbs. Harold Aspden performed an experiment known as the “Aspden Effect” which also indicates the presence of this medium. Harold made this discovery when running tests not related to this subject. He started an electric motor which had a rotor mass of 800 grams and recorded the fact that it took an energy input of 300 joules to bring it up to its running speed of 3,250 revolutions per minute when it was driving no load.
The rotor having a mass of 800 grams and spinning at that speed, its kinetic energy together with that of the drive motor is no more than 15 joules, contrasting with the excessive energy of 300 joules needed to get it rotating at that speed. If the motor is left running for five minutes or more, and then switched off, it comes to rest after a few seconds. But, the motor can then be started again (in the same or opposite direction) and brought up to speed with only 30 joules provided that the time lapse between stopping and restarting is no more than a minute or so. If there is a delay of several minutes, then an energy input of 300 joules is needed to get the rotor spinning again.
This is not a transient heating phenomenon. At all times the bearing housings feel cool and any heating in the drive motor would imply an increase of resistance and a build-up of power to a higher steady state condition. The experimental evidence is that there is something unseen, which is put into motion by the machine rotor. That “something” has an effective mass density 20 times that of the rotor, but it is something that can move independently and take several minutes to decay, while the motor comes to rest in a few seconds.
Two machines of different rotor size and composition reveal the phenomenon and tests indicate variations with time of day and compass orientation of the spin axis. One machine, the one incorporating weaker magnets, showed evidence of gaining strength magnetically during the tests which were repeated over a period of several days.
This clearly shows that there is an unseen medium which interacts with everyday objects and actions, and confirms Tesla’s discovery. Tesla continued to experiment and determined that a very short uni-directional pulse is necessary to generate the radiant energy wave. In other words, an alternating voltage does not create the effect, it has to be a DC pulse. The shorter the pulse time and the higher the voltage, the greater the energy wave. He found that using a capacitor and an arc discharge mechanism with a very powerful permanent magnet placed at right angles to the spark, improved the performance of his equipment by a major factor.
Additional experiments showed that the effects were altered by adjusting the duration of the electrical pulse. In each instance, the power of the radiated energy appeared to be constant irrespective of the distance from his apparatus. The energy was in the form of individual longitudinal waves. Objects placed near the equipment became powerfully electrified, retaining their charge for many minutes after the equipment was switched off.
Tesla was using a charging dynamo as a power source and he found that if he moved his magnetic discharger to one side of the dynamo, the radiant wave was positive. If he moved the magnetic discharger towards the other side of the dynamo, the radiant wave became negative in sign. This was clearly a new electrical force which travelled as light-like rays, showing them to be different in nature to the electromagnetic waves of Maxwell.
Investigating the effects of adjusting the duration of the pulses, Tesla found that a pulse train which had individual pulses with durations exceeding 100 microseconds, produced pain and mechanical pressures. At this duration, objects in the field visibly vibrated and were even pushed along by the field. Thin wires subjected to sudden bursts of the radiant field, exploded into vapour. When the pulse duration was reduced to 100 microseconds or below, the painful effect was no longer felt and the waves are harmless.
With a pulse duration of 1 microsecond, strong physiological heat was felt. With even shorter pulse durations, spontaneous illuminations capable of filling rooms with white light, were produced. Even shorter pulses produced cool room penetrating breezes with an accompanying uplift in mood and awareness. These effects have been verified by Eric Dollard who has written about them in some detail.
In 1890, Tesla discovered that if he placed a two-foot long single-turn deep copper helix coil near his magnetic disrupter, the thin-walled coil developed a sheath of white sparks with long silvery white streamers rising from the top of the coil. These discharges appeared to have much higher voltages than the generating circuit. This effect was greatly increased if the coil was placed inside the disrupter wire circle. The discharge seemed to hug the surface of the coil with a strange affinity, and rode up its surface to the open end. The shockwave flowed over the coil at right angles to the windings and produced very long discharges from the top of the coil. With the disrupter charge jumping one inch in its magnetic housing, the coil streamers were more than two feet in length. This effect was generated at the moment when the magnetic field quenched the spark and it was wholly unknown at that time.
This train of very short uni-directional pulses causes a very strange field to expand outwards. This field resembles a stuttering electrostatic field but has a far more powerful effect than would be expected from an electrostatic charge. Tesla was unable to account for the enormous voltage multiplication of his apparatus using any of the electrical formula of his day. He therefore presumed that the effect was entirely due to radiant transformation rules which would have to be determined through experimental measurements. This he proceeded to do.
Tesla had discovered a new induction law where radiant shockwaves actually auto-intensified when encountering segmented objects. The segmentation was the key to releasing the action. Radiant shockwaves encountered a helix and “flashed over” the outer skin, from end to end. This shockwave did not pass through the windings of the coil but treated the surface of the coil as a transmission path. Measurements showed that the voltage increase along the surface of the coil was exactly proportional to the length travelled along the coil, with the voltage increase reaching values of 10,000 volts per inch of coil. The 10,000 volts which he was feeding to his 24 inch coil were being magnified to 240,000 volts at the end of his coil. This was unheard of for simple equipment like that. Tesla also discovered that the voltage increase was mathematically linked to the resistance of the coil winding, with higher resistance windings producing higher voltages.
Tesla then began to refer to his disrupter loop as his special “primary” and to the long helical coil as his special “secondary” but he never intended anyone to equate these terms to those referring to electromagnetic transformers which operate in a completely different way.
There was an attribute which baffled Tesla for a time. His measurements showed that there was no current flowing in the long copper ‘secondary’ coil. Voltage was rising with every inch of the coil, but there was no current flow in the coil itself. Tesla started to refer to his measured results as his “electrostatic induction laws”. He found that each coil had its own optimum pulse duration and that the circuit driving it needed to be ‘tuned’ to the coil by adjusting the length of the pulses to give the best performance.
Tesla then noticed that the results given by his experiments paralleled the equations for dynamic gas movements, so he began wondering if the white flame discharges might not be a gaseous manifestation of electrostatic force. He found that when a metal point was connected to the upper terminal of the ‘secondary’ coil, the streamers were directed very much like water flowing through a pipe. When the stream was directed at distant metal plates, it produced electronic charges which could be measured as current at the receiving site but in transit, no current existed. The current only appeared when the stream was intercepted. Eric Dollard has stated that this intercepted current can reach several hundred or even thousands of amps.
Tesla made another remarkable discovery. He connected a very heavy U-shaped copper bar directly across the primary of his disrupter, forming a dead short-circuit. He then connected several ordinary incandescent filament bulbs between the legs of the U-shaped bar. When the equipment was powered up, the lamps lit with a brilliant cold white light. This is quite impossible with conventional electricity, and it shows clearly that what Tesla was dealing with was something new. This new energy is sometimes called “cold electricity” and Edwin Gray snr. demonstrated how different it is by lighting incandescent-filament bulbs directly from his power tube, submerging them in water and putting his hand in the water. Cold electricity is generally considered to be harmless to humans. Ed Gray’s power tube operates by generating radiant electricity waves by using a spark gap, and collecting the energy using three encasing copper cylinders surrounding the spark gap. The cylinders are drilled with many holes as that enhances the pick-up and the load is driven directly from the current in the cylinders. When lighting bulbs, Ed used an air-cored transformer made of just a few turns of very heavy wire. I, personally, am aware of two people who have independently reproduced Ed’s power tube.
Tesla viewed the streamers coming off his coils as being wasted energy so he tried to suppress them. He tried a conical coil but found that this accentuated the problem. He then tried placing a copper sphere at the top of his coil. This stopped the streamers but electrons were dislodged from the copper sphere, creating really dangerous conditions. This implied that metals generate electron flows when struck by the coil streamers (as had been seen when the streamers had been aimed at remote metal plates and current was generated as a result).
Tesla designed, built and used large globe lamps which required only a single external plate for receiving the radiant energy. No matter how far away these lamps were from the radiant source, they became brilliantly lit, almost to the level of an arc lamp and far, far brighter than any of the conventional Edison filament lamps. By adjusting the voltage and the pulse duration of his apparatus, Tesla could also heat or cool a room.
Tesla’s experiments suggest that a method of extracting free-energy is to use a Tesla coil which has a metal spike instead of the more common metal sphere at the end of the ‘secondary’ coil. If the Tesla coil is fed with sufficiently short uni-directional pulses and the ‘secondary’ coil pointed at a metal plate, then it should be possible to draw off serious levels of power from the metal plate, just as Tesla discovered. This has been confirmed by Don Smith who uses two metal plates separated by a layer of plastic dielectric, forming a capacitor. He states that a well designed Tesla coil is capable of producing currents as high as the voltages and he demonstrates a hand-held 28 watt Tesla Coil played on the first plate producing a substantial continuous spark discharge between the second plate and ground. I estimate that the spark produced would have to be thousands of volts at a significant current, which puts it in the kilowatt range, like most of Don's other devices. Don's video Don's patent is in Chapter 3 and here is Don's pdf document in which he explains many of his high-power designs.
