|
PMCID: PMC9671893 PMID: 36396688
Abstract
We conducted a prospective single-arm interventional study of the treatment efficacy of ultrasound-guided fascia hydrorelease (US-FHR) on the coracohumeral ligament (CHL) of patients with global limitation of shoulder range of motion (ROM) without local inflammation. The primary outcome was the change in passive ROM (pROM) of external rotation (ER) after first US-FHR. Secondary outcomes included the change in pROM of other directions from baseline, the pain visual analogue scale (pVAS) at the timepoints after each procedure (first, second US-FHR and rehabilitation) as well as the change in the Shoulder Pain and Disability Index (SPADI) from the first to the second visit. Eleven patients underwent US-FHR. The pROM of ER after the 1st US-FHR changed by a median of 7.1° (p < 0.01). There was a statistically significant improvement in the pROM of flexion, extension, abduction, external rotation, and internal rotation from baseline to each timepoints. The pVAS at rest showed no significant improvement, although the pVAS at maximal ER showed a trend towards improvement. The SPADI score decreased by a median of 13.4 (p < 0.01). No adverse events were observed. US-FHR on the CHL with or without rehabilitation might be an effective, less invasive treatment for patients with global limitation of shoulder ROM.
우리는
국소 염증 없이 어깨 운동 범위(ROM)가 전반적으로 제한된 환자의
오구상완인대(CHL)에 대한
초음파 유도 근막 하이드로 방출술(US-FHR)의 치료 효과에 대한
전향적 단일군 중재 연구를 수행했습니다.
1차 결과는 첫 번째 US-FHR 후
외회전(ER)의 수동적 ROM(pROM)의 변화였습니다.
이차 결과에는 기준선 대비
다른 방향의 pROM 변화, 각 시술(1차, 2차 US-FHR 및 재활) 후 시점의 통증 시각 아날로그 척도(pVAS),
1차에서 2차 방문까지의 어깨 통증 및 장애 지수(SPADI)의 변화가 포함되었습니다.
11명의 환자가 US-FHR을 받았습니다.
1차 US-FHR 후 응급실의 pROM은 중앙값 7.1° 변화했습니다(p <0.01).
굴곡, 신전, 외전, 외회전, 내회전의 pROM은
베이스라인에서 각 시점까지 통계적으로 유의미한 개선이 있었습니다.
안정 시 pVAS는 유의미한 개선이 나타나지 않았지만,
최대 ER에서의 pVAS는 개선되는 경향을 보였습니다.
SPADI 점수는 중앙값 13.4점 감소했습니다(p <0.01).
부작용은 관찰되지 않았습니다.
재활을 동반하거나 동반하지 않는 CHL에서의 US-FHR은
어깨 ROM의 전신적 제한이 있는 환자에게
효과적이고 덜 침습적인 치료가 될 수 있습니다.
Subject terms: Musculoskeletal abnormalities, Ligaments
Introduction
Reduced shoulder range of motion (ROM) and shoulder pain of unknown cause remain substantial problem in clinical practice. Especially when the limitation of ROM is global, this condition is termed as frozen shoulder, adhesive capsulitis, or periarthritis. The boundary of this disease entity is still discussed, and several classification criteria are separately proposed1–3. Concerning “frozen shoulder,” the recovery from pain and restricted range of motion usually takes as much as 1–3 years, and at most 20–50% of patients suffer from persistent pain and reduced ROM4. The treatment for frozen shoulder includes analgesics, physical therapy, steroid injection, arthrographic distention5 and manipulation under anesthesia (MUA)6, arthroscopic capsular release7, and dissection of the coracohumeral ligament (CHL)/glenohumeral ligament (GHL) under arthroscopy8 in refractory cases.
There is a strong need to develop effective and less invasive strategies.
The pathophysiology of frozen shoulder involves inflammation and the subsequent fibrotic process9. Microscopic observation of the affected shoulders has revealed widespread inflammation and fibrosis, not only in the capsule itself, but also in the surrounding tissue, such as the CHL, subacromial bursa, supraspinatus tendon, and subscapularis muscle10. In this context, frozen shoulder is more than simple “capsulitis,” and it is imperative to consider connective tissues around the joint capsule as the treatment target. Among them, the CHL plays a particularly crucial role in frozen shoulder: increased CHL elasticity11, thickening of the CHL as observed on ultrasound12, and magnetic resonance arthrography13 have all been reported. Furthermore, dissection of the CHL after arthroscopic capsular release leads to better recovery of ROM8.
Conversely, fascial dysfunction affects toward increase of stiffness in pain syndrome such as frozen shoulder14. Ultrasound-guided fascia hydrorelease (US-FHR) has become popular as a therapeutic options for (myo)fascial pain, especially in Japan15. Some reports have shown the effectiveness of US-FHR in various clinical conditions, such as myofascial pain syndrome on the shoulder16, acute low back pain17 and pain from scarring after arthroscopic knee surgery18. US-FHR is an injection technique for the release of a “stacking” fascia that can be visualized as hyperechoic strip-shaped lesions on ultrasound images, akin to peeling off thin stacking papers. The term “release” indicates separation in both structural or morphological views and relaxation in functional views15.
