|
어깨관절 활액 평균 15cc
오십견 5cc 미만
J Exp Orthop. 2020 Dec; 7: 91.
Published online 2020 Nov 18. doi: 10.1186/s40634-020-00307-w
PMCID: PMC7672132
PMID: 33205235
The puzzling pathophysiology of frozen shoulders – a scoping review
1,2 J. Lübbers,3 M. P. J. van den Bekerom,4 J. Alessie,5 Y. van Kooyk,3 D. Eygendaal,6 and R. C. T. Koorevaar7
Author information Article notes Copyright and License information PMC Disclaimer
Abstract
Purpose
The pathophysiology of frozen shoulders is a complex and multifactorial process. The purpose of this review is to scope the currently available knowledge of the pathophysiology of frozen shoulders.
Methods
A systematic search was conducted in Medline, Embase and the Cochrane library. Original articles published between 1994 and October 2020 with a substantial focus on the pathophysiology of frozen shoulders were included.
Results
Out of 827 records, 48 original articles were included for the qualitative synthesis of this review. Glenohumeral capsular biopsies were reported in 30 studies. Fifteen studies investigated were classified as association studies. Three studies investigated the pathophysiology in an animal studies. A state of low grade inflammation, as is associated with diabetes, cardiovascular disease and thyroid disorders, predisposes for the development of frozen shoulder. An early immune response with elevated levels of alarmins and binding to the receptor of advance glycation end products is present at the start of the cascade. Inflammatory cytokines, of which transforming growth factor-β1 has a prominent role, together with mechanical stress stimulates Fibroblast proliferation and differentiation into myofibroblasts. This leads to an imbalance of extracellular matrix turnover resulting in a stiff and thickened glenohumeral capsule with abundance of type III collagen.
Conclusion
This scoping review outlines the complexity of the pathophysiology of frozen shoulder. A comprehensive overview with background information on pathophysiologic mechanisms is given. Leads are provided to progress with research for clinically important prognostic markers and in search for future interventions.
목적
오십견의 병리 생리학은 복잡하고 다인성적인 과정입니다. 이 리뷰의 목적은 오십견의 병리 생리학에 대한 현재 이용 가능한 지식의 범위를 넓히는 것입니다.
연구 방법
메드라인, 엠베이스 및 코크란 라이브러리에서 체계적인 검색을 수행했습니다. 1994년부터 2020년 10월까지 오십견의 병태 생리학에 중점을 두고 발표된 원저 논문이 포함되었습니다.
결과
827개의 기록 중 48개의 원저 논문이 이 리뷰의 질적 종합을 위해 포함되었습니다. 30개의 연구에서 상완골 관절낭 생검이 보고되었습니다. 조사된 15개의 연구는 연관성 연구로 분류되었습니다. 3건의 연구는 동물 연구에서 병리 생리학을 조사했습니다.
당뇨병,
심혈관 질환 및
갑상선 질환과 관련된 낮은 등급의 염증 상태는
오십견 발병의 원인이 됩니다.
--> 파킨슨병
캐스케이드가 시작될 때
높은 수준의 알라닌과 사전 당화 최종 생성물의 수용체에 결합하는
초기 면역 반응이 존재합니다.
염증성 사이토카인,
그 중 형질 전환 성장 인자 -β1이 두드러진 역할을하는
염증성 사이토 카인은
기계적 스트레스와 함께
섬유 아세포 증식과 근섬유 아세포로의 분화를 자극합니다.
이로 인해
세포 외 기질 회전율의 불균형이 발생하여
제3형 콜라겐이 풍부한 상완골두 캡슐이 뻣뻣하고 두꺼워집니다.
결론
이 범위 검토에서는 오십견의 복잡한 병태 생리를 간략하게 설명했습니다. 병리 생리학적 메커니즘에 대한 배경 정보가 포함된 포괄적인 개요가 제공됩니다. 임상적으로 중요한 예후 마커에 대한 연구를 진행하고 향후 개입 방법을 모색하기 위한 단서를 제공합니다.
Level of evidence
Level V.
Keywords: Shoulder, Frozen shoulder, Adhesive capsulitis, Stiffness, Pathophysiology, Histology, Etiology
Introduction
Frozen Shoulder (FS) is a common cause of shoulder pain associated with restricted active and passive range of motion. Although this condition has been recognized as a clinical disease entity for about 150 years, we still have not unraveled the pathophysiology yet. FS has often been described as a self-limiting condition, with recovery within two to three years for the majority of patients [1]. However, symptoms of mild to moderate pain and stiffness are reported in 27–50% of patients at long term [2–4]. Even in patients with a favorable natural course of the condition, there is still an extensive period to deal with pain, and functional limitations.
Current surgical interventions, such as manipulation under anesthesia or arthroscopic capsular release, are aimed at the advanced stage of the disease, when the fibrotic cascade has already had its effect. To optimize treatment the treatment of FS, it is of fundamental importance to get a better understanding of the pathophysiology. With advancing knowledge, it might become possible to intervene early on in the disease process.
The aim of this scoping review is to systematically collate the currently available knowledge that we have about the pathophysiology of FS. The histologic findings and the mechanism of tissue fibrosis on a cellular level are addressed. The purpose is to give and apprehensible overview which aids clinicians in the understanding of the pathophysiology and to translate this to clinical implications.
소개
오십견은 능동적 및 수동적 운동 범위의 제한과 관련된 어깨 통증의 흔한 원인입니다. 이 질환은 약 150년 동안 임상 질환으로 인식되어 왔지만, 아직까지 그 병태생리가 명확히 밝혀지지 않았습니다. FS는 대부분의 환자에서 2~3년 이내에 회복되는 자가 제한적 질환으로 묘사되어 왔습니다[1].
그러나
27~50%의 환자에서 경증에서 중등도의 통증과 경직 증상이
장기간 지속되는 것으로 보고되고 있습니다[2-4].
질환의 자연 경과가 양호한 환자라도
통증과 기능적 제한을 극복하는 데 오랜 기간이 걸립니다.
마취하 조작이나 관절경적 캡슐 방출과 같은 현재의 외과적 개입은 섬유화 캐스케이드가 이미 효과를 발휘한 질병의 진행 단계를 목표로 합니다.
오십견 치료를 최적화하려면
병리 생리를 더 잘 이해하는 것이 근본적으로 중요합니다.
지식이 발전하면 질병 진행 초기에 개입하는 것이 가능해질 수 있습니다.
이 범위 검토의 목적은 현재 이용 가능한 FS의 병태생리에 대한 지식을 체계적으로 수집하는 것입니다. 조직학적 소견과 세포 수준에서 조직 섬유화의 메커니즘을 다루고 있습니다. 그 목적은 임상의의 병태생리 이해를 돕고 이를 임상적 의미로 전환하는 데 도움이 되는 이해하기 쉬운 개요를 제공하는 것입니다.
Materials and methods
A systematic search in Medline, Embase and the Cochrane library was conducted in all three databases on the fifth of October 2020. The search was build including the following terms; “frozen shoulder”, or (“shoulder” AND “adhesive capsulitis”), “pathophysiology”, (“etiology” or “aetiology”) and (“histology” or “anatomy and histology”). Publications had to be original papers published in English after the first of January 1994. The limit of 1994 was chosen since the techniques to analyze tissue samples of more than 25 years ago are most likely outdated and therefore not relevant anymore. Articles were eligible for inclusion if the there was a substantial focus on the pathophysiology of FS. All studies on tissue samples from FS patients were eligible for inclusion. Association studies between medical co-morbidities and FS were only eligible if the pathophysiologic mechanism between the investigated condition and FS was discussed. Basic science studies (in vitro or animal model studies) were eligible for inclusion if the aim of the article was to clarify the pathophysiology of FS. Reviews, case reports and imaging studies were excluded.
Results
A number of 1088 potential relevant studies were identified in the searches. After removal of duplicates, titles and abstracts were screened from a total of 827 studies. A low threshold was used to verify if the full text articles included unique or relevant information on the pathophysiology of FS. This resulted in 48 original studies eligible for inclusion in the qualitative synthesis of this review. A PRISMA flow chart of the review process is presented in Fig. 1. (Fig. 1).
PRISMA flow diagram
The 48 included articles are categorized by study design in three tables, in a chronological order. The most relevant finding for each article is given. Table one shows all 30 original articles wherein tissue samples from the glenohumeral joint were analyzed. These are mostly case control studies with a small number of patients. The controls were usually patients undergoing arthroscopy for different shoulder pathology like instability or rotator cuff surgery. The number of FS patients, controls, biopsy location and used method for tissue analysis is described for each study.(Table study.(Table1)1) Table two shows 15 association studies wherein the pathologic mechanism between a certain co-morbidity (e.g. diabetes, thyroid disorder) and FS is discussed. This includes studies investigating the association between FS and serum levels in peripheral blood, for example hormones, lipids or gene polymorphism.(Table polymorphism.(Table2)2) Table three displays three animal (rats) studies investigating the pathophysiologic pathways in FS in detail. (Table (Table33).