 Don also points out that the positioning of the primary coil relative to the secondary coil of a Tesla Coil determines the amount of current which can be provided. Contrary to most opinion, it is possible to have Tesla Coil current as high as the voltage. Don always stresses that you have the option of picking the electrical component (as conventional science has done) which leads to "heat death" while the alternative option of selecting the magnetic component makes "the world your oyster". With a magnetic ripple imposed on the zero-point energy field, which Don prefers to call the 'ambient background energy', you can make as many electric conversions as you wish, without depleting the magnetic event in any way. In other words, you can draw off serious amounts of current from capacitor plates positioned at right angles to the magnetic flow, and every additional pair of plates gives you an additional source of major current without any need to increase the magnetic disturbance in any way. With his single metal plate, Tesla mentioned currents of a thousand amps being available. Please remember that a Tesla Coil produces seriously high voltages and is not a toy. Great care is needed around a Tesla Coil so, when it is running, keep well away from it.
Don also states that the collection and transfer of energy requires temporary storage which occurs as the capacitors and coils of a resonant circuit are cycled on and off. The frequency at which the capacitors and coils are pumped, determines the amount of electrical energy that moves onwards. The amount of Energy transferred relates directly to the density of lines of magnetic flux present. The Kinetic Energy formula is helpful in establishing the amount of energy present. This formula points to mass multiplied by the square of the velocity. In the case of electrical energy, intensity of voltage and amperes multiplied by cycles per second, replace velocity. Note that the "acceleration" of the Voltage and the Amperage, increases in a non-linear fashion as the Law of Squares applies, with each unit of increase causing a squaring of the flux lines present. In resonant air-core coil energy transfer, the increase in flux lines present disturbs more electrons than previously and this results in greater output energy than input energy being present and available.
Energy stored, multiplied by the cycles per second, is the energy being pumped by the system. Capacitors and inductors (coils) temporarily store electrons.
Capacitor formula: W = 0.5 x C x V2 x Hz where:
W is the energy in Joules (Joules = Volts x Amps x seconds)
C is the capacitance in Farads
V is the voltage
Hz is the cycles per second
Inductor formula: W = 0.5 x L x A2 x Hz where:
W is the energy in Joules
L is the inductance in Henrys
A is the current in amps
Hz is the frequency in cycles per second
Both one Henry and one Farad equal one volt. The higher the frequency, including the squaring of the flux lines, causes a large increase in the amount of energy being produced. This, combined with the use of a resonant energy induction system (all electrons moving in the same direction at the same time), make the move into COP>1 practical.
The damping process of conventional electrical power generation, has all of the available electrons bouncing randomly, mostly cancelling out each other, and so the useful energy available is only a very small percentage of the energy which is present. In a resonant induction system, a very high percentage of the energy present is useful. When resonant, (ohms-impedance-Z) becomes zero and all of the energy present becomes available, undegraded. Ohms is load or wasted energy and amperes is the rate of that wasting.
Now, apply this information to an air-core coil resonant transformer energy system. L-1 and L-2 coils are now present. L-1 has fewer turns and is several times the diameter of L-2. Input from a 12-volt 'gelcel' high-voltage laser module, produces 8,000 volts with low (wasted energy) amperage into 4 turns of coil L-1. Each turn of L-1 then acquires 2,000 volts of resonant potential. Each turn of L-2 is then exposed to an electric flux of 2,000 volts. Each turn at the bottom end of L-2 acquires 2,000 volts. The flux lines are squared and are additive as the voltage and amperage progress towards the top end of L-2's many turns.
A huge number of flux lines which were not previously present, occur at the top end of L-2. These flux lines excite the electrons nearby in it's earth and air and groundings. This high level of excitement above the ambient, causes a large number of electrons to become available, electrons which previously, were not part of the energy present. At this point, large amounts of excess energy is present. This COP>1 device produces energy at radio frequencies in the megahertz range and this allows it to be small in size and yet produce large amounts of energy. A megawatt sized unit will sit comfortably on a breakfast table. The energy is changed to direct current, and then, to the desired working frequency.
The energy powering these devices is drawn from the surrounding energy field and is not conventional electricity and it does not flow through the wire of the ‘secondary’ coil, but instead, it runs along the outside of the coil and through space to strike the surface of the metal plate, where it generates conventional electric current. Thomas Henry Moray demonstrated that this energy flowing along the outside of the wire can pass through glass without being affected in any way.
In his 1995 paper Don Smith presents the following diagram:
 While Tesla’s experiment used a metal plate, he patented (US 512,340) a coil type which he said is very effective in picking up this radiant energy. This "pancake" coil type goes by the rather impressive name of “bi-filar serial-connected coil”, which, despite it's impressive name is not difficult to wind using two separate strands of wire as shown here:
 If a strong magnetic field is positioned across the spark gap as shown above, it sharpens the cut-off of the spark and enhances the uni-directional character of the pulse of current. It should be remembered that if a very short sharp pulse of uni-directional current such as is produced by a spark jumping across a spark gap as in the arrangement shown above, occurs in a conductor, then a strong wave of radiant energy radiates out in a plane at right angles to the pulse of current.
This radiant energy wave is quite different from the electromagnetic field generated around the wire carrying the pulse of current. In the Tesla coil arrangement shown above, it should be possible to gather additional free energy through one or more co-axial (like layers of an onion) cylindrical coils around the spark gap leads. These coils will be better if they are would as bi-filar serially-connected coils. The reason for this arrangement is that the magnetic field component of the coils is (nearly) zero as the current flowing through the wire is flowing in opposite directions in alternate turns, and so the magnetic fields produced should cancel out:
Tesla was granted US Patent 685, 957 “Apparatus for the Utilisation of Radiant Energy” in which he shows various ways of handling the energy collected by the metal plate. It is likely that the pick-up techniques shown in the patent of Hermann Plauston, which is in the Appendix, would also work very effectively with this collected energy. Old patents sometimes mention a “condenser” which is the original term for what is nowadays called a “capacitor”.
After careful consideration and many experiments, Tesla concluded that the radiant rays which he was utilising, radiated out so rapidly that electrons were unable to keep up with them. The rays were being carried via a medium consisting of extremely mobile, almost mass-less particles, very much smaller than electrons and which, because of their size and speed, could pass easily through most materials. In spite of their small size, their extreme speed caused them to have considerable momentum. A fact which is very difficult to come to terms with is that these rays seem to propagate outwards instantly, with no time delay at all, as if transmitted through matter which is wholly incompressible. It is sometimes called “Radiant Energy” or “RE” for short and appears to have no net charge in conventional terms. This is a unique feature of the universe, with unique characteristics, which if utilised, provides a whole host of new applications and capabilities.
Tesla considered that this newly discovered field acted like a fluid. A hundred and fifteen years later, the cover story of the December 2005 edition of the ‘Scientific American’ journal states that experimental models hint that space-time could be a kind of fluid. It has taken a long time for modern science to start catching up with Tesla. In actual fact, it was Michael Faraday (1781 - 1867) who came up with the idea in the first place.
The Alberto Molina-Martinez Generator. US patent application US 20020125774 of 6th March 2002, shows a self-powered electrical generator. Like that used by Bob Boyce, this is a toroidal (ring-shaped) frame with several windings on it, as shown in the diagram below. Once it has been powered up with AC mains frequency voltage, it produces so much power that it can supply it’s own input power requirement as well as powering other loads such as lightbulbs. This patent application is shown in full in the Appendix.
It is said that the Toroid device built by Stephen Mark and shown in web videos, is a replication of this generator design. This forum is dedicated to replicating Stephen Mark’s device and considerable progress has been made. This group is operating on the basis that instead of a metallic toroid core as shown here, that a Mobius-loop toroidal wire core is used. At this point in time, their efforts have not yet produced a circuit which exhibits a COP>1 performance
You will notice that very many different devices, aimed at doing different things, all operate by generating very sharp DC pulses
So, a wide range of different devices have the same background technique for making them work. Meyer used the pulsing for water-splitting in a hydroxy gas cell. Bedini uses the pulsing to charge batteries with cold electricity. Tesla used the pulsing to charge batteries, provide heating, cooling and lighting. Boyce uses pulsing to obtain electrolysis at 1,200% of Faraday’s stated maximum rate of electrolysis. Gray used the pulsing to capture cold electricity to drive a powerful electric motor. Many different applications all based on using very short, very sharp, high-voltage pulses.
Alfred Hubbard. In 1920 Alfred Hubbard demonstrated his ‘Atmospheric Power Generator’ which was said to have an output power of some three times greater than the input power. It is difficult to determine the exact details of its construction, but the best information to hand suggests the following:
 It consisted of one tall central iron-cored ‘primary’ coil 15 inches high. The core was made from 16 iron rods and the winding made of 43 turns of cable. The cable had 7 cores each of 0.09” diameter, forming a bundle 0.204” in diameter inside the insulation which had an outside diameter of 0.34” which is American Wire Gauge Size 4 wire.
Placed around the central coil were 8 ‘secondary’ coils wound on low-carbon steel fence pipe of 2” inner diameter and approximately 2.25” outer diameter (57 mm), 15 inches high. The windings were also 43 turns of AWG No 4 wire and the coils were wired with the bottom of each coil connected to the top of the adjacent coil, i.e. the secondary coils were wired in series. The secondary coils touch each other tangentially and they also touch the central primary winding tangentially.