We hypothesized that an abnormal fascia in and around the CHL may develop as a result of the inflammation-fibrosis sequence in the patients with persistent global limitation of shoulder ROM (such as frozen shoulder). We therefore aimed to assess the treatment efficacy of US-FHR on the CHL of patients with global limitation of shoulder ROM without local inflammation.
소개
어깨 운동 범위(ROM) 감소와 원인 불명의 어깨 통증은
임상에서 여전히 상당한 문제로 남아 있습니다.
특히 어깨 운동 범위의 제한이 전신적으로 나타나는 경우
이러한 상태를 오십견, 유착성 관절낭염 또는 관절 주위염이라고 합니다.
이 질병 실체의 경계는 여전히 논의 중이며 몇 가지 분류 기준이 별도로 제안됩니다1-3.
“오십견"의 경우 통증과 제한된 운동 범위에서 회복하는 데는
보통 1~3년이 걸리며, 최
대 20~50%의 환자가 지속적인 통증과 ROM 감소로 고통받습니다4 .
오십견 치료에는
진통제, 물리 치료, 스테로이드 주사, 관절경적 팽창술5 및 마취 하 조작(MUA)6,
관절경적 관절낭 방출술7, 불응성인 경우 관절경 하 견봉상완골 인대(CHL)/상완골 인대(GHL) 절개8 등이 있습니다.
효과적이고 덜 침습적인 전략을 개발할 필요가 있습니다.
오십견의 병리 생리학은
염증과 그에 따른 섬유화 과정을 포함합니다9.
영향을 받은 어깨를 현미경으로 관찰 한 결과
캡슐 자체뿐만 아니라
CHL,
견봉 하 윤활 낭,
극상근 힘줄 및 견갑 하 근육과 같은 주변 조직에서도
광범위한 염증과 섬유화가 발견되었습니다10 .
이러한 맥락에서
오십견은 단순한 '관절낭염'을 넘어
관절낭 주변의 결합 조직을 치료 대상으로 고려해야 합니다.
그 중에서도 특히 회전근개는
오십견에서 중요한 역할을 하는데,
회전근개의 탄력성 증가11,
초음파에서 관찰되는 회전근개의 비후12,
자기공명 관절조영술13 등이 모두 보고되고 있습니다.
또한 관절경으로 캡슐을 제거한 후
CHL을 절개하면 ROM8 이
더 잘 회복됩니다.
반대로
근막 기능 장애는
오십견과 같은 통증 증후군에서
강직이 증가하는 방향으로 영향을 미칩니다14.
초음파 유도 근막 하이드로 릴리즈(US-FHR)는
특히 일본에서 (근)근막 통증의 치료 옵션으로 인기를 얻고 있습니다15.
어깨 근막통 증후군16, 급성 요통17, 관절경 무릎 수술 후 흉터로 인한 통증18 과 같은
다양한 임상 조건에서
US-FHR의 효과가 입증된 보고도 있습니다.
US-FHR은 초음파 이미지에서 고 에코 스트립 모양의 병변으로 시각화할 수 있는 “스태킹” 근막을 방출하는 주사 기법으로, 얇은 스태킹 종이를 벗겨내는 것과 유사합니다. “이완"이라는 용어는 구조적 또는 형태학적 관점에서는 분리를, 기능적 관점에서는 이완을 나타냅니다15.
우리는 오십견과 같이 어깨 ROM이 지속적으로 제한되는 환자에서 염증-섬유화 시퀀스의 결과로 CHL 안팎의 비정상적인 근막이 발생할 수 있다는 가설을 세웠습니다.
따라서
저희는
국소 염증 없이 어깨 ROM이 전반적으로 제한된 환자의
CHL에 대한 US-FHR의 치료 효과를 평가하고자 했습니다.
Outcome
The baseline characteristics of the patients are listed in Table 1. All patients were enrolled within the first year on disease onset. None of the participants had any secondary conditions such as diabetes or a history of connective tissue disease. Approximately 70% of the patients were taking analgesics (e.g., acetaminophen, Non-Steroidal Anti-Inflammatory Drugs). Notably, their pain visual analog scale (pVAS) score was relatively low at rest, while that at maximal external rotation (ER) was high.
Table 1.
Baseline patient characteristics.