Table 1
Biopsy studies; studies investigating the pathophysiology of frozen shoulder with glenohumeral capsular tissue samples
AuthorYearStudy designBiopsy locationn FSn ControlsAnalysis methodMost relevant findings
Hannafin [5] | 1994 | case series | anterior, inferior and posterior | 15 | – | histology | Frozen shoulder starts with a hypervascular synovitis followed by diffuse fibroplasia with thickening and contracture of the capsule |
Bunker [6] | 1995 | case series | CHL + RI | 12 | – | immunohistochemistry | Active fibroblastic proliferation with differentiation into myofibroblasts and the deposition of thick nodular bands of collagen |
Rodeo [7] | 1997 | case control | anterosuperior | 19 | 21 | immunohistochemistry | Hypervascular synovial hyperplasia with fibroblasts, occasional T-cells, B-cells and newly synthesized collagen type I and III was found. TGF-β, PDGF, IL-1β and TNF-α are involved in an inflammatory and fibrotic process in frozen shoulders |
Bunker [8] | 2000 | case serie | RI | 14 | 4 | RT-PCR | The presence of mRNA for a large number of cytokines and growth was demonstrated in frozen shoulder capsular tissue |
Ryu [9] | 2006 | case control | RI | 11 | 5 | immunohistochemistry, western blot | Immunostaining for VEGF was stronger in frozen shoulders compared to controls |
Hand [10] | 2007 | case series | RI | 22 | – | immunohistochemistry | Fibroblastic proliferation and an infiltrate of chronic inflammatory cells (mast cells, T cells, B cells and macrophages) was found |
Kilian [11] | 2007 | case control | RI | 6 | 6 | immunohistochemistry, RT-PCR | Significant enhancement of α-1(I) mRNA transcription (mature collagen) was found |
Uhthoff [12] | 2007 | case series | 5 different locations | 4 | – | immunohistochemistry | Fibroplasia together with type III collagen was present in the entire joint capsule. Contracture, (vimentin expression), was found only in the anterior joint capsule (rotator interval and CHL) |
DePalma [13] | 2008 | case series | capsule | 32 | – | histology | Evidence of a low grade chronic inflammatory process with variable involvement of the biceps tendon sheath was found |
Kanbe [14] | 2009 | case series | RI | 10 | – | immunohistochemistry | NF-κB, IL-6, MMP3, β1-integrin and VEGF were expressed in the synovial tissue of frozen shoulders |
Li [15] | 2009 | case control | RI | 12 | 12 | RT-PCR | A higher expression of mRNA for TGF-β and several MMPs was found |
Kabbabe [16] | 2010 | case control | 4 different locations | 13 | 10 | qPCR | Inflammatory (IL-6 and IL-8) and fibrogenic (MMP3) cytokines were expressed at a higher level in frozen shoulders compared to controls |
Nago [17] | 2010 | case series + in vitro cell culture | RI | 7 | – | histology, RT-PCR | Treatment of cultured glenohumeral/synovial fibroblast from frozen shoulder patients with hyaluronan inhibited cell proliferation and expression of adhesion related procollagens and cytokines. |
Hagiwara [18] | 2012 | case control | RI + MGHL + IGHL | 12 | 18 | immunohistochemistry, qPCR, scanning acoustic microscopy | A higher number of cells, stiffer capsular tissue and increased gene expression related to fibrosis (COL1A1, PDGF-B) inflammation (IL-1β) and chondrogenesis was found |
Xu [19] | 2012 | case control | RI | 8 | 10 | immunohistochemistry | Increased expression of nerve growth factor receptor and new nerve fibers were found in frozen shoulder capsular tissue compared to controls |
Kim [20] | 2013 | case series | RI | 17 | 9 | immunohistochemistry, RT-PCR | ICAM-1 was increased in capsular tissue, synovial fluid, and serum of frozen shoulder patients compared to controls |
Lho [21] | 2013 | case control | RI + subacromial bursa | 14 | 7 | immunohistochemistry, RT-PCR, ELISA | IL-1α, IL-1β, TNF-α, COX-1 and COX-2 were expressed at higher levels in joint capsule of frozen shoulder patients compared to controls. In the subacromial bursa, IL-1α, TNF-α and COX-2 were expressed at higher levels |
Raykha [22] | 2014 | case control + in vitro cell culture | RI | ? | ? | western blot, RT-PCR | β-catenin and IGF-2 expression were found to be elevated in frozen shoulders compared to controls |
Cho [23] | 2015 | case control | capsule | 18 | 18 | immunohistochemistry, RT-PCR | Upregulation of acid sensing ion channels (ACICs)was found in capsular tissue and synovial fluid of frozen shoulder patients |
Cohen [24] | 2016 | case control | anteroinferior capsule | 9 | 8 | RT-PCR | Elevated expression of Tenascin C and Fibronectin 1 mRNA was found in capsular tissue of frozen shoulder patients. |
Hettrich [25] | 2016 | case control | anterior and posterior | 20 | 14 | immunohistochemistry | Intra articular corticosteroid injection reduces fibrosis, vascular hyperplasia and myofibroblast differentiation |
Hwang [26] | 2016 | case control | RI | 8 | 14 | immunohistochemistry | Immunoreactivity of AGEs was stronger in frozen shoulder capsules compared to controls |
Cui [27] | 2017 | case control | capsule + bursa + synovium | 5 | 2 | RNA sequencing | 147 genes were upregulated and 24 downregulated in capsular tissue of frozen shoulder patients compared to controls |
Cher [28] | 2018 | case control | RI | 10 | 10 | immunohistochemistry | Immunoreactivity of alarmins was stronger in frozen shoulder patients. The expression of the alarmin HMGB1 correlated with the severity of pain |
Hagiwara [29] | 2018 | case control | RI + MGHL + IGHL | 12 | 7 | shotgun proteome analysis | The pathophysiology might differ between the upper and lower parts of the joint capsule. In the RI and MGHL samples, different proteins were higher expressed compared to the IGHL samples |
Akbar [30] | 2019 | case control + in vitro cell culture | RI | 10 | 10 | immunohistochemistry, qPCR, ELISA | Fibroblasts in FS have activated phenotype with an increased expression of fibroblast activation markers. Cultured FS fibroblasts produced elevated levels of inflammatory proteins (IL-6, IL-8, CCL-20) |
Cho [31] | 2019 | case control + animal (rat) study | capsule | 21 | 13 | immunohistochemistry | Overexpression of IL-6, MMP-2 and MMP-9 may be associated with frozen shoulder |
Kamal [32] | 2020 | case control | anterior | 22 | 26 | RT-PCR | Inflammation and ECM remodelling were the most signifant and highly enriched processes in frozen shoulder. MMP13 expression was increased and TNF-α expression was reduced in frozen shoulders |
Yang [33] | 2020 | case control + in vitro cell culture | RI | 9 | 10 | immunohistochemistry, RT-PCR, flow cytometry | COL1A1, COL3A1, TGF-β1, and IL-6 were expressed at increased levels in the frozen shoulder group compared to controls. The presence of calcitonin receptors in shoulder capsular tissue was confirmed. Treatment with salmon calcitonin decreased the expression of COL1A1, COL3A1, fibronectin 1, laminin 1, TGF-β1 and IL-1α |
Yano [34] | 2020 | case control | CHL + IGHL | 33 | 25 | immunohistochemistry, RT-PCR, high performance liquid chromatography | AGEs and HMGB1 might play important roles in the pathogenesis of frozen shoulder. Gene expression levels of RAGE, HMGB1, TLR2, TLR4 and NF-κB were significantly greater in frozen shoulders compared to controls |
CHL coracohumeral ligament, RI rotator interval, MGHL middle glenohumeral ligament, IGHL inferior glenohumeral ligament, RT-PCR real time polymerase chain reaction, ELISA enzyme linked immune sorbent assay, TGF-β transforming growth factor beta, AGE advanced glycation end product, MMP matrix metalloproteinase, TIMP tissue Inhibitor of Metallo Proteinases, TSH thyroid stimulating hormone, IGF insulin like growth factor, ICAM intercellular adhesion molecule-1, ECM extracellular matrix, TNF-α tumor necrosis factor alfa, VEGF vascular endothelial growth factor
Table 2
Association studies; studies investigating the association between frozen shoulder and a co-morbidity, focussed on the pathophysiologic mechanism
AuthorYearStudy Designn FSn controlsanalysis methodMost relevant findings
Bunker [35] | 1995 | case series | 43 | 43 | peripheral blood samples | Fasting serum triglyceride and cholesterol levels were significantly elevated in frozen shoulder patients |
Mullet [36] | 2007 | case control | 15 | 15 | glenohumeral joint aspirate, in vitro cell culture | Proliferation of cultured human fibroblast cells was significantly increased by stimulation of growth factors from joint aspirate of frozen shoulder patients |
Lubis [37] | 2013 | case control | 50 | 50 | peripheral blood samples | MMP1 and MMP2 levels were significantly lower, while TIMP1, TIMP2 and TGF-β1 were higher in frozen shoulder patients compared to controls |