 The generator was initially demonstrated powering an 18-foot boat with a 35 horsepower electric motor, around Portage Bay on Lake Union, Seattle at eight to ten knots, starting from the Seattle Yacht Club wharf. It appears that the wires should have been larger diameter as they started to overheat quite quickly. Dozens of people witnessed this demonstration and it was reported in the local Seattle press. Alfred is reported to have referred to the secondary windings as “electromagnets” each having both primary and secondary windings of copper wire. Details of the device are presented in Joseph Cater’s book “Awesome Force” which attempts to explain the theory of its operation.
The circuit looks deceptively simple, with the DC input being converted to a rapid train of very short duration pulses, stepped up in voltage and fed to the primary winding. The output is passed through a step-down transformer and was said to be 280 Amps at 125 Volts:
 The variable capacitors shown are used to tune the input and output circuits to their resonant frequencies. There appears to be similarities between this circuit and the circuitry used by Edwin Gray when he was using his power tube to drive mains light bulbs and other standard electrical equipment. Edwin used air-cored transformer windings of very heavy-duty wire, to drive the loads and while Alfred does have steel formers for the secondary coils, they are mainly air-core, unlike his primary coil. Edwin and Nikola Tesla were tapping the same source of power, and since Alfred Hubbard worked with Tesla for a short period, it seems likely that his transformer is based on the same techniques that Tesla used so successfully.
It may well be that Alfred’s circuitry was actually constructed more like Tesla’s circuitry for his unique coils. It might have been like this:
 Alfred’s association with Tesla raises some interesting points. Firstly, Tesla was aware that to generate Radiant Energy waves of the type that Edwin Gray trapped so successfully, ideally, uni-directional pulses of very short duration (1 millisecond or less) were needed. The best way to generate these is using a spark, so it is distinctly possible that Alfred’s oscillator contained a spark generator. Secondly, Tesla was aware that a serially-connected bi-filar wound coil is a very effective device for collecting Radiant Energy. Might it be possible that the information on how the secondary coils were wound and connected is not quite correct, and that while the coils were connected in series, they were bifilar-wound?
In fact, it seems much more likely that there were separate inner bi-filar windings connected in series while the outer bi-filar windings were also connected in series, especially since, it was reported that the device had four wires coming out of it. This strongly suggests that the bi-filar series-connected ‘secondary’ windings were connected internally to form the final circuit and that the four wires were one pair for the primary winding and one pair for the serially-connected pickup set of sixteen windings:
 The device was examined and tested fully by Father William Smith, professor of physics at Seattle College. He was quoted as saying “I unhesitatingly say that Hubbard’s invention is destined to take the place of existing power generators”. While this indicates that Professor Smith’s examination and tests showed that the device worked extremely well, he clearly was not aware of the marketplace opposition to any commercial form of free-energy device.
It has been suggested that the core of the device was packed with radio-active material (probably radium) and that an outer steel cylinder was placed around the device to absorb excess radiation. If that was so, the amount of material would have been very minor, and used only to ionise the air around the coils to improve the energy pick up. Any radio-active material used would have been similar to the ‘luminous’ paint which used to be applied to the hands of alarm clocks, and consequently, fairly harmless.
What appears to be an implementation of the Hubbard coil system, or perhaps a very closely related device is Joseph H. Cater’s self-sustaining electrical generator. As usual, information on it is limited and not particularly clear, so the following is just my attempt to piece together some information from different sources. Much of this information comes from a document which has Geoff Egel’s name on it and although it seems likely that Geoff is quoting some other source, my thanks goes to him for sharing what we have here. The diagrams give the names of various minor websites none of which exist any longer and so these have been removed as they have no useful purpose any longer. Here is an original diagram from this information:
 As it seems to me that there are many conflicting details in this information, I am presenting it here in pretty much the same form in which it reached me:
Mr. Cater claims that a group in California built this device which, it is claimed, performed very well, but he does not claim that he has personally seen or tested such a device. This design is published for researchers and experimenters in order that a working prototype may be developed. Mr. Cater says "I would be willing to give big odds that if my instructions are carried out to the letter, then sensational results will be obtained. It should easily outperform any other generator that has ever been built including the Moray and the Hubbard devices. It could easily be mass-produced.
Some years ago I got word from someone in Germany who built a similar configuration (a very poor replica of this one, where the output coil consisted of only windings on a solid iron bar which in turn was surrounded by smaller coils on smaller bars which constituted the input. Even this was quite successful as the output was three times the input. I do not know what happened to the builder but such a crude device as this could give the world free energy. The output of a small unit could be used as the input for a larger one and so on.”
Please bear in mind that these plans are not meant to be explicit in every fine detail, but are provided as the best guide that the author can make with the available data. Therefore you will need to use some of your own ingenuity and design skills in the construction of this rather unusual coil configuration.
The Primary Coil Input-driver: Suggestions for the Bench-test Prototype I would suggest the construction of an input power supply which can vary Frequency, Voltage and Current. A frequency range of 50 Hz to 1,000 Hz would be a good starting point. The higher the frequency of the input current (the amperage and voltage being held constant) the greater the induced output E.M.F. as it is directly proportional to the frequency (the rate of change of the magnetic flux). A frequency of 50 or 60 Hz would be more convenient to experiment with as these frequencies are standard power mains frequencies, however a frequency of 360 Hz or higher is recommended.
Mr. Cater suggests that for experimental purposes in determining the input needed to get the desired output, that rectified 12 volt AC is used. Sinusoidal waves should be used and not square waves. Because of its tremendous potential, care should be taken to limit the amount of input current. One should start with a low frequency (50 or 60 Hz) and low amperage, then gradually increasing the current until the desired input / output is obtained.
Such caution was not followed with a previous model built by a group in California and it resulted in the disintegration of the output coil. The iron sheets in this model were not plated and did not have the caps fitted. Nevertheless, it was still an effective orgone accumulator. The gold plating of the iron sheets and the addition of the CAPS enables it to operate with a much lower input current and lower frequency.
The Primary Coils If the outer body of your secondary coil is eight inches in diameter, then you won’t fit the recommended seventeen primary coils around its perimeter. If your primary coils are one and a half inches in diameter then these will fit nicely around the perimeter of an 8-inch diameter secondary coil. However, it is preferable to have larger primary coils as mentioned in Mr Cater’s opening comments, so it may be advisable to stick to the recommended 2-inch diameter size for the primary coils, but settle for one less and use only 16 primary coils.
Experimentation will decide which is the best way to go. For the purposes of this article I will refer to 2-inch diameter coils.
Cut medium gauge soft iron rods (oxy-welding rods will do) to 13-inch lengths. Be sure to de-burr the cut rods so that a compact fit is achieved.
Next, wind each coil separately with one terminal at each end (no gap ‘G’ is required for the primary coils). Then the primary coils are physically mounted around the large secondary coil - refer to Diagram 1.
 The primary coils are then interconnected with suitable leads of the same gauge as the coil wire to form a series coil configuration. Refer to Diagram 2.
 All coils must be wound in an identical manner so that the current in each one travels in a clockwise or counter clockwise direction. It is essential that the current flows in the same direction.
The Secondary Coil: Construction Notes The secondary coil consists of a number of concentric cylinders and coils of three varying types repeated in a special sequence as detailed here.
- You begin with the soft iron core in the same way as the primary iron cores were constructed. Use two inch diameter (2" OD) thin-walled PVC tubing cut to thirteen inches (13") in length, and packed with soft iron rods (oxyacetylene welding rods will do).
- Around the central PVC tubing wrap the gold-plated iron sheeting so that the gold is facing outwards. The iron sheeting needs to be in the range 0.010" to 0.015" in thickness. The iron sheeting should be as thin as possible as you want to get the most powerful fluctuating magnetic field possible, induced as close to the wire as can be physically and electrically achieved.
This is the reason for the oil-soaked iron powder. The purpose of the oil is, of course, to make the iron powder physically manageable. The thinner the iron sheeting the more completely magnetised it will be. The gold plating is only the frosting on the cake so to speak. It certainly does not need to be very thick and no, you don’t have to pay thousands of dollars for gold plating. A simple chemical process is used. Ask your local electro-plater for a lead in the right direction. As to the suppliers of the iron sheeting, you certainly wont find it down at your local hardware store as it is a rather a specialised item. Try transformer manufacturers or electric motor and generator suppliers.
You will need eight (8) concentric iron cylinders. Each one will be thirteen inches (13”) wide with varying lengths depending on the circumference of each concentric layer. Allow a quarter inch over the circumference length to give a small overlap. You will need to devise a method for keeping the iron sheeting in position ready for the next stage of construction. Several spots of super glue should do the job nicely.
- Now that you have wrapped your first iron layer around the central PVC tube containing the soft iron core, you are now ready to wind your first secondary coil. Use a heavy gauge enamel coated wire somewhere near the gauge of house wiring. If this is not available, then insulated single core wire will do. As with all the coils that are to be wound, whether primary or secondary, only one layer of wire is wound. When you are winding the secondary coil leave a small space between each turn. Refer to Diagram 3.
 The gap ‘G’ reduces the inertia of flowing electrons as well as providing room for the oil-soaked iron powder which is to be packed between each winding. Perhaps 1 mm to 1.5 mm would be a sufficient gap between adjacent turns of the winding. However, before packing each coil with the iron powder, it would be advisable to lacquer the coil winding to seal it in position on the iron sheeting. This also provides extra insulative protection. The purpose of the non-metallic concentric spacers within the secondary coil serves two purposes:
a. To minimise the cancellation effects. b. To produce an Orgone accumulator effect.