Pt.1Pt.2Pt.3Pt.4Pt.5Pt.6Pt.7Pt.8Pt.9Pt.10Pt.11Ave
Duration (mo.) | 3 | 6 | 3 | 3 | 2 | 6 | 12 | 4 | 5 | 5 | 6 | 5.0 |
DM | − | − | − | − | − | − | − | − | − | − | − | |
History of CTD | − | − | − | − | − | − | − | − | − | − | − | |
Use of analgesics | + | + | + | + | + | − | − | − | + | + | + | |
ROM (degree) | ||||||||||||
Flex. aROM | 101.8 | 96.8 | 69.2 | 74.2 | 74.8 | 75.2 | 74.6 | 88.5 | 100.0 | 81.6 | 136.6 | 88.5 |
Flex. pROM | 108.0 | 108.1 | 80.0 | 86.1 | 83.6 | 87.0 | 88.1 | 93.0 | 112.6 | 111.6 | 142.5 | 100.0 |
Ext. aROM | 25.1 | 15.0 | 26.1 | 28.3 | 25.9 | 13.5 | 31.3 | 19.1 | 10.4 | 22.4 | 33.4 | 22.8 |
Ext. pROM | 27.1 | 19.1 | 33.0 | 36.8 | 31.7 | 15.5 | 37.8 | 27.5 | 12.5 | 29.7 | 38.0 | 28.0 |
Abd. aROM | 49.0 | 42.9 | 45.1 | 43.5 | 47.5 | 63.3 | 58.9 | 36.3 | 49.5 | 79.9 | 93.3 | 55.4 |
Abd. pROM | 54.5 | 69.7 | 59.2 | 50.5 | 49.6 | 66.4 | 76.8 | 41.6 | 72.3 | 86.4 | 106.6 | 66.7 |
IR. aROM | 50.3 | 45.5 | 46.4 | 33.3 | 45.4 | 49.5 | 31.5 | 40.4 | 39.6 | 46.0 | 32.7 | 41.9 |
IR. pROM | 50.3 | 49.0 | 53.9 | 35.6 | 52.3 | 53.6 | 35.8 | 49.4 | 45.1 | 48.1 | 44.4 | 47.0 |
ER. aROM | 16.3 | 0.0 | 9.6 | 26.9 | 20.0 | 18.2 | 13.4 | 18.6 | 6.6 | 17.3 | 12.0 | 14.4 |
ER. pROM | 24.5 | 7.8 | 14.1 | 34.3 | 24.6 | 19.9 | 15.6 | 20.6 | 7.3 | 24.7 | 17.4 | 19.1 |
pVAS | ||||||||||||
At rest | 0.0 | 10.0 | 72.0 | 31.0 | 17.0 | 17.0 | 24.0 | 0.0 | 24.0 | 9.0 | 0.0 | 18.5 |
At max. ER | 78.0 | 46.0 | 88.0 | 96.0 | 90.0 | 99.0 | 52.0 | 60.0 | 83.0 | 61.0 | 77.0 | 75.5 |
SPADI | 74.6 | 59.2 | 82.5 | 84.6 | 86.2 | 99.2 | 84.6 | 50.0 | 60.8 | 53.8 | 56.2 | 72.0 |
Abd, abduction; aROM, active range of motion; Ave., average; CTD, connective tissue disease; DM, diabetes mellitus; ER, external rotation; Ext, extension; Flex, flexion; IR, internal rotation; mo., month; max., maximal; pROM, passive range of motion; pVAS, pain visual analog scale; Pt, patient; SPADI, shoulder pain and disability index.
The median change in passive ROM (pROM) of ER from before to after the 1st US-FHR (primary outcome) was 7.1° [IQR, 4.6 to 10.6] (p = 0.01). The change in pROM of other directions from before to after the 1st US-FHR were as follows: flexion (median 7.7° [IQR, 5.1 to 14.4°]), extension (median 4.7° [IQR, 3.2 to 9.6°]), abduction (median 14.4° [IQR, 4.5 to 23.3°]), internal rotation (IR) (mean 3.1° [IQR, 1.8 to 6.3°]). Figure 1 shows the sequential change of pROM from before the 1st US-FHR to the end of the interventions. The change in pROM from the baseline to each timepoint (i.e.: after 1st US-FHR, after 2nd US-FHR, and after rehabilitation) was statistically significant (p < 0.05) in every direction except for extension (after 1st US-FHR, p = 0.06). The increase in pROM from baseline over time also showed statistically significant trends (p < 0.05) in every direction.
Figure 1.
Box-and-whisker plot of ROM change over time compared to baseline. The vertical line is the measure of degree. Abbreviations: Abd, abduction; ER, external rotation; Ext, extension; Flex, flexion; IR, internal rotation; pROM, passive range of motion; rehab, rehabilitation; US-FHR, ultrasound-guided fascia hydrorelease. Note: dot lines indicate the baseline.
The pVAS at rest did not show significant improvement over time, while the pVAS at maximal ER showed significant improvement at each timepoint compared to the baseline (Fig. 2, p < 0.05). The Shoulder Pain and Disability Index (SPADI) score changed by a median of 13.4 [IQR, 8.5 to 18.1] from baseline to the 2nd visit (p < 0.01).
Figure 2.