Austin [38] | 2014 | case control | 150 | NHANES nationwide study | patient chart review | A relationship is suggested between systemic inflammation with hyperglycaemia and hypertension and frozen shoulder |
Huang [39] | 2014 | cohort | 162 | Longitudinal health insurance database | ICD-9-CM codes | Hyperthyroid patients have a 1.22 fold higher risk to develop frozen shoulder compared to the general population in Taiwan |
Sung [40] | 2014 | case control | 300 | 900 | peripheral blood samples | Hypercholesterolemia, and inflammatory lipoproteins have a significant association with frozen shoulder |
Booker [41] | 2017 | case control | 20 | 26 | capsular biopsies for microbiological culture | No correlation was found between the incidence of P. Acnes and frozen shoulder |
Chan [42] | 2017 | retrospective cohort | 197 | 24,220 | peripheral blood samples | Cumulative HbA1c was (dose dependent) associated with an increased incidence adhesive capsulitis |
Chen [43] | 2017 | case control | 42 | 50 | peripheral blood samples - ELISA | IL-1β was expressed at higher levels in frozen shoulder patients and is associated with susceptibility of frozen shoulder |
Holte [44] | 2017 | case control | 100 | 73 | skin biopsies - liquid chromatography mass spectometry | Joint stiffness was associated with long term HbA1c and AGEs |
Schiefer [45] | 2017 | case control | 93 | 151 | peripheral blood samples | Hypothyroidism was significantly more prevalent in frozen shoulder patients than in controls. A correlation between TSH levels with the severity of frozen shoulders was suggested |
Gumina [46] | 2018 | prospective observational | 27 | genome database | peripheral blood samples - PCR | APO-A1-G75A lipoprotein polymorfism was found as a risk factor for the severity of frozen shoulder |
Kalson [47] | 2018 | cohort | 549 | 5989 (Twins UK registry) | qPCR | Frozen shoulder patients had a significant relation with telomere length. It is suggested that telomere repair defects contribute to joint fibrosis |
Park [48] | 2018 | case control | 37 | 222 | peripheral blood samples | Inflammatory lipoproteins are associated with adhesive capsulitis accompanied by diabetes |
Cohen [49] | 2019 | case control | 186 | 600 | peripheral blood samples - genotyping | Certain genetic variants, SNPs of MMP13, MMP 9 and TGFβ1 were identified as independent risk factors for frozen shoulder |
PCR polymerase chain reaction, ELISA enzyme linked immune sorbent assay, TGF-β transforming growth factor beta, AGE advanced glycation end product, MMP matrix metalloproteinase, TIMP tissue Inhibitor of Metallo Proteinases, TSH thyroid stimulating hormone, SNP single nucleotide polymorphism, IL-1β Interleukin-1β
Table 3
Animal studies; animal studies with the specific aim to investigate the pathophysiology of frozen shoulder
AuthorYearStudy DesignMethod used for analysisMost relevant findings
Watson [50] | 2011 | animal model (rats) | RT-PCR | TGF-β1 gene transfer induced a fibrotic condition comparable to frozen shoulder patients with similar expression levels of ECM proteins, MMPs, adhesion- and collagen proteins |
Xue [51] | 2016 | animal model (rats) + cell culture | RT-PCR and gene silencing with a lentivirus | Smad4 silencing can suppress chronic inflammation and fibrosis in joint tissue by inhibiting the TGF-β/Smad pathway |
Blessing [52] | 2019 | animal model (rats) + cell culture | immunohistochemistry | Local delivery of Relaxin-2 downregulates type I collagen and α-smooth muscle actin production |
CHL coracohumeral ligament, RI rotator interval RT-PCR real time polymerase chain reaction, TGF-β transforming growth factor beta, ECM extracellular matrix, MMP matrix metalloproteinase, α-SMA α - smooth muscle actin
Patho-anatomy
The restriction in passive range of motion in FS is caused by a contracted glenohumeral capsule. The normal shoulder joint has a volume of at least 15 ml, and on average 20 ml [53]. In FS, the joint volume can be less then 5 ml [54]. Capsular stiffness is demonstrated in studies measuring intra-articular pressure while distending the capsule. Pressure volume curves show a much steeper rise in FS compared to controls and capsular rupture occurs in FS at a much lower volume with higher pressures compared to normal shoulders [55–57]. It has long been hypothesized that the rotator interval with the coracohumeral ligament (CHL) is involved in the pathophysiologic process of FS, and might have a pivotal role in the development of FS, and the rest of the joint capsule is involved later on in the process [58–61]. The CHL spans the extra-articular side of the rotator interval, is strained in external rotation, and release of the CHL is an important part of the surgical release of a FS [62, 63]. Several other findings are reported in the literature that support a prominent role in the etiology of FS for the rotator interval. Ultrasound guided corticosteroid injections in the rotator interval and around the CHL had greater effect on pain and range of motion compared to intra-articular corticosteroid injections directed from posterior [61]. Fluorodeoxyglucose (FDG)-PET CT scans in FS demonstrate that FDG uptake is predominantly located in the rotator interval, anterior joint capsule and axillary recess [64]. Angiography studies identified neovascularization, branching of the thoracoacromial artery, in the rotator interval of FS patients [65]. Upregulation of proteins involved in collagen metabolism, cell adhesion and the immune response were identified in the rotator interval of FS patients [29]. The gliding mechanism of the biceps tendon sheat, the lateral border of the rotator interval, was involved to a variable degree [66].
병리 해부학
FS에서 수동적 운동 범위의 제한은
수축된 상완골 캡슐로 인해 발생합니다.
정상적인 어깨 관절의 부피는
최소 15ml, 평균 20ml입니다 [53].
FS에서는
관절 부피가 5ml 미만일 수 있습니다 [54].
캡슐 강직은
캡슐을 팽창시키는 동안 관절 내 압력을 측정하는 연구에서 입증되었습니다.
압력 부피 곡선은 대조군에 비해 FS에서 훨씬 더 가파른 상승을 보이며, 정상 어깨에 비해 훨씬 낮은 부피에서 더 높은 압력으로 캡슐 파열이 발생합니다 [55-57]. 회전근개와 상완골 인대(CHL)의 간격이 FS의 병리 생리학적 과정에 관여하며, FS의 발달에 중추적인 역할을 할 수 있고 나머지 관절낭은 나중에 관여한다는 가설이 오랫동안 제기되어 왔습니다 [58-61]. CHL은 회전근 간격의 관절 외측에 걸쳐 있고, 외부 회전 시 긴장되며, CHL의 방출은 FS의 외과적 방출에서 중요한 부분입니다 [62, 63]. 회전근 개 간격에 대한 FS의 원인에서 두드러진 역할을 뒷받침하는 몇 가지 다른 발견이 문헌에 보고되었습니다. 회전근 간격과 CHL 주변에서 초음파 유도 코르티코스테로이드 주사는 후방에서 직접 관절 내 코르티코스테로이드 주사에 비해 통증과 운동 범위에 더 큰 영향을 미쳤습니다 [61]. FS에서 플루오로데옥시글루코스(FDG)-PET CT 스캔은 FDG 흡수가 주로 회전근개 간격, 전방 관절낭 및 겨드랑이 홈에 위치한다는 것을 보여줍니다 [64]. 혈관 조영술 연구에서는 FS 환자의 회전근간에서 흉쇄유돌근 동맥의 분지인 신생 혈관이 확인되었습니다 [65]. 콜라겐 대사, 세포 부착 및 면역 반응에 관여하는 단백질의 상향 조절이 FS 환자의 회전근개 간격에서 확인되었습니다 [29]. 회전근 개 간격의 측면 경계인 이두근 힘줄 덮개의 활공 메커니즘은 다양한 정도에 관여했습니다 [66].
Histologic findings
Several authors have studied biopsies of the rotator interval and glenohumeral capsule. Early in the disease process, inflammatory changes with subsynovial hypervascularity, synovial hyperplasia, and fibroblastic proliferation with an increased number of fibroblasts (fibroplasia) is found [5]. This is accompanied by the formation of new nerve fibers around small blood vessels. Neogangionesis is demonstrated by overexpression of hematopoietic cell marker, CD34, and vascular endothelial growth factor (VEGF) [9]. Neurogenesis is driven by an increased expression of nerve growth factor receptor p75 [19]. Besides nerve ingrowth, pro-inflammatory mediators upregulate the acid sensing ion channels that contribute to hyperalgesia [23]. Later on in the disease process, when stiffness is established, the signs of inflammation can disappear gradually [67]. In this stage, an increased number of differentiated fibroblasts into myofibroblasts are seen within an extracellular matrix (ECM) of densely packed disorganized type III collagen [6]. The increased number of contractile myofibroblasts can be picked up with alfa smooth muscle actin (α-SMA) staining, a marker for the differentiation of fibroblasts in myofibroblasts. It has been demonstrated that α-SMA staining is not that prominent yet in the early stage of the disease compared to a more mature FS [25]. To summarize, in the early stage of FS, inflammatory changes can be seen with synovial hyperplasia and subsynovial hypervascularity and neurogenesis. Whereas in the later stage inflammation usually disappears gradually and tissue fibrosis occurs with a high number of fibroblasts within an ECM of densely packed type III collagen. (Fig. 2).
조직학적 소견
여러 저자가 회전근개와 상완골 관절낭의 생검을 연구했습니다.
질병 과정 초기에
활막하 과혈관,
활막 증식 및 섬유 아세포 수가 증가한 섬유 아세포 증식 (섬유 증식증)을 동반 한
염증성 변화가 발견됩니다 [5].