The material used could be heavy-duty PVC tubing with quarter-inch thick walls or quarter-inch thick sheeting, possibly heat treated, wrapped around the coils. You may be lucky for one or two of the concentric rings required, and have a piece of PVC tubing which is just the right diameter. For the remaining diameters you could reduce the circumference of a larger piece of tubing, thus converting it to the desired diameter. Be sure that the butt joint is perfect or that any gaps in the join are filled in with a suitable plastic filler. Some innovation and ingenuity may be required for this part of the construction. The general strategy for building this multi-layered secondary coil is to build it by winding each coil on separate concentric cylinders consisting of the gold-plated iron sheeting wrapped around the non-metallic spacer. The inner diameter of one cylinder will be the outer diameter of another. They are then joined together one inside the other. Fly wires are then used to interconnect the ends of each coil. For initial experiments this may be done in several ways, two of which are recommended by Mr. Cater:
- Each concentric coil may be connected in series so that the current will flow in the same direction, either clockwise or counter clock wise as if it is one continuous coil.
or
- Each adjacent pair of coils is wired so that the current flows in the opposite direction to the adjacent pair of coils. In other words, the first two adjacent coils are connected in the clockwise direction, and then the next pair of adjacent coils is connected counter clock wise. The third pair will be clockwise and the fourth pair counter clockwise. Changing the wiring configuration can be achieved quite simply by rearranging the external fly leads which are used to interconnect each of the secondary coils.
 The leads should take the shortest path around the outer face of the secondary coil and of course they should be of the same gauge as the actual coil winding itself. Refer to Diagram 4
The Side Caps Now that you have completed the secondary coil and wound the primary coils, the next step is to cut the caps to their correct size so that their diameter will be big enough to cover in the entire primary and secondary coil assembly. Refer to Diagram 1 above where the required dimension is marked as "Dia. C”
- Cut eight pieces of quarter-inch thick plastic sheeting to the diameter "Dia. C” dimension, 4 per cap, so 8 in total.
- Cut eight pieces of gold-plated iron sheeting in the same manner.
- Glue together the plastic and iron sheeting as illustrated in the expanded drawing Diagram 6.
Devise a method to attach the caps to the sides of the unit and a means of positioning the outer primary coils so that they are all held in their correct positions. Bear in mind that powerful magnetic forces will be present and that the unit itself will be quite heavy, so a strong form construction is needed. One suggestion is to use dowels to hold the caps in position and use suitably shaped plastic spacers to position and hold the primary coils in place. Once the caps have been fitted, the generator becomes a highly potent orgone accumulator.
 Gold-plated iron is many, many times more effective than any other metallic material. The accumulator effect greatly increases the effectiveness of the generator.
Testing Now that you have actually completed all the construction work, you now need a suitable input driver unit which should have been thoroughly tested and ready for driving the unit. Let’s be optimistic and hook up a good size load for the secondary, a couple of radiator bars (electric heaters) should do to begin with. Across the output terminals you can connect all the usual test gear.
Summary The construction of the secondary coils may be carried out by completing the following steps:
- Fill a thin-walled PVC tube of 2-inch diameter and 13-inches long, with soft iron rods.
- Wrap the PVC tubing with the iron sheeting cut to 13” size with a 1/4" overlap along the tube, flush with the ends. Ensure that the gold side is facing outwards.
- Wind the single-layer heavy-gauge coil with a suitable spacing between each turn of the winding and attach suitable terminals at each end of the wire.
- Coat the coil winding with lacquer, sealing it in position.
- Pack between each turn of the coil windings with oil-impregnated iron powder.
- Wrap the coil and iron powder with ducting tape.
- Fit the quarter-inch thick non-conductive spacer as described above.
- Repeat step 2 to step 7, eight times and finish off by fitting an outer casing of the quarter-inch thick non- conducting material.
This Article first saw the light of day several years ago and it is believed, was first published in the Australian Free-Energy Newsletter called “Tuning In”.
Another source comments on the Cater device as follows:
A self-sustaining electric generator was demonstrated at Seattle, Washington in 1919 by an inventor named Hubbard. His invention was supposedly 14 inches long and 11 inches in diameter. It powered a 35 horsepower electric motor which pushed a boat continuously around the bay for several hours. This demonstration was witnessed by thousands. During the time of his demonstrations, Hubbard made a sketch of one of his smaller generators used to power ordinary electrical appliances shown in Fig. 28:
 It was approximately six inches long and about five inches in diameter. It consisted of eight coils in series, wound on iron cores which in turn surrounded a slightly larger central coil. The central coil was wound on a hollow tube which contained many small rods of soft iron. Four terminals extended from the unit, two connecting to the outer coils which received the input current, while the other two came from the central coil.
It is highly significant that both wires used in the generator appeared to be of heavy gauge like those used in power lines with the same kind of insulation. Each coil had only one layer of this wire which means that only a moderate number of turns were used in the entire generator. It is known that the generator produced a fluctuating current of an undisclosed frequency and had no moving parts.
The basic principle on which the generator operated is apparent. A small current passed through a coil with a moderate number of turns per unit length will magnetise an iron core to a surprising degree. This principle is utilised to great advantage in electromagnets. What apparently hasn’t been realised is that during the brief interval in which the current builds up after it is turned on, an induced EMF (voltage) is produced in the coil by the changing magnetic flux, which is in the same direction as the current. This induced EMF is the result of the magnetic field produced by the magnetisation of the iron core. If this induced EMF were in the opposite direction to the current, then a sizeable current could never be produced in the coil as the EMF opposing the current would automatically cancel it before it could increase.
 Fig. 29 shows a graph of the magnetisation of an iron core plotted against ampere turns per unit length. The term “ampere turns” is the number of turns of the coil per unit length multiplied by the number of amps of current flowing through the coil. For example, a current of 1 amp flowing through a coil of 100 turns will produce the same effect as 2 amps flowing through a coil of the same length which has only 50 turns.
There is a section on the curve where a slight increase in ampere turns will produce a tremendous in magnetisation of the iron core. The cause of this phenomenon should be analysed. It seems strange that just a few ampere-turns can produce extensive and significant magnetisation of the iron core. Yet, the observable magnetic field produced by the current without the magnetic core is tiny by comparison. A similar field produced by a permanent magnet, would be unable to induce a noticeable magnetisation of the iron. This is something which conventional science has found convenient to ignore.
If an alternating current is passed through an electromagnet and the ampere-turns exceed a critical point, a chain reaction takes place in the coil, producing a tremendous increase of current in the coil. This is responsible for transformers which occasionally burn out during current surges. In some cases the sudden increase in current is sufficient to push the ampere-turns value into this critical range. The chain reaction results from an increase in the magnetisation of the iron which produces an increase in the current, which then produces an additional large increase in magnetisation, and so on until the iron reaches its maximum degree of magnetisation.
This process occurs during the first half of the AC cycle. The EMF is flowing in the direction opposite to that of the current after it reaches its maximum value and the second part of the cycle begins. This EMF, which is the same magnitude as that which brought the current to its maximum value during the first part of the cycle, now acts as a brake and stops the current. The applied alternating EMF then starts the current in the opposite direction and the identical process occurs again with the current flowing in the opposite direction.
Normal working transformers have ampere-turns which are well below this critical point. The additional EMF induced in the coils by the magnetisation of the iron offsets the natural inductive impedance of the coils. This is why transformers have such a high degree of efficiency. If any material other than iron or special steel were used for the core, the efficiency would drop significantly.
A normal square-wave pulsed current cannot be used in such a device due to the very short time of the rise and fall of the applied voltage, so a sine wave power supply is needed to produce this effect. Since the induced EMF in a coil is directly proportional to the rate of change of magnetic flux, it follows that the higher the frequency of this sine wave supply, the better.
There is possibly another factor which could contribute to the success of the Hubbard device. At that time, the only insulated wire available had thick and heavy insulation. This means that adjacent turns of wire in the coil were separated by a distance equal to twice the thickness of the insulation. Consequently, the gap resulted in a cancellation of magnetic effects produced by electrons flowing in the wire. Since inertia is dependent on the ability to generate a magnetic field, the inertial properties of the electrons would be almost nullified.
There is an optimum distance between the wires which would produce the maximum effect. It seems likely that the thick insulation on Hubbard’s wire produced this optimum distance. Most of the resultant magnetic field was that which encircled both wires and that would be the weaker part of the field. This means that a relatively low EMF could accelerate a larger number of electrons to a high velocity during a very short period of time. As the electrons leave the coil, inertia returns. This would result in a backup of a high concentration of electrons in the coil. Since electrostatic repulsion is not affected, electrons would be ejected from the coil at a high velocity despite their increased inertia. This would produce an output of both high voltage and high amperage.
A Suggestion A suggestion put forward by a French contributor suggests driving a Hubbard coil like this:
 This is a circuit which has not been built by the man who puts it forward for consideration and construction by anyone who wishes to try it. He estimates that the excess output should be 10 kilowatts. The circuit is a cross between the Ed Gray circuit and the Hubbard circuit. The start of the circuit is like the Ed Gray system where a twelve volt battery powers circuitry which generates high-voltage AC power. This is stored in a 2000-volt 47 microfarad capacitor bank built from the very fast-acting capacitors used in disposable cameras.