Box-and-whisker plot of pVAS change over time compared to the baseline. The pVAS at rest is scored at rest, and pVAS at max.ER is at maximal ER (on move), separately. Abbreviations: Abd, ER, external rotation; pVAS, pain visual analog scale; rehab, rehabilitation; US-FHR, ultrasound-guided fascia hydrorelease. Note: dot lines indicate the baseline.
There were no adverse events such as pain at the injection site, subcutaneous bleeding, or nerve damage related to the procedure.
Discussion
The ROM on flexion, extension, abduction, internal rotation, external rotation remarkably improved immediately after US-FHR on the CHL. Interestingly, the ROM improvement was not limited on external rotation although we only approached the CHL. An anatomical study showed that the anterior part of the CHL envelopes the subscapularis muscle and the posterior part envelopes supraspinatus / infraspinatus muscle, anchoring the muscles to the coracoid process19. Therefore, we assume the change in the CHL might affect the muscles connected to CHL and improved the ROM in various aspects. The improvement after US-FHR on ROM was generally maintained throughout the consequent procedures. The total change at the end of the interventions was numerically higher than the change with the 1st US-FHR, which may support the idea that repeated US-FHR, or the combination of US-FHR and rehabilitation, may additionally improve shoulder ROM. Pain VAS at the maximal ER position showed an improving trend over time, which was not the case with VAS at rest. SPADI showed remarkable improvement between the 1st and 2nd visit. This result may indicate that US-FHR on CHL works for both pain on motion and disability of the patients with global limitation of shoulder ROM. We also observed recovery of CHL stretchability with US-FHR by dynamic ultrasound evaluation (Supplementary Video 1a and 1b), which may explain why this technique facilitates improvements of shoulder ROM. Ultrasound have been used for dynamic quantitative motion metrics20, and for measuring the change in elasticity before and after the treatment21 in various shoulder problems. Further study to measure stretchability of the CHL quantitively should be done in the future.
The mechanism of US-FHR is not fully understood yet. A previous study of US-FHR targeted the hyperechoic lesion in the multifidus muscle and assumed that the injected solution might affect pain receptors in the abnormal fascia visualized as a hyperechoic area17. Another possible mechanism is that releasing (separating) “stacking” fascia in the CHL increased shear strain, leading to ROM recovery. Stacking fascia (also referred as “fibrosis” of the fascia) is usually visualized as thickened or high-echoic regions on Ultrasound22, and a report showed these sonographic changes correlate with pain, a greater reduction in fascial shear strain, and also reduced lumber ROM in patients with low back pain23.
US-FHR differs from similar injection techniques in several ways: trigger point injection in myofascial pain syndrome usually does not use ultrasound and the needle tip does not target the fascia. The appropriate depth of injection for trigger point injection (TPI) is still under debate24. Hydrodissection separates two anatomically adjacent components with a clear border, such as a peripheral nerve and its surrounding tissue, often using a larger amount of solution25, whereas US-FHR injects as little as 2 mL of normal saline alone into the fascial tissue that looks thickened on ultrasound, intending to loosen and unglue it, without triggering a clear separation from the adjacent tissues. We assume that 2 mL is enough for this technique because a cadaveric study showed 1.0 mL of a pigment solution injected under ultrasound guidance separated two adjacent muscles (trapezius muscle and rhomboid muscle) and spread to the wide area within the interfascial space (24.5 cm2 on the deep side of the trapezius muscle and 18.8 cm2 on the superficial side of rhomboid muscle)26. Hydrodilation is sometimes used to treat frozen shoulder; this involves the injection of large amounts (often as much as 30 ml) of normal saline and steroids through the glenohumeral recess or rotator cuff interval into the shoulder capsule, leading to rupture of the capsule27,28. In contrast, US-FHR on the shoulder aims to release the fascial tissues outside the capsule, altering the sliding of the adjacent tissues. Prolotherapy triggers local inflammation by injecting dextrose, resulting in production of substances that promote tissue healing such as platelet-derived growth factors29. Contrastingly, US-FHR does not seem to affect the inflammatory process or humoral factors as ROM and pain are altered immediately after the injection.
US-FHR has several advantages over the other injection techniques. First, the procedure takes a very short time (usually only 30 s), and the results appear immediately after the procedure. Second, it uses normal saline alone, which is cost-effective and safer than other drug solutions such as corticosteroid or local anesthesia. We also favor normal saline in US-FHR, as one study showed that normal saline was more effective than mepivacaine for TPI in myofascial pain syndrome30. Third, ultrasound guidance enables clear visualization of the target tissue as well as the structures around, which makes the injection procedure safe. Moreover, comparing the sliding motion before and after the procedure by US informs us whether the injected target contributed to the functional impairment or not.
This study has several limitations. First, it was single-arm study and included only 11 patients due to relatively severe inclusion criteria. However, despite the small number of subjects, their ROM, pVAS at max. ER, and SPADI showed a statistically significant improving trend with US-FHR. Second, it is unclear if the effect of US-FHR lasts more than a week. Third, the response to the US-FHR varied widely among the subsects, and prediction models must be constructed to assess the efficacy.