Early in the disease process,
inflammatory changes with
subsynovial hypervascularity,
synovial hyperplasia, and
fibroblastic proliferation with an increased number of fibroblasts (fibroplasia) is found
이것은
작은 혈관 주위에
새로운 신경 섬유의 형성을 동반합니다.
조혈 세포 마커,
CD34 및 혈관 내피 성장 인자(VEGF)의 과발현에 의해
신생 혈관 생성이 입증됩니다 [9].
신경 신생은
신경 성장 인자 수용체 p75의 발현 증가에 의해 촉진됩니다 [19].
신경 성장 외에도
전 염증 매개체는 통각 과민증에 기여하는
산 감지 이온 채널 acid sensing ion channels 을 상향 조절합니다 [23].
질병 과정의 후반부에 경직이 확립되면
염증의 징후가 점차 사라질 수 있습니다 [67].
이 단계에서는
조밀하게 포장된 무질서한 III형 콜라겐의 세포외 기질(ECM) 내에서
근섬유아세포로 분화된
섬유아세포의 수가 증가합니다 [6].
근섬유아세포에서 섬유아세포의 분화 마커인
알파 평활근 액틴(α-SMA) 염색을 통해
수축성 근섬유아세포의 증가된 수를 확인할 수 있습니다.
α-SMA 염색은 더 성숙한 FS에 비해 질병의 초기 단계에서는 아직 두드러지지 않는다는 것이 입증되었습니다 [25].
요약하면,
FS의 초기 단계에서는
활막 증식 및 활막하 과혈관 및 신경 발생과 함께
염증성 변화를 볼 수 있습니다.
반면
후기 단계에서는
일반적으로 염증이 서서히 사라지고
조밀하게 포장된 제3형 콜라겐의 ECM 내에서
많은 수의 섬유아세포와 함께 조직 섬유화가 발생합니다. (그림 2).
Schematic drawing stages FS
The mechanism of tissue fibrosis
Imbalance in extracellular matrix turnover
Fibroblasts are the primary resident cell type in connective tissues. Articular capsule consists of a thin inner synovial lining and an outer layer, which is a more fibrous layer of connective tissue. Fibroblasts are responsible for the production of the ECM, the “soil” in which the cells live and interact. Normally, type I and III collagen are the main proteins in the ECM of normal joint capsule. Type III collagen is the more immature molecule, derived from procollagen [11]. The turnover of ECM is regulated by fibroblasts together with enzymes such as Matrix Metallo Proteinases (MMPs). MMPs degrade abundant collagen and the level of activity of MMPs is counteracted by Tissue Inhibitor of Metallo Proteinases (TIMPs). The fibrotic effects of increased TIMP activity came to light when twelve patients were treated with Marimastat (British Bio- tech Ltd, Oxford, UK), a TIMP analogue for the treatment of gastric carcinoma. Six patients developed bilateral frozen shoulders within four months [68]. The MMP/TIMP ratio has been shown to be almost ten times lower in FS patients versus healthy controls [37]. So, at least a part of the pathophysiologic process leading to fibrosis is a dysregulated collagen synthesis, in other words, an imbalance in ECM turnover.
조직 섬유화의 메커니즘
세포 외 기질 회전율의 불균형
섬유아세포는
결합 조직에 주로 상주하는 세포 유형입니다.
관절낭은
얇은 내부 활액막과
결합 조직의 섬유질 층인 외부 층으로 구성되어 있습니다.
섬유아세포는
세포가 살고 상호 작용하는 '토양'인 ECM의 생성을 담당합니다.
일반적으로 제1형 및 제3형 콜라겐은
정상적인 관절낭의 ECM을 구성하는 주요 단백질입니다.
III형 콜라겐은
프로콜라겐에서 파생된 보다 미성숙한 분자입니다 [11].
ECM의 회전율은 매
트릭스 메탈로 프로테아제(MMP)와 같은 효소와 함께
섬유아세포에 의해 조절됩니다.
MMP는
풍부한 콜라겐을 분해하고
MMP의 활성 수준은
메탈로 프로테아제 조직 억제제(TIMP)에 의해 상쇄됩니다.
12명의 환자를 대상으로 위암 치료용 TIMP 유사체인 마리마스타트(Marimastat, 영국 옥스퍼드 소재 British Bio- tech Ltd)로 치료했을 때 TIMP 활성 증가로 인한 섬유화 효과가 밝혀졌습니다. 6명의 환자가 4개월 이내에 양측성 오십견이 발생했습니다[68]. MMP/TIMP 비율은 건강한 대조군에 비해 FS 환자에서 거의 10배 낮은 것으로 나타났습니다 [37]. 따라서 섬유화로 이어지는 병리 생리학적 과정의 적어도 일부는 콜라겐 합성 조절 장애, 즉 ECM 회전율의 불균형입니다.
Fibroblast contractility: the role of TGF-β1 and mechanical stress
Not only the abundancy of collagen, but also the contractility of fibroblasts in the ECM is a prerequisite to stiffening of the tissue. Myofibroblasts can contract by using a smooth muscle type actin/myosin complex. Vimentin, a cytocontractile protein and marker for contractility, has been shown to be overexpressed in capsular biopsies of FS patients [69]. Interestingly, although fibroplasia has been shown to occur in the entire joint capsule in FS, capsular contracture measured by vimentin staining was more pronounced anteriorly compared to posteriorly [70].
Transforming growth factor-β one (TGF-β1), and mechanical stress are two important factors contributing to contractility of fibroblasts [71]. TGF-β1, an inflammatory cytokine, is present in a lot of tissues throughout the human body, and can be secreted by parenchymal cells, epithelial cells, fibroblasts and by influxing immune cells [72]. The TGF-β1 signaling pathway is believed to have a central role in fibrotic diseases [51, 73]. TGF-β1 has been shown to stimulate contractility of fibroblasts in-vitro collagen gels and can be seen as a potent activator of myofibroblasts [74, 75]. The expression of TGF-β1 and its receptor is increased in biopsies of the joint capsule in FS patients [76]. Besides stimulating myofibroblast differentiation, TGF-β1 also influences ECM turnover by promoting collagen synthesis. Certain genetic variants of genes for the TGF-β pathway and MMPs could be identified as risk factors for the susceptibility of FS [49].
Besides chemical stimulation by cytokines like TGF-β1, mechanical stress is also an important factor in tissue fibrosis. Fibroblasts are mechano-responsive cells, which means that they can ‘sense’ mechanical stress in the ECM with their intracellular cytoskeleton, and their differentiation in to myofibroblasts is stress dependent. In-vitro studies showed that fibroblasts seem to have a threshold for mechanical stress which needs to be reached before they differentiate in to myofibroblasts [77]. Furthermore, mechanical stress has the ability to activate latent TGF-β1, hereby upregulating the process of tissue fibrosis. So, both mechanical stress and TGF-β1 are two important closely interrelated factors in the process of tissue fibrosis [78]. This process is actually a self-reinforcing process. When the tissue gets stiffer, tissue compliance decreases and the mechanical stress recorded by the fibroblasts increases inherently.
섬유아세포 수축성: TGF-β1과 기계적 스트레스의 역할
콜라겐의 풍부함뿐만 아니라 ECM 내 섬유아세포의 수축성 또한 조직 경화의 전제 조건입니다. 근섬유아세포는 평활근 유형의 액틴/미오신 복합체를 사용하여 수축할 수 있습니다. 세포 수축성 단백질이자 수축성 마커인 비멘틴은 FS 환자의 캡슐 생검에서 과발현되는 것으로 나타났습니다 [69]. 흥미롭게도 섬유증식은 FS의 전체 관절낭에서 발생하는 것으로 나타났지만, 비멘틴 염색으로 측정한 캡슐 수축은 후방에 비해 전방에서 더 뚜렷하게 나타났습니다 [70].
섬유아세포의 수축에 기여하는 두 가지 중요한 요소는 형질 전환 성장 인자-β 1 (TGF-β1)과 기계적 스트레스입니다 [71]. 염증성 사이토카인인 TGF-β1은 인체의 많은 조직에 존재하며 실질세포, 상피세포, 섬유아세포 및 유입된 면역세포에 의해 분비될 수 있습니다 [72]. TGF-β1 신호 경로는 섬유성 질환에서 중심적인 역할을 하는 것으로 여겨집니다 [51, 73]. TGF-β1은 체외 콜라겐 젤에서 섬유아세포의 수축성을 자극하는 것으로 나타났으며 근섬유아세포의 강력한 활성화제로 볼 수 있습니다 [74, 75]. TGF-β1과 그 수용체의 발현은 FS 환자의 관절낭 생검에서 증가합니다 [76]. TGF-β1은 근섬유아세포 분화를 자극하는 것 외에도 콜라겐 합성을 촉진하여 ECM 회전율에도 영향을 미칩니다. TGF-β 경로 및 MMP에 대한 유전자의 특정 유전 적 변이가 FS의 감수성에 대한 위험 요인으로 확인 될 수 있습니다 [49].