When the voltage in the capacitors builds up to a high enough level, it discharges very rapidly through the spark plug, creating a spark which, according to Ed Gray, pulls in energy from the surrounding environment – energy which can be picked up by perforated copper cylinders placed around the spark and (ideally) fed to an earth connection, or alternatively, to the negative rail of the system. This spark gap does not use the silver-plated copper electrodes which Ed Gray considered to be important for the spark gap.
The very sharp current discharge passes through the central winding of the Hubbard coil. This coil is wound on a soft iron core and the resulting magnetic pulse generates major electrical output in the surrounding, smaller-diameter Hubbard coils.
Finally, when the electrical pulse finishes, it generates a large back-EMF pulse, which is fed to the second battery to charge it. This is in the style used by Ed Gray, but Ed found that it was essential to have a capacitor in that line in order to limit the current being fed into the battery and avoid damaging the battery. Ed Found it so difficult to get the size of that capacitor right, that he abandoned the method in favour of using a conventional alternator to charge the battery. If a capacitor is used, then it is very important that it is a non-polarised type in a metal can as electrolytic capacitors used for this current-limiting method are likely to overheat and explode.
Please remember that this is an untested circuit put forward for testing and as it uses high-voltages, it is not a circuit suited to experimentation by people who are not already familiar with working with dangerous high voltages.
The style of construction used by Ed Gray was something like this:


 It is generally considered that the solid copper rods, the carbon block and the silver plating of the ends of those rods form an important part of the device. However, I am not aware of anybody getting a significant energy gain from one of these devices, so using a standard spark plug may be perfectly satisfactory. The copper cylinders have many holes drilled in them as that is thought to improve their performance. They are supported by insulators so that they do not touch anything else.
Floyd Sweet’s VTA. Another device in this category of pulsed devices which tap external energy was produced by Floyd (“Sparky”) Sweet. The device was dubbed “Vacuum Triode Amplifier” or “VTA” by Tom Bearden and the name has stuck, although it does not appear to be a particularly accurate description. There is very little practical information available on this device, though there is a video of it in operation on the web.
 The device was capable of producing more than 1 kW of output power at 120 Volts, 60 Hz and is self-powered. The output is energy which resembles electricity in that it powers motors, lamps, etc. but as the power increases through any load there is a temperature drop instead of the expected temperature rise.
When it became known that he had produced the device he became the target of serious threats, some of which were delivered face-to-face in broad daylight. It is quite possible that the concern was due to the device tapping zero-point energy, which when done at high currents opens a whole new can of worms. One of the observed characteristics of the device was that when the current was increased, the measured weight of the apparatus reduced by about a pound. While this is hardly new, it suggests that space/time was being warped. The German scientists at the end of WWII had been experimenting with this (and killing off the unfortunate people who were used to test the system) - if you have considerable perseverance, you can read up on this in Nick Cook’s inexpensive book “The Hunt for Zero-Point” ISBN 0099414988.
Floyd found that the weight of his device reduced in proportion to the amount of energy being produced. But he found that if the load was increased enough, a point was suddenly reached where a loud sound like a whirlwind was produced, although there was no movement of the air. The sound was heard by his wife Rose who was in another room of their apartment and by others outside the apartment. Floyd did not increase the load further (which is just as well as he would probably have received a fatal dose of radiation if he had) and did not repeat the test. In my opinion, this is a potentially dangerous device. It should be noted that a highly lethal 20,000 Volts is used to ‘condition’ the magnets and the principles of operation are not understood at this time. Also, there is insufficient information to hand to provide realistic advice on practical construction details.
On one occasion, Floyd accidentally short-circuited the output wires. There was a bright flash and the wires became covered with frost. It was noted that when the output load was over 1 kW, the magnets and coils powering the device became colder, reaching a temperature of 20 degrees Fahrenheit below room temperature. On one occasion, Floyd received a shock from the apparatus with the current flowing between the thumb and the small finger of one hand. The result was an injury akin to frostbite, causing him considerable pain for at least two weeks.
Observed characteristics of the device include:
1. The output voltage does not change when the output power is increased from 100W to 1 kW. 2. The device needs a continuous load of at least 25W. 3. The output falls in the early hours of the morning but recovers later on without any intervention. 4. A local earthquake can stop the device operating. 5. The device can be started in self-powered mode by briefly applying 9 Volts to the drive coils. 6. The device can be stopped by momentary interruption of the power to the power coils. 7. Conventional instruments operate normally up to an output of 1 kW but stop working above that output level, with their readings showing zero or some other spurious reading.
It appears that Floyd’s device was comprised of one or two large ferrite permanent magnets (grade 8, size 150 mm x 100 mm x 25 mm) with coils wound in three planes mutually at right angles to each other (i.e. in the x, y and z axes). The magnetisation of the ferrite magnets is modified by suddenly applying 20,000 Volts from a bank of capacitors (510 Joules) or more to plates on each side of it while simultaneously driving a 1 Amp 60 Hz (or 50 Hz) alternating current through the energising coil. The alternating current should be at the frequency required for the output. The voltage pulse to the plates should be applied at the instant when the ‘A’ coil voltage reaches a peak. This needs to be initiated electronically.
It is said that the powering of the plates causes the magnetic material to resonate for a period of about fifteen minutes, and that the applied voltage in the energising coil modifies the positioning of the newly formed poles of the magnet so that it will in future, resonate at that frequency and voltage. It is important that the voltage applied to the energising coil in this ‘conditioning’ process be a perfect sinewave. Shock, or outside influence can destroy the ‘conditioning’ but it can be reinstated by repeating the conditioning process. It should be noted that the conditioning process may not be successful at the first attempt but repeating the process on the same magnet is usually successful. Once conditioning is completed, the capacitors are no longer needed. The device then only needs a few milliwatts of 60 Hz applied to the input coil to give up to 1.5 kW at 60 Hz at the output coil. The output coil can then supply the input coil indefinitely.
The conditioning process modifies the magnetisation of the ferrite slab. Before the process the North pole is on one face of the magnet and the South pole on the opposite face. After conditioning, the South pole does not stop at the mid point but extends to the outer edges of the North pole face, extending inwards from the edge by about 6 mm. Also, there is a magnetic ‘bubble’ created in the middle of the North pole face and the position of this ‘bubble’ moves when another magnet is brought near it.
The conditioned slab has three coil windings:
1. The ‘A’ coil is wound first around the outer perimeter, each turn being 150 + 100 + 150 + 100 = 500 mm long (plus a small amount caused by the thickness of the coil former material). It has about 600 turns of 28 AWG (0.3 mm) wire.
2. The ‘B’ coil is wound across the 100 mm faces, so one turn is about 100 + 25 + 100 + 25 = 250 mm (plus a small amount for the former thickness and clearing coil ‘A’). It has between 200 and 500 turns of 20 AWG (1 mm) wire.
3. The ‘C’ coil is wound along the 150 mm face, so one turn is 150 + 25 + 150 + 25 = 350 mm (plus the former thickness, plus clearance for coil ‘A’ and coil ‘B’). It has between 200 and 500 turns of 20 AWG (1 mm) wire and should match the resistance of coil ‘B’ as closely as possible.
Coil ‘A’ is the input coil. Coil ‘B’ is the output coil. Coil ‘C’ is used for the conditioning and for the production of gravitational effects.
 At time of writing, information and photographs of the original device can be found on this website where a paper by Michael Watson gives much practical information. For example, he states that an experimental set up which he made, had: The ‘A’ coil with a resistance of 70 ohms and an inductance of 63 mH, The ‘B’ coil, wound with 23 AWG wire with a resistance of 4.95 ohms and an inductance of 1.735 mH, and The ‘C’ coil, also wound with 23 AWG wire, with a resistance of 5.05 ohms and an inductance of 1.78 mH.
Collapsing Field Technology. At the website http://community-2.webtv.net/hotmail.com/prime137/ConvertingOffShelf/ the following, very interesting presentation is made: CFT- (Collapsing Field Technology) - Updated 2008 In electrical systems, the term "back emf" actually refers to the equal and opposite force field accompanying the "forward emf", in any "symmetrical" electrical system. In magnetic systems, the corresponding term is "forward and back magnetic motive force", rather than "forward and back electric motive force".
All rotating motors actually turn themselves from the broken symmetry which is created inside them. The present day engineers have been taught that they must pay to put extra energy into the system, just to break its symmetry. That of course is totally false. Otherwise, a rotating electron (with its continual spin) would not spin.
In a normal motor, we are taught to put in a coil (say, there in the back mmf region) and then we pay to put in a sudden surge of electromagnetic energy into that coil, so that it momentarily overrides (cancels) the back mmf force. In short, we momentarily make the system asymmetrical, so that its net back mmf is less than its forward mmf.
That means that now the motor retains at least some of its excess acceleration and excess angular momentum added to the flywheel and shaft in its previous acceleration (forward mmf) zone, but we are "paying" (the electric power grid) to have this occur.
Anyway, once that broken symmetry between forward and back mmfs is there, with the back mmf deliberately reduced so that it is less than the forward mmf, the motor will self-rotate because of its own system asymmetry.
For more than one hundred years this effect has been viewed as a problem to be designed out of electrical systems, perhaps because of greed. No one had seriously considered it as a source of abundant free energy. Everyone knew it was there, but no one recognised it’s potential.