Recently, the concept of “fascial system,” comprising the three-dimensional continuum of soft, collagen-containing, loose, and dense fibrous connective tissue that permeate the body and incorporate various type of connective tissues from adipose tissue to ligaments, has been proposed31. In this novel point of view, both the CHL and adjacent peribursal fat are a part of the fascial system, therefore what we have called “capsulitis” (such as frozen shoulder, adhesive capsulitis, or periarthritis) is a problem of fascial system.
In conclusion, US-FHR on the CHL with or without rehabilitation might be an effective, less invasive, and inexpensive treatment for patients with global limitation of shoulder ROM. The safety and effectiveness of the procedure should be further evaluated with controlled trials with large number of patients and longer follow-up time. We would hope that our description of this novel treatment approach targeting the fascial system surrounding the shoulder sheds new light on the pathophysiology and treatment of this condition.
토론
굴곡, 신전, 외전, 내회전, 외회전에 대한 ROM은
CHL에서 US-FHR을 실시한 직후에
현저하게 개선되었습니다.
흥미로운 점은
CHL에만 접근했음에도 불구하고
외회전에서는 ROM 개선이 제한되지 않았다는 점입니다.
해부학적 연구에 따르면
CHL의 앞부분은 견갑하근을 감싸고
뒤부분은 극상근/극하근을 감싸고 있어
근육을 코라코이드 과정에 고정시키는 것으로 나타났습니다19.
따라서
CHL의 변화가 CHL에 연결된 근육에 영향을 미쳐
다양한 측면에서 ROM을 개선했을 것으로 추정합니다.
ROM에 대한 US-FHR 후의 개선은
일반적으로 후속 시술 내내 유지되었습니다.
중재가 끝날 때의 총 변화는 첫 번째 US-FHR의 변화보다 수치적으로 더 높았으며, 이는 반복적 인 US-FHR 또는 US-FHR과 재활의 조합이 어깨 ROM을 추가로 개선 할 수 있다는 생각을 뒷받침 할 수 있습니다. 최대 ER 자세에서의 통증 VAS는 시간이 지남에 따라 개선되는 추세를 보였지만, 안정 시 VAS는 그렇지 않았습니다. SPADI는 1차 방문과 2차 방문 사이에 현저한 개선을 보였습니다. 이 결과는 CHL에 대한 US-FHR이 어깨 ROM의 전반적인 제한이 있는 환자의 운동 시 통증과 장애 모두에 효과가 있음을 나타낼 수 있습니다. 또한 동적 초음파 평가(보충 동영상 1a 및 1b)를 통해 US-FHR을 통한 CHL 신축성 회복을 관찰했는데, 이는 이 기술이 어깨 ROM의 개선을 촉진하는 이유를 설명할 수 있습니다. 초음파는 다양한 어깨 문제에서 동적 정량적 운동 지표20 및 치료 전후의 탄력성 변화21 측정에 사용되어 왔습니다. 향후 CHL의 신축성을 정량적으로 측정하기 위한 추가 연구가 진행되어야 합니다.
US-FHR의 메커니즘은 아직 완전히 이해되지 않았습니다. US-FHR에 대한 이전 연구에서는 다중 피더스 근육의 고 에코 병변을 표적으로 삼았으며 주입 된 용액이 고 에코 영역으로 시각화 된 비정상 근막의 통증 수용체에 영향을 미칠 수 있다고 가정했습니다17 . 또 다른 가능한 메커니즘은 CHL에서 “스태킹” 근막을 방출(분리)하면 전단 변형이 증가하여 ROM 회복으로 이어진다는 것입니다. 스태킹 근막(근막의 “섬유화”라고도 함)은 일반적으로 초음파에서 두꺼워지거나 고 에코 영역으로 시각화되며22, 한 보고서에 따르면 이러한 초음파 변화가 통증, 근막 전단 변형의 큰 감소, 요통 환자의 목재 ROM 감소와 상관관계가 있는 것으로 나타났습니다23.