TGF-β1과 같은 사이토카인에 의한 화학적 자극 외에도 기계적 스트레스도 조직 섬유화의 중요한 요인입니다. 섬유아세포는 기계 반응성 세포로, 세포 내 세포 골격을 통해 ECM의 기계적 스트레스를 '감지'할 수 있으며 근섬유아세포로의 분화는 스트레스에 따라 달라집니다. 시험관 내 연구에 따르면 섬유아세포는 근섬유아세포로 분화하기 전에 도달해야 하는 기계적 스트레스에 대한 역치가 있는 것으로 나타났습니다 [77]. 또한 기계적 스트레스는 잠복해 있는 TGF-β1을 활성화하여 조직 섬유화 과정을 상향 조절하는 능력이 있습니다. 따라서 기계적 스트레스와 TGF-β1은 조직 섬유화 과정에서 밀접하게 상호 관련된 두 가지 중요한 요소입니다 [78]. 이 과정은 실제로 자기 강화 과정입니다. 조직이 딱딱해지면 조직 순응도가 감소하고 섬유아세포가 기록하는 기계적 스트레스가 본질적으로 증가합니다.
Chronic low-grade inflammation might predispose to the development of FS
Several authors have hypothesized an association with a chronic state of low grade inflammation which might predispose to the development of FS [79]. Several association studies support this theory [38, 40, 48]. Fasting serum cholesterol, triglycerides and plasma glucose levels are often elevated in FS [6, 80]. Inflammatory lipoproteins such as LDL and non-HDL, associated with vascular inflammation and immune reactions, are known risk factors for atherosclerosis. However, these inflammatory lipoproteins have also been identified as independent risk factors for FS [48, 81]. Vascular endothelial cell activation is accompanied by increased expression of intercellular adhesion molecule-1 (ICAM-1), a well-established marker of chronic inflammation. It has also been shown that ICAM-1 levels are elevated in the joint capsule and synovial fluid of FS patients compared to controls [82]. Similar to ICAM-1, is TIMP associated with chronic inflammation. Diabetes mellitus (DM), cardiovascular disorders and thyroid disorders are conditions associated with chronic inflammation and increased levels of similar pro-inflammatory cytokines as are found in FS. This is, at least partially, an explanation why DM and thyroid disorders are strong risk factors for the development of FS, and supports the theory of a chronic state of low-grade inflammation as a predisposing factor in the etiology of FS [83].
만성 저등급 염증은 FS 발병의 원인이 될 수 있습니다.
몇몇 저자는 만성 저등급 염증 상태와의 연관성을 가설로 세웠으며, 이는 FS 발병의 원인이 될 수 있습니다 [79]. 여러 연관성 연구가 이 이론을 뒷받침합니다 [38, 40, 48]. 공복 혈청 콜레스테롤, 트리글리세리드 및 혈장 포도당 수치는 종종 FS에서 상승합니다 [6, 80]. 혈관 염증 및 면역 반응과 관련된 LDL 및 비HDL과 같은 염증성 지단백질은 죽상경화증의 위험 요인으로 알려져 있습니다. 그러나 이러한 염증성 지단백질은 FS의 독립적인 위험 인자로도 확인되었습니다 [48, 81]. 혈관 내피 세포 활성화는 만성 염증의 잘 확립된 마커인 세포 간 접착 분자-1(ICAM-1)의 발현 증가를 동반합니다. 또한, 대조군에 비해 섬유근육통 환자의 관절낭과 활액에서 ICAM-1 수치가 상승하는 것으로 나타났습니다 [82]. ICAM-1과 마찬가지로 만성 염증과 관련된 TIMP도 있습니다. 당뇨병(DM), 심혈관 질환 및 갑상선 질환은 만성 염증과 관련된 질환이며, FS에서 발견되는 것과 유사한 전 염증성 사이토카인의 수치가 증가합니다. 이는 적어도 부분적으로는 당뇨병과 갑상선 질환이 섬유근육통 발병의 강력한 위험 요인인 이유에 대한 설명이며, 섬유근육통 발병의 원인으로 만성적인 저등급 염증 상태라는 이론을 뒷받침합니다 [83].
An early inflammatory response at the onset of FS
Traditionally, fibroblasts are known for their structural role in the synthesis and remodeling of ECM in connective tissue. However, fibroblast can also act like sentinel cells involved in immune responses, and thereby modulate the recruitment of immune cells and regulate their behavior [30, 84]. A chronic inflammatory cell infiltrate with mast cells, macrophages, B- and T-cells has been shown to be present in rotator interval biopsies from FS patients [85]. Recent publications suggest that an immune response with an overexpression of inflammatory cytokines is one of the first steps in the development of a FS, preceding the cascade of tissue fibrosis [21, 86]. Cytokines can regulate proliferation, activation and differentiation of fibroblasts, hereby dysregulating collagen synthesis [87]. Multiple studies have shown increased levels of pro-inflammatory cytokines such as TGF-β1, tumor necrosis factor-α (TNF- α), Interleukin-1 and -6 (IL-1, IL-6) and platelet derived growth factor (PDGF) in joint fluid and capsular tissue in FS [7, 21, 86]. Interestingly, increased levels of cytokines were also found in the subacromial bursa in FS patients [21]. When in-vitro cultured fibroblasts are stimulated with joint aspirates of FS patients, fibroblast proliferation was markedly elevated [36]. Furthermore, when fibroblasts were being activated, the inflammatory response was enhanced [88]. A recent study confirmed an elevated level of fibroblast activation markers in capsular tissue biopsies of FS patients compared to controls [30]. Persistent fibroblast activation is a potential cellular mechanism of symptoms of a prolonged frozen stage in FS.
Cytokine release and fibroblast activation is not the first step in the inflammatory response. Capsular biopsies of FS patients have shown elevated levels of several alarmins including High Mobility Group Box 1 (HMGB1) proteins, compared with controls [89]. Alarmins, or Damage-Associated Molecular Pattern (DAMP) molecules, are signal molecules released when cells are distressed, injured or ‘in danger’. Alarmins are the early activators of the immune system and have a role in amplifying the inflammatory response in many inflammatory conditions [90]. HMGB1 can be released into the ECM upon cell death or stress where it mediates an inflammatory reaction. In-vitro cultured human dermal fibroblast and lung fibroblasts stimulated by HMGB1 have been shown to produce more TGF-β1, thereby activating the TGF-β signaling pathway and subsequently significantly upregulate myofibroblast differentiation. And more, HMGB1 has the ability to bind to the receptor of AGE (Advanced Glycation End products) and to activate a pro-inflammatory response through the Nuclear Factor κB (NF-κB) pathway inducing TGF-β1 release [91, 92]. Although an elevated level of alarmins in frozen shoulder capsular biopsies might be quite an aspecific finding, this is an indication that an inflammatory response has an important role at the onset of the pathophysiologic process of FS, triggering the inflammatory cascade leading to tissue fibrosis.
오십견 발병 시 초기 염증 반응
전통적으로 섬유아세포는 결합 조직에서 ECM의 합성과 리모델링에 구조적 역할을 하는 것으로 알려져 있습니다. 그러나 섬유 아세포는 면역 반응에 관여하는 감시 세포처럼 작용하여 면역 세포의 모집을 조절하고 그 행동을 조절할 수 있습니다 [30, 84]. 비만 세포, 대식세포, B세포 및 T세포가 포함된 만성 염증 세포 침윤이 FS 환자의 회전근개 생검에 존재하는 것으로 나타났습니다 [85]. 최근 발표된 논문에 따르면 염증성 사이토카인의 과발현을 동반한 면역 반응이 조직 섬유화의 계단식 진행에 선행하는 FS 발병의 첫 단계 중 하나라고 합니다 [21, 86]. 사이토카인은 섬유아세포의 증식, 활성화 및 분화를 조절하여 콜라겐 합성을 조절할 수 있습니다 [87]. 여러 연구에 따르면 FS의 관절액과 캡슐 조직에서 TGF-β1, 종양괴사인자-α(TNF- α), 인터루킨-1 및 -6(IL-1, IL-6), 혈소판 유래 성장인자(PDGF)와 같은 전 염증성 사이토카인의 수준이 증가했습니다 [7, 21, 86]. 흥미롭게도 FS 환자의 견봉하 윤활낭에서도 사이토카인 수치가 증가한 것으로 나타났습니다 [21]. 시험관 내에서 배양된 섬유아세포를 FS 환자의 관절 흡인으로 자극했을 때 섬유아세포 증식이 현저하게 증가했습니다 [36]. 또한 섬유아세포가 활성화되면 염증 반응이 강화되었습니다 [88]. 최근 연구에서는 대조군에 비해 섬유아세포 활성화 마커의 수준이 높은 것으로 확인된 FS 환자의 캡슐 조직 생검에서 섬유아세포 활성화 마커가 증가했습니다 [30]. 지속적인 섬유아세포 활성화는 FS에서 장기간의 동결기 증상의 잠재적인 세포 메커니즘입니다.