Standard electrical generator systems can be modified inexpensively to the Over-Unity / Asymmetrical design concept by the addition of a second set of commutator brushes and/or the addition of a second slip ring assembly. Present day electrical generators can be converted to Over-Unity output, as asymmetrical rotation can be achieved in just a few hours of adaptation work.
The additional commutator and slip ring collect, or scavenge, the collapsing electromagnetic fields (C.E.M.F.) of both the armatures and field coils of standard electrical generator sets. Present day electrical generator design throws away the tremendous amount of electrical energy stored in these collapsing fields. You pay for it, so why not get the benefit from it?
Everyone who makes use of electrical circuits has always considered the collapsing field effect to be a nuisance because, when using a mechanical relay coil in an electronic circuit, it would cause a current to be pumped back into the circuit, creating havoc. One solution to the problem of C.E.M.F. was to install a diode across the coil leads so that when the power was removed, the C.E.M.F. caused a current flow which passed through the diode and which was dissipated as heat in the coil itself, rather than in the circuit.
So, to effect this modification, on the armature / exciter element just install a second set of brushes or slip rings, the exact amount behind the driver units which is needed to collect the C.E.M.F. of the armature field collapse, and take it out of the system to be used as an additional generated electrical supply.
The additional new C.E.M.F. outputs can easily be phased to the original output system load wiring. These modifications more than double the generator’s output power for just a small modification cost / time, and no increase in operating costs.
This general design modification allows almost any currently manufactured electrical generator to be an over-unity design, and with some additional external modifications a self-powered over-unity configuration can be obtained on most commercial electric generators by any competent electrical engineer. Why pay for fuel / power that you have available in your generator system already?
Again, just collect the C.E.M.F. of the armature and field coil’s collapses for far-over unity operation of these devices, and with external circuit additions, stand-alone, fuel-less electrical power is available to everyone, in the form of an off-the-shelf, self-sustaining, asymmetrical, electrical generator.
The same modifications can be made in most manufactured motors as they can easily be converted into generators. Just scavenge the collapses of the armature and field coil, control it with an external circuit, and you have a stand-alone over-unity electrical generator.
There is a stationary "motionless electromagnetic generator” design, based on the Alexander patent that has been built experimentally. No far out zero-point vacuum explanations are needed to explain its operation. The best form of any such generator would have no moving parts. Looking at any common transformer, and considering how it works, supplies the answer. In any kind of transformer, electricity is transferred between the two coils by the magnetic field. When a coil is initially powered up or switched off, that coil creates a magnetic field which causes a rush of electricity, usually called a 'voltage spike'. In conventional electronics, this voltage spike is suppressed to protect the other circuit components from damage. In collapsing field technology (CFT), that voltage spike is harnessed, rather than being suppressed.
If I take a DC signal generator power supply, and connect it to the primary of the transformer, I can make a generator of sorts. I'll turn on the DC signal in the primary coil windings for just an instant, and then turn it off. In the secondary there is a flux linkage which mirrors the primary signal and this is some 90% of the input power. But we can recover this field collapse in the secondary' and gain an additional 90% of the input power. Thus, any transformer secondary can produce a total output power which is about 180% of the input power in this mode, with a DC input signal which is a gradually applied quarter-sine or saw tooth wave shape.
But wait, we are throwing recoverable power away when the primary coil winding's field collapses. By applying the DC power input signal and then, when the input power is cut off, switch the primary winding's field collapse to the output also, the primary field collapse contributes at least another 90% to the output, for a grand total output power of about 270% of the input power, with this design.
The DC power signal must only power the primary winding up and then let disconnect at the peak voltage. This allows the primary winding to be switched to the output to recover the power in its field collapse, which is in synchronisation with the field collapse in the secondary winding.
Simple electronic switching can accomplish all of these functions, at little power usage and low cost. Therefore, the gain of a transformer over-unity generator would probably be about 250% output power to input power, and no mechanical movement is needed. Many old motors and generators could be adapted to this transformer design.
The armature must be held so that it is permanently stationary and the air gap between armature and field coils filled with iron filings. The air gap iron filings, or iron powder filling is to make the best use of the primary's (armature) full magnetic flux power. This produces the best transformer action and the highest power gain possible with this conversion design.
Cooling, through holes, can be left in the air gap if necessary in these units. The external switching electronic circuitry is the same as for the standard transformer design, described above. All we have done is to turn the motor / generator into a reasonable transformer.
What is happening in this design is that for one "up" drive voltage pulse (power signal) in the primary coil, we get the "up" (field build) in the secondary coil and the "downs" (field collapses) of both the secondary and primary coils, as output power. Think of the primary coils as coupled "springs" and it will all be clear.
This transformer / generator design has been the nature of electromagnetic coils all the time - we just never saw it. If the unit is actuated 60 times a second, allowing for the counter-electromotive force field collapses, it makes a standard household 60 Hz electrical power generator. This design concept is the natural last step after recovery of secondary collapses was introduced in generator designs. The same gain principle and results could then be achieved in capacitor systems. The charge (up) cycle from the secondary plate and the two discharge cycles from both the secondary and primary plates would be the output power. The basic external switching electronics is generally the same as in the transformer designs.
These designs are in the basic nature of energy storage / transfer elements - one input power pulse produces one input transfer plus two storage collapses or discharges as output power, which is a gain of about 300%.
Rosemary Ainslie. Rosemary Ainslie has produced a pulsed heater system which has been measured at a performance of COP = 17. This is a recent design and as far as I am aware, has not yet been replicated by other people. Panacea-bocaf.org are working with Rosemary's original developers to produce an independent implementation of the heater. At this point in time, the heater has been built to a prototype testing scale for laboratory examination and measurement and not been produced in the kilowatt range, which, hopefully, will come at a later date.
Panacea have produced a 250-page document describing the research, the testing, the theory, etc. and that can be downloaded free using this link.
As that document contains the details which scientists need to see for serious testing and development, it may be a little technical for some people, so Panacea have produced a simplified version aimed at the average home-build investigator and that can be downloaded free using this link.
In very broad outline, the circuit produces the same very short, very sharp voltage pulses that are the basis for so many "free-energy" devices. The circuit used looks very simple but in spite of that, the way that it operates is not at all simple. The circuit is shown below and to a quick glance, it looks like a standard 555 timer chip circuit, used in many existing applications. However, if the circuit is operated as a 555 pulsing circuit, then the output is not COP>1.
Looking more closely, we notice that the link between the output of the 555 chip on pin 3 and the input gate pin of the Field-Effect Transistor, is unusual as it is not the usual voltage divider between pin 3 and the 0-volts ground line. Instead, the gate is directly coupled to the 555 chip output by a single, low-resistance preset resistor.
Normally, an NE555 chip struggles to reach 50,000 cycles per second and a large number of 555 chips on the market can't even operate at even that frequency. To get Rosemary's circuit into it's COP>1 operation, the resistor marked "GATE" is adjusted very slowly to find the point at which the circuit becomes unstable, over-rides the normal operation of the 555 chip and starts oscillating at the resonant frequency of the overall circuit, forcing the 555 chip to become a feedback component. The circuit then produces the sharp, short voltages spikes at more than ten times the operating speed of the 555 chip and pulsing the 10-ohm heating element marked "LOAD" at about 500,000 pulses per second.
That rate of operation is clearly well outside the possible performance of an NE555 chip, besides which, the timing elements of the chip should be producing a much lower frequency, as indeed it does before the "GATE" resistor adjustment causes the circuit to break out of its normal design-mode operation and start the high-speed spike generating, resonant performance. The circuit used is shown here:
 As Panacea-bocaf are working to test and develop this circuit further, it would be a good idea to download their free documentation on the design and keep an eye on their progress in this field. The two documents give very considerable detail on the work which has already been done, and of course, you can yourself, experiment with this circuit and see what results and adjustments you can discover yourself.
Joseph H. Cater comments: The experiments of Schauberger and others have confirmed the enormous and almost unlimited quantities of electricity housed in water. The following is an absurdly simple and practical method of extracting this energy. It employs the “Coanda” or “cloud-buster” effect.
A plastic tube 14” to 16” (350 mm to 400 mm) long and about 2.5” (65 mm) in diameter is filled with distilled water. At each end, exposed to the water, is a copper terminal which is used for both the electrical input and output. Rechargeable dry cells of suitable voltage are connected in series with the input terminals. When the two output terminals are short-circuited or connected to a load, electricity starts flowing. This is current entrained by the input current. When high voltage is applied, the output voltage is almost as great as the input voltage. However, the amperage is inadequate. The answer to the problem is ultrasonics. It is an experimental fact that ultrasound of 600,000 Hz focussed on a container of water causes the water to boil. This means that sound of this frequency disintegrates large quantities of “soft” electrons in the water. The sudden release of “hard” electrons produces tremendous thermal agitation of the water molecules.
A DC ultrasonic transducer attached to the tube would produce sufficient free electrons to be entrained for the unit to have almost unlimited output potential. The tube functions like a sounding board. Mr Cater has been given powerful evidence that two different individuals who received this information got sensational results from the generator. They had access to such a transducer. They tried to set up in business but the vested interests saw to it that they were put out of business and persuaded to remain silent ever since.