US-FHR은 근막 통증 증후군의 트리거 포인트 주사는 일반적으로 초음파를 사용하지 않으며 바늘 끝이 근막을 목표로 하지 않는다는 점에서 유사한 주사 기법과 몇 가지 점에서 차이가 있습니다. 트리거 포인트 주사(TPI)를 위한 적절한 주사 깊이는 아직 논의 중입니다24. 수압박리술은 말초 신경과 그 주변 조직과 같이 해부학적으로 경계가 명확한 인접한 두 구성 요소를 분리하기 위해 많은 양의 용액을 사용하는 반면25, US-FHR은 초음파에서 두꺼워 보이는 근막 조직에 2mL의 생리 식염수만 주입하여 인접 조직과 명확한 분리를 일으키지 않고 느슨하게 풀고 접착을 해제하려는 의도를 가지고 있습니다. 사체 연구에서 초음파 유도 하에 주입된 1.0 mL의 색소 용액이 인접한 두 근육(승모근과 능형근)을 분리하고 근막 간 공간 내 넓은 영역(승모근 심부 24.5 cm2, 능형근 표면 18.8 cm2)26 으로 퍼지는 것으로 나타났으므로 이 기술에는 2mL이면 충분하다고 가정합니다. 오십견을 치료하기 위해 수압 확장술이 사용되기도 하는데, 이는 어깨 캡슐에 대량의 생리 식염수와 스테로이드를 상완골 오목 부위 또는 회전근개 간격을 통해 주입하여 캡슐을 파열시키는 것입니다27,28. 이와는 대조적으로 어깨의 US-FHR은 근막 조직을 캡슐 외부로 방출하여 인접 조직의 미끄러짐을 변화시키는 것을 목표로 합니다. 프롤로테라피는 포도당을 주입하여 국소 염증을 유발하여 혈소판 유래 성장 인자와 같은 조직 치유를 촉진하는 물질을 생성합니다29. 이와는 대조적으로 US-FHR은 주사 직후 ROM과 통증이 변화하기 때문에 염증 과정이나 체액성 요인에 영향을 미치지 않는 것으로 보입니다.
US-FHR은 다른 주사 기술에 비해 몇 가지 장점이 있습니다.
첫째, 시술 시간이 매우 짧고(보통 30초 정도 소요) 시술 직후에 결과가 나타납니다.
둘째, 생리식염수만을 사용하기 때문에 코르티코스테로이드나 국소 마취와 같은 다른 약물 용액보다 비용 효율적이고 안전합니다. 한 연구에 따르면 근막통증증후군에서 생리식염수가 TPI에 대해 메피바카인보다 더 효과적이라는 결과가 나왔기 때문에 US-FHR에서도 생리식염수를 선호합니다30.
셋째, 초음파 가이드를 통해 목표 조직과 주변 구조물을 명확하게 볼 수 있어 주사 시술이 안전합니다. 또한 시술 전과 후의 슬라이딩 동작을 US로 비교하면 주입된 표적이 기능 장애에 기여했는지 여부를 알 수 있습니다.
이 연구에는 몇 가지 한계점이 있습니다. 첫째, 단일군 연구로 비교적 엄격한 포함 기준으로 인해 11명의 환자만 포함되었습니다. 그러나 적은 수의 피험자 수에도 불구하고 이들의 ROM, 최대 pVAS. ER, SPADI는 US-FHR을 통해 통계적으로 유의미한 개선 추세를 보였습니다. 둘째, US-FHR의 효과가 일주일 이상 지속되는지 여부는 불분명합니다. 셋째, US-FHR에 대한 반응은 하위 영역에 따라 매우 다양하며, 효능을 평가하기 위해서는 예측 모델을 구축해야 합니다.
최근에는 체내에 침투하여 지방 조직에서 인대에 이르기까지 다양한 유형의 결합 조직을 포함하는 부드럽고 콜라겐을 함유한 느슨하고 치밀한 섬유질 결합 조직의 3차원 연속체로 구성된 “근막 시스템”이라는 개념이 제안되었습니다31. 이 새로운 관점에서는 CHL과 인접한 견봉 주위 지방은 모두 근막 시스템의 일부이므로 우리가 오십견, 유착성 관절낭염 또는 관절 주위염과 같은 “캡슐염”이라고 부르는 것은 근막 시스템의 문제입니다.
결론적으로, 재활을 동반하거나 동반하지 않는 CHL의 US-FHR은 어깨 ROM의 전신적 제한이 있는 환자에게 효과적이고 덜 침습적이며 저렴한 치료법이 될 수 있습니다. 이 시술의 안전성과 효과는 환자 수가 많고 추적 관찰 기간이 긴 대조군 임상시험을 통해 추가로 평가되어야 합니다. 어깨를 둘러싼 근막 시스템을 표적으로 하는 이 새로운 치료법에 대한 설명이 이 질환의 병태생리와 치료에 새로운 빛을 비추기를 바랍니다.
MethodsEthics
Ethical approval for this study was obtained from the Fukushima Medical University Ethics Committee (RK2019-002). Written informed consent was obtained from all patients. All methods were performed in accordance with the Declaration of Helsinki. This manuscript adheres to the applicable WHO recommendation.
Patient selection
We conducted a prospective single-arm interventional study to assess the effectiveness of US-FHR in adult patients (over 20-year-old) who visited the outpatient department of the Kimura pain clinic with unilateral persistent global limitation of shoulder ROM from January 1, 2019 to June 31, 2020.