사이토카인 방출과 섬유아세포 활성화는 염증 반응의 첫 번째 단계가 아닙니다. FS 환자의 캡슐 생검 결과, 대조군에 비해 고이동성 그룹 박스 1(HMGB1) 단백질을 포함한 여러 알라닌 수치가 상승한 것으로 나타났습니다 [89]. 알라민 또는 손상 관련 분자 패턴(DAMP) 분자는 세포가 스트레스를 받거나 부상을 입거나 '위험에 처했을 때' 분비되는 신호 분자입니다. 알람린은 면역 체계의 초기 활성화제이며 많은 염증 질환에서 염증 반응을 증폭시키는 역할을 합니다[90]. HMGB1은 세포가 죽거나 스트레스를 받으면 ECM으로 방출되어 염증 반응을 매개할 수 있습니다. 시험관 내에서 배양된 인간 피부 섬유아세포와 폐 섬유아세포는 HMGB1에 의해 자극을 받으면 더 많은 TGF-β1을 생성하여 TGF-β 신호 경로를 활성화하고 결과적으로 근섬유아세포 분화를 크게 상향 조절하는 것으로 나타났습니다. 또한, HMGB1은 AGE (Advanced Glycation End products)의 수용체에 결합하여 핵 인자 κB (NF-κB) 경로를 통해 염증 반응을 활성화하여 TGF-β1 방출을 유도하는 능력을 가지고 있습니다 [91, 92]. 오십견 캡슐 생검에서 높은 수준의 알라닌 수치는 매우 특이적인 결과일 수 있지만, 이는 염증 반응이 조직 섬유화로 이어지는 염증성 캐스케이드를 촉발하여 오십견의 병리 생리학적 과정의 시작에 중요한 역할을 한다는 것을 나타냅니다.
The implications of hyperglycaemia in FS
The lifetime prevalence of FS in diabetic patients is with 10–30% much higher than 2–5% in the general population [93–95]. The higher the cumulative hemoglobin A1c level, the higher the incidence of FS [96]. FS tends to be prolonged and more refractory to conservative treatment in diabetics [97]. The exact mechanism behind this is most likely multifactorial. Several authors have hypothesized an important role for AGEs. AGEs are formed by a process called non-enzymatic glycation when glucose forms covalent adducts with proteins, caused by oxidative stress. When AGEs bond to long-lived proteins they cannot be degraded by normal remodeling, and accumulate in connective tissue. This is a normal process which happens progressively with aging, can be slowed down by endurance training, but is accelerated in patients with DM [98]. A particular non-enzymatic ‘AGE’ reaction of interest is the alteration of collagen proteins by crosslinking [26, 99]. Excessive levels of AGEs can lead to pathological collagen crosslinking and structural changes in the tissue, making the tissue less compliant [100]. The level of AGEs has been shown to be significantly higher in capsular tissue samples of FS patients compared to controls [26]. AGEs have also been shown to decrease the expression of MMPs and increasing TIMP expression in diabetic nephropathy, similar to the pathogenic mechanism of imbalance in ECM turnover in FS [101]. And more, it has been shown in diabetic retinopathy and nephropathy that AGEs accumulation can lead to an increased expression of basic fibroblast growth factor and upregulation of the expression of profibrotic cytokines as TGF-β1, PDGF and connective tissue growth factors [102]. It is hypothesized that these pro-fibrotic actions of AGEs also have their role in the pathophysiology of FS, and are part of the explanation why FS in diabetic patients have a tendency to be refractory [26].
FS에서 고혈당증의 의미
당뇨병 환자에서 FS의 평생 유병률은 10-30%로 일반 인구의 2-5%보다 훨씬 높습니다 [93-95]. 누적 헤모글로빈 A1c 수치가 높을수록 FS의 발생률이 높아집니다 [96]. FS는 당뇨병 환자에서 더 오래 지속되고 보존적 치료에 더 불응하는 경향이 있습니다 [97]. 이에 대한 정확한 메커니즘은 다인성일 가능성이 높습니다. 여러 저자들은 AGE의 중요한 역할에 대해 가설을 세웠습니다. AGE는 산화 스트레스로 인해 포도당이 단백질과 공유 결합을 형성할 때 비효소적 당화라는 과정에 의해 형성됩니다. AGE가 수명이 긴 단백질에 결합하면 정상적인 리모델링에 의해 분해되지 않고 결합 조직에 축적됩니다. 이는 노화와 함께 점진적으로 발생하는 정상적인 과정이며 지구력 훈련을 통해 속도를 늦출 수 있지만, 당뇨병 환자에서는 가속화됩니다 [98]. 관심의 대상이 되는 특정 비효소적 'AGE' 반응은 가교에 의한 콜라겐 단백질의 변화입니다 [26, 99]. 과도한 수준의 AGE는 병적인 콜라겐 가교 및 조직의 구조적 변화를 초래하여 조직의 순응도를 떨어뜨릴 수 있습니다 [100]. FS 환자의 캡슐 조직 샘플에서 대조군에 비해 AGE 수준이 상당히 높은 것으로 나타났습니다 [26]. 또한 AGE는 당뇨병성 신증에서 MMP의 발현을 감소시키고 TIMP 발현을 증가시키는 것으로 나타났는데, 이는 FS에서 ECM 턴오버의 불균형에 대한 병원성 메커니즘과 유사합니다 [101]. 또한, 당뇨병성 망막병증과 신증에서 AGEs 축적이 기본 섬유아세포 성장 인자의 발현을 증가시키고 TGF-β1, PDGF 및 결합 조직 성장 인자와 같은 섬유화 사이토카인의 발현을 상향 조절할 수 있음이 밝혀졌습니다 [102]. 이러한 AGE의 친 섬유화 작용은 또한 FS의 병태 생리학에서 역할을하며 당뇨병 환자의 FS가 불응 성 경향이있는 이유의 일부라는 가설이 있습니다 [26].
Discussion
It is outlined in this review that the pathophysiology of frozen shoulder is a rather complex process. It involves an early inflammatory response, production of pro-inflammatory cytokines, enhanced fibroblast proliferation, activation and differentiation into myofibroblasts, and an imbalance in ECM turnover with an abundance of disorganized collagen III deposition (Fig. 3). It is clear that there are a lot of factors involved, and we have most likely not identified all related factors yet. There are some important questions that remain unanswered.
토론
이 리뷰에서는 오십견의 병리 생리학이 다소 복잡한 과정이라는 것을 설명합니다. 여기에는 초기 염증 반응, 전 염증성 사이토카인의 생성, 섬유아세포 증식, 근섬유아세포로의 활성화 및 분화, 무질서한 콜라겐 III 침착으로 인한 ECM 회전율의 불균형 등이 포함됩니다(그림 3). 많은 요인이 관련되어 있으며 아직 모든 관련 요인을 파악하지 못했을 가능성이 높습니다. 아직 답하지 못한 몇 가지 중요한 질문이 남아 있습니다.
Diagram pathophysiology of FS
What triggers the onset of a FS?
As with many diseases, it is still unclear what triggers the onset of the disease. Microtrauma has been suggested as a trigger, although this is hard to support with evidence [103]. With the identification of predisposing factors we do get a better understanding of the etiology. An increasing amount of evidence supports a chronic state of low-grade inflammation as an important predisposing factor for the development of FS [46, 48, 79, 81, 104]. Markers of chronic inflammation (ICAM-1, TIMP) are elevated in FS patients, and pro-inflammatory lipoproteins are significant risk factors for FS, similar to patients with cardiovascular disease or metabolic syndrome [48, 82]. The incidence of FS is so much higher in patients with DM and thyroid disorders, since these conditions are associated with a chronic state of inflammation [20, 83]. Even depressive personality traits are sometimes linked to FS, and depression is also associated with enhanced inflammatory cytokine levels [105]. It seems plausible that female hormones might be related in this context, since the peak incidence of FS is in perimenopausal women. However, a clear explanation, or a direct relationship between female hormones and FS was not found in the current literature.
오십견의 발병 원인은 무엇인가요?
많은 질병과 마찬가지로, 무엇이 이 질병의 발병을 유발하는지는 아직 명확하지 않습니다. 미세 외상이 유발 요인으로 제시되고 있지만 증거로 뒷받침하기는 어렵습니다[103]. 발병 요인이 밝혀짐에 따라 발병 원인을 더 잘 이해할 수 있게 되었습니다. 점점 더 많은 증거가 만성적인 저등급 염증 상태를 FS 발병의 중요한 선행 요인으로 뒷받침하고 있습니다 [46, 48, 79, 81, 104]. 만성 염증 마커 (ICAM-1, TIMP)는 FS 환자에서 상승하고 전 염증성 지단백질은 심혈관 질환 또는 대사 증후군 환자와 유사하게 FS의 중요한 위험 요소입니다 [48, 82]. 이러한 상태는 만성 염증 상태와 관련이 있기 때문에 당뇨병 및 갑상선 질환 환자에서 FS의 발병률이 훨씬 높습니다 [20, 83]. 우울한 성격 특성도 때때로 FS와 관련이 있으며, 우울증은 염증성 사이토카인 수치 증가와도 관련이 있습니다 [105]. 폐경 전후 여성에서 FS의 발병률이 가장 높기 때문에 이러한 맥락에서 여성 호르몬이 관련이 있을 수 있다는 것은 그럴듯해 보입니다. 그러나 여성 호르몬과 FS 사이의 명확한 설명이나 직접적인 관계는 현재 문헌에서 발견되지 않았습니다.
Why only the shoulder?