An associate of Mr Cater built a fist-sized siren which generated a frequency of 600 kHz. When focussed on a small container of water, the water boiled. This demonstrated that it could be used instead of a solid-state DC ultrasonic transducer on the water generator. A small DC motor could operate the siren. It would be far more effective as it produces a much more intense sound. The construction is shown here:

Dr Oleg V. Gritskevitch of Vladivostok in Russia, the holder of some seventy patents, designed and fully tested an electrical generator along the same lines as Joseph Cater’s device mentioned above. It uses no fuel and has given a DC output of 220 volts at 6,800 amps (1.5 megawatts) for more than two years. As built by Dr Gritskevitch, this is not a home-builder’s ideal project as massive electrical input is needed to get the device started, and his prototype weighs 900 kilograms (nearly 2,000 lbs). Details are given on the very good RexResearch web site but in broad outline, the device is a toroidal pipe some two metres (6’-6”) in diameter, coated on the inside with barium titinate and filled with ultra-pure distilled water mixed with ‘heavy water’. Inside the toroid are electromagnetic coils and surrounding it, copper pipes carrying cooling water to keep the temperature down to 50 degrees Centigrade. Also inserted into the toroid at intervals around the circumference are electrical contacts.
The device is started by giving the water a massive high-voltage discharge of some 100,000 volts at 50 mA for three to five minutes. This power input gets the water ionised and circulating. The circulation is maintained by the electromagnetic coils and the power output is around COP=100.
Oleg died without ever getting funding for his design (a typical method of blocking free-energy devices from reaching the market). A more detailed description of the device and it’s operation comes direct from Oleg:

This is a description of the construction and operation of Oleg V. Gritskevitch’s hydro-magnetic dynamo, which is an example of a very powerful new energy system. The prototype in Armenia has averaged some 1,500 kilowatts of power over a period of several years.
Oleg was born on 14 August 1936 and grew up in Vladivostok, Russia. He married and has a son Boris. Gritskevitch was a physicist by education. He worked in the Far-East branch of the USSR Academy of Sciences. Since 1985 he worked independently as an inventor. He has more than 70 patents on inventions ranging from household engineering up to high technologies, which he has been trying to apply in our country although he encountered major difficulties in this. After numerous attempts to obtain the patents, he became convinced that the information had become widely known. Therefore he received the state certificates of know-how (a French way of patenting), for all his inventions.
Introduction During the 1999 Symposium of the Institute for New Energy, he lectured on his hydro-magnetic dynamo. This paper is his attempt to explain the construction and operation of his dynamo. To protect his secrets from investigators, he, on occasion, provided misleading information. For example, the drawing accompanying the Russian patent mentioned below, shows a cylinder across the toroid to mislead readers. The real dynamo has the toroid alone, without the cylinder. Even its name “hydro-magnetic dynamo” is somewhat deliberately misleading.
Oleg stated that he had some familiarity with the new energy field. Nearly all purported new energy devices are fairly small electrical generators. The dynamo may be the only new electrical generator which most nearly meets all the requirements of an ideal large-scale electrical generator. Oleg claimed that his dynamo really is the single most valuable invention the world has ever known.
Alexander V. Frolov of St. Petersburg recommended Oleg to contact Dr. Patrick Bailey of the Institute for New Energy since Patrick has lots of contacts who could possibly help with patenting his invention of a new source of energy in USA.
Oleg worked on the theory and creation of the electrostatic generator-converter the “Hydro-Magnetic Dynamo” for about 20 years. The first primitive equipment was created when Oleg worked in the Academy of Sciences. During that time, various changes were introduced in the generator and in the theory of how it works. As a result, it is now ready for manufacture, installation, and applications in industry.
Oleg made the first public report on his work in 1991 at a symposium in Volgodonsk city. His report received positive reactions and reviews from the experts in the nuclear industry in USSR. That same year, he was accepted into the International Nuclear Society. During those years he offered development of this technology to different state bodies and private enterprises. But the answer from everybody was “It is a very interesting and important project, but we cannot fund it.
Eventually, Oleg tried to transfer this technology to the USA through the embassy in Moscow. The former ambassador to the USSR, Dr. J. Matlock knows about it. He wanted to meet Oleg, but at that time there were forces opposed to the carrying out of his plans. So he started to look for other possible investors. He was ready to consider any offers of co-operation, joint patenting, sale of technological information, creation of a joint venture, etc. etc. Oleg was awarded some 70 Russian patents covering a wide range of important technical topics.
History This project was the result of one article in the August 1972 issue of a popular Russian magazine Tehnika Molodiozhi. The article written by A. Kaldamasov was entitled Ball Lightning in a Liquid. The article came to the attention of Michail Razovsky and Oleg in 1974. Oleg’s group of volunteers and enthusiasts was looking for a new source of energy and so this article served as a starting point for the understanding of chemical-physical processes occurring in water. During the period 1976 to 1978 one year was spent in the radiological lab of the Vladivostok city hospital, including Vladilen Bulgakov, radiology physician, and Michail Razovsky, theoretician in the plasma physics field and others, assembling a device, which was supposed to separate water into oxygen and hydrogen more efficiently. During the experiments, instead of the expected results, it produced electricity very efficiently! The input power during the experiment was one 800-watt water pump. The output was 1,400 watts (COP=1.75). This device was assembled using plastic pipes connected with hoses, where the water was circulating in a loop. This then led to the idea of creating the second device as a generator-toroid.
The second generator was assembled in the workshop of the Ocean Research Institute in Vladivostok (Director Academician Viktor Ilichov), and in the summer of 1990 it was transported to the testing station of the Ministry of Electronics Industry in Vladivostok. This lab was well equipped with all necessary sets of instruments. At the same time, patent papers were filed in the USSR State Committee of Inventions. In the spring of 1991 the State Commission, led by Yurii Lebedev, chairman of the Innovation Council and Chairman of the Russian Federation Council of Ministers, arrived in Vladivostok. This commission arrived to the town for two reasons: to recommend a financial request for manufacturing the dynamo; and to classify this energy source as a “Discovery”. (document #14-451).
After the next change in Russian government the financing for the project was terminated. The first article on the dynamo was published in the Russian magazine (Tehnika Molodyozhi 1990, #3, March issue, Page 17, entitled “Innovator’s Ideas”.
Several Armenian physicists, after reading that article, sent Oleg a letter asking to meet with him in Vladivostok for negotiations about the dynamo. They arrived in March 1991 and ran tests on the second generator, which was operational at that time. Oleg flew to Armenia, and work on the third generator started at the end of 1991. It was completed at the end of 1992. It was operating and producing energy until January 1997, when it was destroyed during the war. Some people were also killed and other people moved to the USA. This version of dynamo created an output which averaged 6,800 amperes at 220 volts DC (1.496 megawatts). It’s input power was only approximately 1% of the output power.
Oleg was an invited speaker of the Meeting of the Alternative Energy Institute (Dr. Hal Fox) in Salt Lake City in August 1999. The official announcement about his speech had several mistakes (for example, the name of Armenia was changed to Romania).
Dynamo Theory The Hydro-Magnetic Dynamo is a large-scale, emission-free electrical generator, which does not require external fuelling. The dynamo is capable of powering large transportation vehicles such as buses, trucks, ships, locomotives, and aeroplanes. Doubt remains about making dynamos compact enough to power cars.
While three experimental prototypes have been built with Russian and Armenian expertise and equipment, a fourth demonstration prototype needs to be built with more modern Western engineering expertise and equipment to verify the dynamo’s performance claims and to further explore the dynamo’s potential capabilities.
The claimed performance is as follows: Dynamos are scaleable from 100 kilowatts to 1,000 megawatts. One 1000-megawatt dynamo is about the size of a two-car garage. For comparison, Hoover Dam’s 17 generators have a total capacity of 2,000 megawatts. A dynamo can reliably run continuously for 25 years or more with little or no maintenance, no external fuel source, and no pollution. If a dynamo’s output is 1,000,000 watts, its total input power is approximately 10,000 watts and so the dynamo’s energy efficiency is about 10,000%.
The source of the dynamo’s huge electrical output is a nuclear reaction, which is not generally known to mainstream science. However, it is known that the dynamo produces alpha particles, which are helium nuclei, made from fused deuterium, an isotope of hydrogen with one proton and one neutron. The electrons missing from the helium nuclei are what seem to provide a copious ‘sink’ of electricity, and that is the secret of the dynamo’s ability to generate an exceptionally large amount of electricity. It is also known that the dynamo uses high-density charge clusters. High-density charge clusters are thought by some theorists, to be the basis of plasma-injected transmutation of elements and the neutralisation of radioactive materials. Unlike hot fusion and fission reactors, the dynamo does not accumulate any radioactive components.
The result of the dynamo’s processes is conversion of electrostatic fields to direct current. It should be noted that a clear understanding of terms like “Coulomb’s conversion” and “liquid Van de Graff generator” is very important.
Schematically, the dynamo is an electrostatic transformer, or in other words an electrostatic voltage multiplier. One version of the dynamo uses lasers to start up. There were three dynamo prototypes built. The first two small experimental prototypes were built in Vladivostok, Russia. The third and last prototype generated electricity continuously, (except when turned off to incorporate improvements), from 1992 to January 1997 in Armenia.