The inclusion criteria were as follows: clinical diagnosis of frozen shoulder, defined as a gradual development of global limitation of both active range of motion (aROM) and pROM of the shoulder and exclusion of differential diagnosis following the classification criteria of frozen shoulder endowed by American Academy of Orthopedic Surgeons2; and severe decrease of aROM and pROM (< 30% of normal ROM) on ER. Differential diagnosis were made by history of illness, physical examination and ultrasound. The sole exclusion criterion was the presence of subacromial bursitis or calcified tendonitis confirmed by ultrasound.
A flowchart of patient selection is shown in Fig. 3.
Figure 3.
Flowchart showing patient selection and treatment. The patient’s flow was as follows: on the first visit to the clinic, the patients underwent initial assessment, informed consent process, and 1st US-FHR consecutively. On the second visit, the patients underwent 2nd US-FHR and then rehabilitation. We recruited 17 patients with global limitation of shoulder ROM. 12 of them met the inclusion and exclusion criteria. After informed consent of the study was obtained, all of the 12 underwent 1st US-FHR on the first visit, 2nd US-FHR and rehabilitation on the second visit that is scheduled approximately one week from the 1st. 11 completed the study protocol, while one did not complete the measurement and dropped out from the analysis. The black arrow indicates the time point of measuring ROM and pVAS. The gray arrowhead indicates the time point of measuring SPADI. Abbreviations: ROM, passive range of motion; SPADI, shoulder pain and disability index; US-FHR, ultrasound-guided fascia hydrorelease.
Treatment
Patients underwent US-FHR on CHL on the 1st visit and 2nd visit that was scheduled around one week after the 1st. On the same day after the 2nd US-FHR, patients underwent rehabilitation that was focused mainly on the ROM training of external rotation.
The procedure for USFHR is shown in Fig. 4A. Patients were placed in a neutral position. The affected shoulder was externally rotated maximally within the patient’s tolerance. We used KONICA MINOLTA HS-1 (authentication number: 226ABBZX00051000) for US-FHR. The ultrasound probe (L18-4: frequency ranges from 4 to 18 MHz [authentication number: 226ABBZX00052000]) was placed on the upper lateral side of the shoulder, and the CHL portion that bridges the coracoid process and humeral head was visualized. A 38-mm 27-gauge needle was inserted through the deltoid muscle, and the needle tip was advanced until it reached the CHL, using an out-of-plane approach (Fig. 4B). We injected 2 ml of normal saline across the bundle of the CHL (Fig. 4C), carefully monitoring the image by US. A movie of each procedure was recorded (examples are shown in Supplementary Video 2).
치료
환자들은 1차 방문과 1차 방문 후 약 1주일 후에 예정된 2차 방문에서 CHL에서 US-FHR을 받았습니다.
2차 US-FHR 후 같은 날, 환자들은 주로 외회전 ROM 훈련에 중점을 둔 재활 치료를 받았습니다.
USFHR의 절차는 그림 4A에 나와 있습니다.
환자는 중립 자세를 취했습니다.
환자의 허용 범위 내에서 환측 어깨를 최대로 외회전시켰습니다.
US-FHR에는 코니카 미놀타 HS-1(인증 번호: 226ABBZX00051000)을 사용했습니다. 초음파 프로브(L18-4: 주파수 범위는 4~18MHz [인증 번호: 226ABBZX00052000])를 어깨 위쪽 측면에 배치하고 코라코이드 프로세스와 상완골 두를 잇는 CHL 부분을 시각화했습니다.
38mm 27게이지 바늘을 삼각근을 통해 삽입하고, 평면 외 접근법을 사용하여 바늘 끝을 CHL에 도달할 때까지 전진시켰습니다(그림 4B).
CHL 다발을 가로질러 생리식염수 2ml를 주입하고(그림 4C), US로 이미지를 주의 깊게 모니터링했습니다.
각 절차의 동영상을 녹화했습니다(예는 보충 비디오 2에 나와 있습니다).
Figure 4.
Probe position and visualization of the coracohumeral ligament (CHL). (a) Probe positions during ultrasound-guided fascia hydrorelease of the CHL. The patient was placed in a supine position, and the affected shoulder was maximally externally rotated within the patient’s tolerance. An ultrasound probe was placed on the upper lateral side of the shoulder. (b) Visualization of the coracohumeral ligament (CHL). The CHL was visualized with the probe placed at the position shown in (a). A, coracoid process; B, peribursal fat around subacromial bursa; C, subscapularis tendon; D, deltoid muscle; E, humeral head; arrowheads, CHL. (c) Ultrasound image of ultrasound-guided fascia hydrorelease (US-FHR) on the coracohumeral ligament (CHL). Two ml of normal saline was injected within the CHL. The needle tip (dagger) was always visualized and the position of the needle tip was controlled to remain on the CHL throughout the injection. The CHL becomes irregularly edematous after the US-FHR and the irregularity disappears after a certain period (depending on the subjects). A, coracoid process; B, peribursal fat around subacromial bursa; C, subscapularis tendon; D, deltoid muscle; E, humeral head; arrowhead, CHL, asterisk: fluid collection. Note: the CHL bundle was released into group of thin strip-shaped lines (the whole procedure can be viewed in Supplementary Video 2).