How is it possible that FS is a condition unique for the shoulder without similar conditions in other joints? Pietrzak et al. hypothesized an evolutionary explanation [104]. The ability to throw accurately and forcefully is an important ability acquired during human evolution. Therefore, the shoulder is built for elastic energy storage and generation of maximal shoulder external rotation [106]. In our modern sedentary lifestyle without the need for throwing or overhead activities, parts of the anterior shoulder capsule and ligaments are probably not being exercised or stretched sufficiently. This makes the (anterior) shoulder capsule and ligaments probably more susceptible to oxidative stress, related to cytokine production and the formation of AGEs [104]. Although it is uncertain how much of this is true, this could potentially explain why FS is seen less frequently in manual laborers, and why the dominant side seems less likely to be involved [2, 4, 103, 107].
It is debatable whether FS is truly unique to shoulders.
왜 어깨에만 발생하나요?
다른 관절에는 비슷한 질환이 없는데
어떻게 어깨에만 유독 FS가 나타날 수 있을까요?
피에트르작 등은
진화론적 설명을 가설로 세웠습니다 [104].
정확하고 힘차게 던지는 능력은
인간의 진화 과정에서 획득한 중요한 능력입니다.
따라서
어깨는 탄력적인 에너지 저장과
최대 어깨 외회전 생성을 위해 만들어졌습니다 [106].
던지거나 머리 위 활동을 할 필요가 없는
현대의 좌식 생활 방식에서는
전방 어깨 캡슐과 인대의 일부가 충분히 운동되거나
스트레칭되지 않을 수 있습니다.
이로 인해 (앞쪽) 어깨 캡슐과 인대가
사이토카인 생성 및 AGE 형성과 관련된
산화 스트레스에 더 취약할 수 있습니다 [104].
이것이 얼마나 사실인지는 확실하지 않지만,
육체 노동자에게서 FS가 덜 자주 나타나는 이유와
우세한 쪽이 관여할 가능성이 적은 이유를 잠재적으로 설명할 수 있습니다 [2, 4, 103, 107].
FS가 정말 어깨에만 나타나는 질환인지는 논란의 여지가 있습니다.
Is the capsule of the shoulder so much different to that of other joints?
The joint capsule has to be compliant and allows the widest range of motion of all our joints. Is this why shoulder fibroblasts are more ‘sensitive’ to inflammation or mechanical stress? There is some literature about a similar condition in hips, ankles and also knees. However, the currently available literature are mainly case reports of conditions seldomly seen in clinical practice [108, 109]. Contractures with fibrosis do occur frequently mainly in knees and elbows, but without the potential for spontaneous recovery as FS has. We did try to find clues why and how the reversibility happens in FS, but we are not able to find an answer to this question. Apoptosis of the myofibroblasts is probably what occurs in the final stage of the condition, this is how they normally disappear from granulation tissue after wound healing [11, 25].
어깨의 관절낭이 다른 관절의 관절낭과 크게 다른가요?
관절낭은
우리 몸의 모든 관절 중에서 가장 넓은 운동 범위를 허용해야 합니다.
이것이 어깨 섬유아세포가 염증이나 기계적 스트레스에 더 '민감한' 이유일까요?
엉덩이, 발목, 무릎에서도 비슷한 증상이 나타난다는 문헌이 있습니다.
그러나 현재 이용 가능한 문헌은 주로 임상에서 거의 볼 수 없는 질환에 대한 사례 보고입니다 [108, 109]. 섬유화를 동반한 구축은 주로 무릎과 팔꿈치에서 자주 발생하지만, FS처럼 자연적으로 회복될 가능성은 없습니다. 우리는 FS에서 가역성이 발생하는 이유와 방법에 대한 단서를 찾으려고 노력했지만 이 질문에 대한 답을 찾지 못했습니다. 근섬유 아세포의 세포 사멸은 아마도 상태의 마지막 단계에서 발생하는 것으로, 이는 상처 치유 후 일반적으로 과립 조직에서 사라지는 방식입니다 [11, 25].
Clinical implications and potential future treatment strategies
Physiotherapy and corticosteroids are the most widely used treatment modalities in FS. There is reasonable evidence for the use of intra-articular corticosteroids in the treatment of FS [110]. Corticosteroids have a general suppressive effect on the inflammatory response and hampers the differentiation of fibroblasts into myofibroblasts. Evidence of less α-SMA staining was found, indicating less myofibroblasts, in capsular biopsies in patients treated with corticosteroid injections compared to patients without corticosteroids [25]. One can also understand that the earlier in the disease process the corticosteroid injection is administered, the greater the effect on the clinical symptoms. Corticosteroids can suppress the inflammatory response, but they cannot reverse the fibrotic changes later on in the cascade. When administered in the frozen stage later on, the effect of corticosteroids is usually more temporarily [111].
The negative effect of physiotherapy including mobilization techniques beyond the threshold of pain early on in the disease is explained by the mechanosensitive properties of the fibroblasts [112]. It is hypothesized that the inflammatory response is probably sensitizing the fibroblasts more to mechanical stress. On the other hand, stretching exercises up to a tolerable level of pain resulted in an increase in MMP/TIMP ratio, hereby favoring collagen remodeling and was found to be superior to supervised neglect in the study of Lubis et al. [37] Some mechanical stress is apparently necessary for the remodeling of ECM, especially in the later stage of the condition. This is why tissue irritability, guiding treatment intensity, is implemented in physiotherapy guidelines for the treatment of FS [113].
More advanced treatment strategies have been suggested to intervene with the inflammation-fibrosis cascade in different ways. The TGF-β pathway was interrupted by silencing the Smad4 gene in rats with a FS induced by immobilization, through transfection with a lentivirus [51]. Smad proteins are mediators in the TGF-β signaling cascade. Silencing of this gene suppressed the TGF-β pathway, impairing the inflammatory response and myofibroblast differentiation. The rats with the silenced Smad4 gene had better shoulder range of motion and an increased joint volume compared to rats without Smad4 silencing [51]. Systemic inhibition of TGF-β might have unwanted side effects since it is also an important cytokine for connective tissue homeostasis involved in the proliferation epithelial cells, endothelial cells and immune cells [78]. However, TGF-β inhibitors with low toxicity is a field of intense research. There are now clinical trials with TGF-β inhibitors in cancer patients [114]. Glenohumeral intra-articular infiltration of a TGF-β inhibitor, hereby minimizing systemic effects, could perhaps be a promising suggestion to intervene early on in FS.
Calcitonin was more or less accidentally discovered as a treatment agent for FS when postmenopausal women with FS were treated with calcitonin for osteoporosis [33]. Their FS symptoms improved significantly after the use of a nasal calcitonin spray. Calcitonin is a hormone, secreted by the thyroid, known to inhibit osteoclast activity and lowering the kidney excretion of calcium. The presence of abundant calcitonin receptors in fibroblasts of the shoulder synovium and capsule could be confirmed with immunohistochemistry. Cultured fibroblast from FS patient stimulated with salmon calcitonin showed a significant decrease in the production of collagen type I and III. Synthesis of TGF-beta1 mRNA was suppressed by salmon calcitonin, and the adhesion ability of the fibroblasts decreased with if treated with salmon calcitonin. Apoptosis of the cultured fibroblasts could even be induced with high levels of salmon calcitonin. The efficacy of nasal calcitonin spray was demonstrated in a placebo controlled double blind randomized trial [115]. This might also explain why patients with thyroid disorders have an increased risk of FS, since hypothyroidism and auto-immune thyroiditis can be accompanied by calcitonin deficiency [116, 117].
Intra-articular injections with human recombinant relaxin-2 is suggested as a potential agent for the treatment of FS [52]. Relaxin-2 is known because it is temporarily elevated to soften the cervix during child birth. In an animal study with in vitro cultured fibroblasts Relaxin-2 has been shown to up regulate MMP production, and to down regulate collagen production and expression of TIMP and TGFB-1. This results in a net breakdown of ECM proteins. Furthermore, Relaxin-2 seems to prevent fibroblast differentiation into myofibroblasts. The safety and efficacy still has to be investigated in a human clinical trial. Lee et al. suggested HMGB1 as a therapeutic target and Hinz et al. suggested to target the stress sensors of the fibroblasts, hereby rendering them blind for mechanical stress [78, 91]. However, to what extend these options are realistic and safe options in the near future is unclear.
임상적 의미 및 향후 잠재적 치료 전략
물리 치료와 코르티코스테로이드는 섬유근육통에서 가장 널리 사용되는 치료 방식입니다. FS 치료에 관절 내 코르티코스테로이드를 사용하는 것에 대한 합리적인 증거가 있습니다 [110]. 코르티코스테로이드는 염증 반응에 대한 일반적인 억제 효과가 있으며 섬유아세포가 근섬유아세포로 분화되는 것을 방해합니다. 코르티코스테로이드 주사로 치료받은 환자의 캡슐 생검에서 코르티코스테로이드를 투여하지 않은 환자에 비해 α-SMA 염색이 더 적다는 증거가 발견되어 근섬유 아세포가 더 적다는 것을 나타냅니다 [25]. 또한 질병 진행 초기에 코르티코스테로이드 주사를 투여할수록 임상 증상에 미치는 영향이 더 크다는 것을 이해할 수 있습니다. 코르티코스테로이드는 염증 반응을 억제할 수는 있지만, 이후 단계의 섬유화 변화를 되돌릴 수는 없습니다. 나중에 동결 단계에서 투여하면 코르티코 스테로이드의 효과는 일반적으로 더 일시적입니다 [111].