As mentioned above, the Armenian prototype generated a direct current of 6,800 amperes at 220 volts which is about 1.5 megawatts. Minimum power output has been 500,000 watts, and maximum power output has been 2,500,000 watts during winter experiments due to better cooling. The Armenian prototype dynamo’s toroid weighed 900 kilograms and had a diameter of approximately 2 meters. Cooling water is circulated through copper pipes wrapped around the toroid. The heat is expelled from the cooling water with a heat exchanger. The working temperature was typically 36 degrees Centigrade.
After a dynamo is assembled, the water is literally ‘jump-started’ (by discharging a large bank of capacitors) to get it circulating inside the toroid. The starting impulse pressure is as high as 400 atmospheres. The dynamo’s controls are temporarily set to generating a modest amount of electricity sufficient to sustain itself, possibly even while being transported from the factory to the place of its future operation. The control circuits are simple as only sensors and a control computer are used. We do not need any technical-maintenance personnel.
For the Armenian prototype dynamo, two 10-Farad capacitor-batteries were used to provide the initial water motion (acceleration and excitation of water). The capacitors were 20 kilograms each, with diameters of 50 centimetres, and were borrowed from Russian military radar stations. Using a total of 20,000 Joules, 100,000 Volts at 0.05 Amperes of current were applied to the Armenian dynamo for 3 to 5 minutes to ionise and polarise the water, which then started the generation of electricity.
The reason for the very high voltage provided by the large Russian radar capacitors, when starting the generator, appears to be to polarise the crystals of barium titanate. One comparison is with the electronic ignition on a gas stove. Once the barium titanate crystals are polarised, the generator is running.
After these capacitors had been used to ‘jump-start’ the Armenian prototype dynamo, a bank of buffer batteries sustained continuous operation when water motion and ionising began. This battery bank contained 8 powerful 12-volt, 150-ampere lead batteries. The Armenian dynamo’s sustaining input power was 14,400 watts. The nominal maximum output power was about 1,500,000 watts. On one occasion, the output current was accidentally increased to 40,000 amperes for almost a minute. Fortunately, the power was reduced to a safe level before the water started to boil. Internal coils (windings) provide the control of water velocity and therefore control dynamo power. The faster the water is moving, the more electricity the dynamo generates. Once the water stops circulating around the toroid, the dynamo must be ‘jump-started’ again to a minimum power level before it can sustain its electricity generation using it’s own output power.
The following is a condensed summary, with some editing and additional commentary, of the “Description” of the dynamo’s Russian patent IPC H 02 K 44/00 “Method of Deriving Electrical Energy and Realisation of Gritskevich's MHD-Generator”: The dynamo is a sealed polystyrene toroid filled with ultra-pure distilled water with heavy water (deuterium oxide) added. The movement of water inside the closed loop and the use of the unique properties of water as a polar liquid, cause a release of electrical energy as an outcome of a rupture of the hydrogen bonds. Additional electrical energy is drawn from nuclear reactions and micro-cavity processes. The liquid is ionised, polarised, and moving around the toroid at start-up time by a running magnetic field with the help of stimulating electromagnetic windings.
Electrostatic generator-transformer “Hydro-magnetic dynamo”. (“GT HMD”) works due to the process of amplification and maintenance of a stationary (oscillating in particular) electromagnetic field by hydrodynamic movements of the conductive medium. The stator (i.e. the toroid) is made of materials with a high dielectric permittivity. Liquid rotor is a recombined water (‘pure’ water with high-molecular compounds), which moves due to the high-voltage discharges and running electromagnetic field.
The main processes in GT HMD are: A principle of Van-der-Graff's electrostatic generator, where the solid insulating tape was changed to the liquid one. A perpetual washout of the surface electrons from the spacer layer takes place; The Coulomb’s transformations take place; A single-turn low-frequency generator works as a coaxial turn with 4 resonance points and energy carrying substance inside it that has very high resonance properties; The electrostatic breakdowns of cavitation-vacuum structures in water take place. The polar liquid (pure water) consists of dipoles only, i.e. strictly oriented charged molecules. During the interaction of ionized pure water with the layer BaTiO3 the electrostatic field of above 10 million volts/cm is formed. During this process the breakdown of physical vacuum takes place.
The electrostatic field, coupled with the action of the BaTiO3 layer (if we apply electrical filed to BaTiO3, then this layer creates the sound vibrations of about 25,000 Hz, this vibration helps to break down the water molecules) and facilitates the further break down of the molecular-atomic structures of water. Also, due to the perpetual electrostatic discharges, the breakdown of the cavitation-vacuum structures occurs and the cold fusion nuclear reaction continues. With this fusion the energy of 500 kJ/mole is liberated in a vacuum and an energy of 6 kJ/mole is liberated in water. Thus, new hydrogen bonds form in vacuum with the energy liberation of about 20 kJ/ mole. Due to this process the acceleration of ionisation of polar liquid takes place. In addition, the constant ‘washing out’ of the incomplete electron bindings from the layer of barium titanate occurs and free electrons form. Due to this process, the polar liquid transforms into an ordered flow of electrons and negative ions, which can be described very simply, as an ionic-electric current.
Work on construction of the experimental generator started in September 1991 in Armenia and came to an end in March 1992. The active working weight of the prototype of dynamo (torus + water) was about 900 Kg. The diameter of the torus was about 2 meters. The torus was made from impact-resistant optic polysterol. This torus consisted of two halves, which were turned on the merry-go-round machine.
The monocrystallic barium titanate BaTiO3 was sprayed on the internal surface of torus, its dielectric permittivity was 6000. The thickness of the layer was about 1 micron. The water was purified to the specific resistance of 18,000,000 Ohm/cm.
As we mentioned above, to start the dynamo two condenser jars of 10 Farad each were used. The energy of a starting battery constituted 20,000 Joules, the voltage was 100,000 Volts and the current was 0.05 Ampere to provide the initial movement of water (acceleration and disturbance).
The electrodes were made of metal tubes with diameter of about 5 mm. The dynamo is started using these electrodes. A total of 32 of these electrodes were installed evenly spaced around the circumference of the toroid. The toroid’s cooling system formed a closed circuit of copper piping with purified water circulated through it. The copper tubes used in this system were covered with glass insulation. They also were the turns of load winding. The temperature of toroid was maintained not higher than 50 Celsius degrees.
An average output power was 220 volts x 6,800 ampere = 1,490 kilowatts. The current was DC. Periodically the power could be increased to 2,500 Kw when sufficient cooling of the generator could be provided. The additional power was drawn from four resonant windings. This alternating current, after rectification, was used to charge the back-up battery. Thus, the total output power constituted more than 1,500,000 watts. The low-frequency voltage was obtained from the load windings and the direct current was obtained from the stabilisation chamber.
It should be noted that the high-voltage discharges of the 32 electrodes, ionise the partially pre-ionised water further. By means of the stimulation windings, a circulating magnetic field is created which moves the water in one direction inside the toroid. An electromotive force is created by the electromagnetic induction in a separate set of windings. As we already mentioned, during the movement of the water stream, free electrons are created, and an additional energy gets emitted because of the water’s friction against the coating layer on the inside surface of the toroid, because of electrostatic breakdowns of cavity-vacuum structures, and because of the ongoing nuclear reaction.
If the dynamo’s output is 1,000,000 watts, it’s total input power is approximately 10,000 watts. So therefore the dynamo’s energy efficiency is about 10,000%.
In addition to the barium titanate deposited on the teflon-coated inner surface of the polystyrene toroid, the water itself also contains tiny barium titanate crystals which are suspended in the water. Ultrasound at 25,000 cycles per second is propagated through the water to form micro-bubbles on the surfaces of the suspended barium titanate crystals. Again due to the barium titanate's piezoelectric action, very high electrostatic fields are also developed within the micro-bubbles at the surface of the crystals. The electrons from the nuclear reaction are added to the electrons generated at the toroid's interior surface. The total amount of mono-crystalline barium titanate in the Armenian dynamo was nearly 1000 grams. Satellites, locomotives, heavy trucks, airplanes, and ships are obvious transportation applications.
Dynamo Economics The dynamo’s production cost is estimated at $500 per kilowatt which is very competitive when compared to nuclear power’s capital costs of $5,000 per kilowatt, windmill capital costs of $4,000 per kilowatt, etc. A well-run nuclear power plant can generate power for 1.5 cents per kilowatt-hour, coal 1.8 cents, natural gas 3.4 cents, and oil 4.1 cents, on average. The dynamo’s operating cost would be approximately 0.1 cent per kilowatt-hour with no external fuel needed and without any pollution being created.
these dynamos could replace all nuclear power plants, solar installations, wood-burning furnaces, hydro-electric generation, etc. A recent IEEE Spectrum article stated that the world’s demand for electricity increases by approximately 500 megawatts every day. To put this in perspective, that is the equivalent of building another Hoover Dam every four days to keep up with the world’s increasing electricity demand. Or, a dynamo manufacturing company would have to build another 500-megawatt dynamo every single day to keep up with world electricity increased demand (in addition to replace all existing generators fuelled by hydro, nuclear, and fossil fuels.)
The text of the patent application mentioned above is not in English although the abstract of the patent number WO 01/15305 A1 has been translated into English:

Patrick Kelly http://www.free-energy-info.co.uk engpjk@free-energy-info.co.uk engpjk@gmail.com
|