상완골 인대(CHL)의 프로브 위치 및 시각화.
(a) 초음파 유도 근막 하이드로 릴리즈 중 CHL의 프로브 위치. 환자를 앙와위 자세로 눕히고 환자의 허용 범위 내에서 해당 어깨를 최대한 외부로 회전시켰습니다. 초음파 프로브를 어깨의 위쪽 측면에 배치했습니다.
(b) 견봉상완인대(CHL)의 시각화.
(a)에 표시된 위치에 프로브를 배치하여 CHL을 시각화했습니다. A, 코라코이드 돌기; B, 견봉하 점액낭 주위 지방; C, 견갑하 힘줄; D, 삼각근; E, 상완골 두; 화살촉, CHL.
(c) 상완골 인대(CHL)의 초음파 유도 근막 수액 방출(US-FHR)의 초음파 이미지. CHL 내에 생리식염수 2ml를 주입했습니다. 주사하는 동안 바늘 끝(단도)을 항상 시각화하여 주사하는 동안 바늘 끝의 위치가 CHL에 유지되도록 제어했습니다. US-FHR 후 CHL은 불규칙적으로 부종이 생기고 일정 기간이 지나면 불규칙성이 사라집니다(피험자에 따라 다름).
A, 코라코이드 돌기; B, 견봉하 윤활 낭 주위 지방; C, 견갑하 힘줄; D, 삼각근; E, 상완골 두; 화살촉, CHL, 별표: 체액 수집. 참고: CHL 묶음은 얇은 띠 모양의 선 그룹으로 방출되었습니다(전체 절차는 보충 비디오 2 에서 볼 수 있습니다).
Outcome measurements
The primary outcome measure was the change in the pROM of ER before and after the 1st US-FHR. The secondary outcome measure included the changes in pROM of ER from the timepoint before the 1st US-FHR to after the 1st US-FHR, after the 2nd US-FHR, and after rehabilitation, as well as the changes in pROM of other directions and the change in pVAS. The pVAS score is determined by measuring the distance (mm) on the 100 mm line between the “no pain” anchor and the patient’s mark with a ruler, providing a range of scores from 0 to 100. pVAS at rest and at maximal ER (on move) were scored separately. SPADI from the 1st visit to 2nd visit (surveyed before US-FHR on each visit) was also included in the secondary outcome measure. The ROMs were measured with digital goniometer (produced by Almencla US) twice by a well-experienced physical therapist, and the average value was calculated. Before clinical use, the accuracy of the device was checked by comparing the measured value with that of the analogue goniometer at 45° and 90°.
Use of analgesics was allowed during the study period; however, nerve root block, steroid injection on the shoulder joint, acupuncture, and rehabilitation were not allowed during the time between the 1st and the 2nd visit.
Statistical analysis
Categorical and quantitative variables were described as numbers (percentages), means (standard deviation) or medians (interquartile range [IQR]), as appropriate. For each ROM, the measured value at each assessment point after the procedure (after the 1st US-FHR, before and after the 2nd US-FHR, and after the rehabilitation) were compared with those at baseline (before the 1st US-FHR) using Wilcoxon-signed rank test. p values were corrected by the Bonferroni method based on the number of multiple testings. In addition, trends for the improvement in each ROMs were evaluated using the Jonckheere-Terpstra trend test. Differences in SPADI between baseline and on the 2nd visit were assessed by Wilcoxon-signed rank test. For all analyses, a p value < 0.05 was considered significant. All analyses were performed using STATA software (version 17.0, StataCorp, College Station, TX, USA).
Supplementary Information
Supplementary Video legends. (25.6KB, docx)
Supplementary Video 1a. (8.8MB, mp4)
Supplementary Video 1b. (9.3MB, mp4)
Supplementary Video 2. (5.2MB, mp4)
Acknowledgements
We would like to thank Keiko Otani (nurse) for assisting with the US-FHR procedure, and Ryoya Asaka (physical therapist) for measuring ROM and collected patient profile data. We would like to thank Editage (www.editage.com) for English language editing.
Author contributions
H.K. conceived of the presented idea. H.K., M.S., and H.O. designed and directed the study. H.K. performed US-FHR. S.S. measured ROM and collected patient profile data. T.K. and H.O. supervised the interpretation of the findings of this study. M.S. drafted the manuscript, prepared the tables, and designed the figures. S.F. conducted the statistical analysis. All the authors have discussed the results and contributed to the final manuscript.
Data availability
The authors confirm that the data supporting the findings of this study are available within the article and its supplementary materials.
Competing interests
The authors declare no competing interests.
Footnotes
Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
These authors contributed equally: Hiroaki Kimura and Masei Suda.
Supplementary Information
The online version contains supplementary material available at 10.1038/s41598-022-23362-y.
References
|