질병 초기에 통증의 역치를 넘어서는 동원 기술을 포함한 물리 치료의 부정적인 영향은 섬유 아세포의 기계 민감성 특성으로 설명됩니다 [112]. 염증 반응이 섬유아세포를 기계적 스트레스에 더 민감하게 만든다는 가설이 있습니다. 반면에 견딜 수있는 수준의 통증까지 스트레칭 운동을하면 MMP / TIMP 비율이 증가하여 콜라겐 리모델링에 유리하며 Lubis 등의 연구에서 감독 된 방치보다 우수한 것으로 밝혀졌습니다.37] 특히 상태의 후기 단계에서 ECM의 리모델링에는 약간의 기계적 스트레스가 분명히 필요합니다. 이것이 바로 치료 강도를 안내하는 조직 과민성이 FS 치료를위한 물리 치료 지침에 구현되는 이유입니다 [113].
염증-섬유화 캐스케이드에 다양한 방식으로 개입하는 보다 진보된 치료 전략이 제안되었습니다. 렌티바이러스 감염을 통해 고정화에 의해 유도된 FS를 가진 쥐에서 Smad4 유전자를 침묵시킴으로써 TGF-β 경로를 중단시켰습니다 [51]. Smad 단백질은 TGF-β 신호 캐스케이드의 매개체입니다. 이 유전자의 침묵은 TGF-β 경로를 억제하여 염증 반응과 근섬유아세포 분화를 손상시켰습니다. Smad4 유전자가 침묵된 쥐는 Smad4가 침묵되지 않은 쥐에 비해 어깨 운동 범위가 더 넓고 관절 부피가 증가했습니다 [51]. TGF-β는 증식 상피 세포, 내피 세포 및 면역 세포에 관여하는 결합 조직 항상성에 중요한 사이토카인이기 때문에 전신적인 억제는 원치 않는 부작용을 초래할 수 있습니다 [78]. 하지만 독성이 낮은 TGF-β 억제제는 연구가 활발히 진행되고 있는 분야입니다. 현재 암 환자를 대상으로 TGF-β 억제제를 사용한 임상 시험이 진행 중입니다 [114]. TGF-β 억제제의 관절강 내 침윤을 통해 전신 영향을 최소화하는 것은 아마도 FS 초기에 개입할 수 있는 유망한 제안이 될 수 있습니다.
칼시토닌은 폐경 후 여성이 골다공증으로 칼시토닌 치료를 받았을 때 FS 치료제로서 우연히 발견되었습니다 [33]. 비강 칼시토닌 스프레이를 사용한 후 이들의 FS 증상이 크게 개선되었습니다. 칼시토닌은 갑상선에서 분비되는 호르몬으로 파골세포 활동을 억제하고 신장에서 칼슘 배설을 낮추는 것으로 알려져 있습니다. 어깨 활막과 관절낭의 섬유아세포에 칼시토닌 수용체가 풍부하게 존재하는 것을 면역조직화학으로 확인할 수 있었습니다. 연어 칼시토닌으로 자극한 FS 환자의 배양 섬유아세포는 콜라겐 타입 I 및 III의 생성이 현저히 감소한 것으로 나타났습니다. 연어 칼시토닌에 의해 TGF-베타1 mRNA의 합성이 억제되었고, 연어 칼시토닌으로 처리하면 섬유아세포의 접착 능력이 감소했습니다. 심지어 높은 수준의 연어 칼시토닌으로 배양된 섬유아세포의 세포 사멸이 유도될 수도 있었습니다. 비강 칼시토닌 스프레이의 효능은 위약 대조 이중 맹검 무작위 시험에서 입증되었습니다 [115]. 갑상선 기능 저하증과 자가 면역 갑상선염은 칼시토닌 결핍을 동반 할 수 있기 때문에 갑상선 질환이있는 환자가 FS 위험이 증가하는 이유를 설명 할 수도 있습니다 [116, 117].
인간 재조합 릴랙신-2를 사용한 관절 내 주사가 FS 치료를위한 잠재적 인 약제로 제안됩니다 [52]. 릴랙신-2는 출산 시 자궁경부를 부드럽게 하기 위해 일시적으로 상승하는 것으로 알려져 있습니다. 체외 배양 섬유아세포를 사용한 동물 연구에서 릴랙신-2는 MMP 생성을 상향 조절하고 콜라겐 생성과 TIMP 및 TGFB-1의 발현을 하향 조절하는 것으로 나타났습니다. 그 결과 ECM 단백질이 순 분해됩니다. 또한 릴렉신-2는 섬유아세포가 근섬유아세포로 분화하는 것을 방지하는 것으로 보입니다. 안전성과 효능은 아직 인간 임상 시험에서 조사해야 합니다. Lee 등은 HMGB1을 치료 표적으로 제안했고, 힌츠 등은 섬유아세포의 스트레스 센서를 표적으로 삼아 기계적 스트레스에 대해 눈이 멀게 만들 것을 제안했습니다 [78, 91]. 그러나 이러한 옵션이 가까운 미래에 어느 정도까지 현실적이고 안전한 옵션인지는 불분명합니다.
Limitations
The search strategy for this scoping review was designed to keep our scope wide to make sure that all available relevant articles are included. A limitation is that the main selection criteria for this scoping review (a substantial focus on pathophysiology of FS) is subjective. Furthermore, the pathophysiologic findings are dependent on the stage of the condition and most of the current research data comes from patients with a refractory frozen stage. To make progress in our understanding of the onset of FS, it might be necessary to include patients early on in the freezing stage in research with histological and immunological analysis.
Remarks for the future
There are some considerable clinical challenges for healthcare professionals dealing with FS patients. Based on just history and physical examination, it is impossible to predict what the natural course of a FS in an individual patient will be. This is relevant information, not only to inform the patient, but also for shared decision making on when to intervene. Research on prognostic factors for FS is surprisingly scarce. A worse prognosis can be expected in patients with DM and with severe symptoms on presentation [118]. Age over 60 has shown to be a favourable prognostic factor and gender is not correlated with the prognosis [97]. Immunological research seems crucial to get a better understanding of the individual variety in natural history of a FS. Perhaps immune composition in biopsies or biomarkers in synovial fluid can be used as prognostic factors to predict the natural course of FS. Collaboration of orthopedic surgeons with immunologists and rheumatologists is essential in order to move forward in this field of research.
Conclusions
The complexity of the pathophysiology of FS is outlined in this review. A state of low grade inflammation, as is associated with DM, cardiovascular disease and thyroid disorders, predisposes for the development of FS. An early immune response with elevated levels of alarmins such as HMGB1 and binding to the receptor of AGE starts the cascade of inflammation. Activation of the NF-κB pathway together with mechanical stress stimulates release of inflammatory cytokines, of which TGF-β has a prominent role. Fibroblasts proliferate, become activated and differentiate into myofibroblasts. This results in an imbalance of ECM turnover and a stiff and thickened glenohumeral capsule with abundance of type III collagen. Based on the pathophysiologic mechanism in FS it can be explained why intra-articular corticosteroid injections should be used early on in the condition and why the intensity of physiotherapy should be guided by tissue irritability. Leads are provided to progress with research for clinically important prognostic markers and in search for early interventions in FS.
Acknowledgements
This study was supported by ReumaNederland (grant 2019-1-675111)(JL).
Abbreviations
ACIC | Acid sensing ion channel |
α-SMA | Alfa smooth muscle actin |
AGE | Advanced Glycation End products |
CHL | Coracohumeral ligament |
DAMP | Damage-associated molecular pattern |
DM | Diabetes mellitus |
ECM | Extracellular matrix |
FDG-PET CT | Fluorodeoxyglucose positron emission tomography/computed tomography |
FS | Frozen shoulder |
HDL | High density lipoprotein |
HMGB1 | High mobility group box 1 |
ICAM-1 | Intercellular adhesion molecule-1 |
IL | Interleukin |
LDL | Low density lipoprotein |
MMP | Matrix Metallo Proteinases |
PDGF | Platelet derived growth factor |
RI | Rotator interval |
RT-PCR | Real time polymerase chain reaction |
TGF-β | Transforming growth factor-beta |
TIMP | Tissue Inhibitor of Metallo Proteinases |
TNF-α | Tumor necrosis factor alfa |
VEGF | Vascular endothelial growth factor |
Authors’ contributions
Each author believes that the manuscript represents honest work and that each author substantially contributed to the manuscript. TK is the initiator of this manuscript and drafted the manuscript. JL contributed substantially to this manuscript, mainly related to the immunological content and participated in the creation of the figures. MvdB contributed substantially to obtain all relevant articles for this review and revised the manuscript critically for important intellectual content. JA was involved in linking and translating the pathophysiological mechanisms to clinical relevant information for healthcare professionals. YvK revised the manuscript for important intellectual content. DE was involved in the conception of this work and revised the manuscript for important intellectual content. RK was involved in the conception of this work and initiated collaboration with the department of Molecular cell biology and Immunology. The authors read and approved the final manuscript.
Funding
|